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Abstract.  This paper provides a numerical solution for null field complex variable boundary integral equation 
(CVBIE) in plane elasticity. All kernels in the null field CVBIE are regular function. An accurate shape function for 
the displacement and traction along the contour is suggested. With the usage of suggested shape function, a 
discretization for the boundary integral equation (BIE) is carried out. The Dirichlet and the Neumann boundary value 
problems (BVPs) for the interior region and the exterior region are studied. Two numerical examples are provided in 
the paper. It is shown that a higher accuracy has been achieved in the examples with the usage of the suggested shape 
function.   
 

Keywords:  null field formulation; complex variable boundary integral equation; interior BVP; exterior 

BVP; accurate shape function  

 
 
1. Introduction 

 

In recent sixty years, the boundary integral equation method (BIE) becomes an important tool 

in the solution of elasticity problem. Many pioneer researchers initiated and developed the general 

theorem in the field of BIE (Rizzo 1967, Cruse 1969, Jaswon and Symm 1977, Brebbia et al. 

1984, Hong and Chen 1988). The usual BIE is formulated on the usage of the Betti’s reciprocal 

theorem between the fundamental stress field and the physical field. For the general case of 

boundary and the boundary condition, the formulated BIE cannot be solved in a closed form. After 

making a discretization to the BIE, it is natural to formulate the boundary element method (BEM). 

The heritage and history for the BIE were summarized (Cheng and Cheng 2005). The BEM has a 

particular feature that the relevant numerical discretization is conducted at reduced spatial 

dimension. Generally, the reduced dimension leads to smaller linear systems and less computer 

memory requirements.  

However, the BIE for plane elasticity problem suffers some inconvenient points. For example, 

in the Dirichlet problem for the exterior boundary value problem (BVP), the solution from BIE 

may not be unique in the case of degenerate scale for contour configuration. There are extensive 

references in the field of degenerate scales (Chen et al. 2002, Vodicka and Mantic 2008). Clearly,  
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Fig. 1 Formulation of the null field CVBIE for an interior region 

 

 

the physical background for the presence of degenerate scale in plane elasticity is rather clear. 

Secondly, there are some singular or supper singular integrals involved in the BIE. Sometimes, 

it may be a problem to evaluate those integrals properly. To avoid using the singular integral in 

BIE many researchers suggested the regularization procedure for BIE or the no-singular boundary 

element formulation (Liu and Rudolphi 1999, Liu and Deng 2013). 

The other possibility in the regularization procedure is based on the usage of to the null field 

formulation for the usual BIE. Some solutions in the Laplace equation based on the null field 

formulation were suggested more recently (Chen and Wu 2007, Chen and Lee 2009). In those 

papers, the kernels and the functions assumed along the boundary are expressed in the series form. 

Further, the discretization for the BIE is suggested.  

An exact solution was proposed for the hypersingular boundary integral equation of two-

dimensional elastostaticcs (Zhang and Zhang 2008). Based on complex variable boundary integral 

equation, an iteration approach for multiple notch problem was suggested (Chen 2012b). 

Properties of integral operators in complex variable boundary integral equation in plane elasticity 

were studied in detail (Chen and Wang 2013). 

This paper provides a numerical solution for null field complex variable boundary integral 

equation (CVBIE) in plane elasticity. This null field CVBIE can be easily formulated from 

relevant CVBIE obtained previously (Chen et al. 2010, Chen 2012a). The interior and exterior 

boundary value problems (BVPs) are studied in the present paper. Since all source points are 

located in the complementary domain with respect to the considered domain, all kernels in the null 

field BIE are regular function. An accurate shape function for displacement and traction along the 
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contour is suggested in the paper. For each node on the contour two values are assumed, one is the 

value of the function itself on the node and the other is the derivative for the function. The shape 

function is therefore formulated on many intervals along the contour. Therefore, the assumed 

shape function has the property of C1 continuity. The elliptic contour is assumed in the numerical 

examples. Comparisons between the exact solution and the numerical solution for the Dirichlet 

and the Neumann problems are carried out. In the present examples, all the relative errors in both 

the Dirichlet and the Neumann problems are very small. 

 

 
2. The Null Field CVBIE for an interior region in plane elasticity 
 

General formulation for the null field CVBIE for an interior region is suggested. An accurate 

shape function for modeling the displacement and traction along the contour is proposed in the 

discretization of BIE. Numerical examples are carried out. 
 

2.1 General formulation for the null field CVBIE for an interior region 
 

In the following analysis, we take the elliptic contour as an example in the formulation (Fig. 1). 

Previously, a CVBIE (complex variable boundary integral equation) for the interior region was 

suggested (Chen et al. 2010, Chen 2012a). After dropping the free term in the usual CVBIE, and 

assuming the source point t◦ to be outside the contour Γ or t◦ϵS- (Fig. 1), we have the following null 

field CVBIE for the interior BVP (boundary value problem). 
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where  43 (for plane strain condition), )1/()3(  (for plane stress condition), 

G is the shear modulus of elasticity, and  is the Poisson’s ratio. In Eq. (1), Γ denotes the 

boundary of the interior region. The integration for “dt” is performed in the clock-wise direction in 

Fig. 1. In addition, U(t) and Q(t) denote the displacement and traction along the boundary, which 

are defined by 
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In addition, two kernels are defined by (Chen et al. 2010, Chen 2012a) 
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Note that all the nodes for the null field BIE, or the points t◦ are located outside of the contour Γ 
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Thus, all integrals involved in Eq. (1) are regular. The ellipse for null field nodes t◦ is defined by, 

x=(a+δ) cos θ, y=(b+ δ)sin θ or t◦ϵ Γ◦ (Fig. 1).    

 

2.2 Discretization in the Null field BIE for the interior BVP 
 

It is known that it is an import step to perform discretization in the numerical solution of BIE. 

An ellipse with two half-axes “a” and “b” is taken as an example in the discretization (Fig. 1). In 

the discretization, we can assume N nodes, from P1, P2, Pj, Pj+1, PM along the contour Γ (Fig. 1). 

Clearly, the node Pj corresponds to a location with the coordinates x=a cos{2(j-1)π/M} and y=b 

sin{2(j-1)π/M} (j=1,2,….M). 

In the discretization, the parameter θ in the expression for the elliptic contour Γ, or x=-a cos θ 

and y=b sin θ, is appropriate one in the derivation. Here we prefer write the parameter “θ” as “s” 

(Fig. 1).  

For the u-component of the displacement (the real portion of U=u+iv)) along the interval PjPj+1 

(Fig. 1), we can assume the shape function for the displacement as follows 
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where hj= π/M denotes the half-length in the integration for the interval PjPj+1 (Fig. 1). 

For the four undetermined coefficients ig (i=1,2,3,4) in the shape function u(j)(s), we can 

propose the following conditions 
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From the condition shown by Eq. (6), we can obtain the following interpolation for the shape 

function u(j)(s) 
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Similarly, for the v-component of the displacement (the imaginary portion of U=u+iv) along the 

interval PjPj+1, we have the following interpolation for the shape function v(j)(s) 
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Note that the two shape functions )s(u )j(  and )s(v )j( are defined in the local coordinates with origin 

at the middle point of the interval 
1jjpp 
(Fig. 1). However, it is easy to link the position of “s” to the 

position of “t” in the term )t(U)t,t(L o1
in BIE shown by Eq. (1). In addition, the two shape functions 

)s(u )j(  and )s(v )j(  have the property of the 1C  continuity. The same interpolation for the traction 

components )s(
)j(

N  and )s(
)j(

NT is used in the discretization.  

        In order to balance the members of the equations and unknowns after discretization, we assume 

the 2M null field nodes for the source point ot  in Eq. (1) (Fig. 1). Those null field nodes are denoted by 

1q , 
2q ,

3q , 
4q ,.. 

1j2q 
, 

j2q , 
1j2q 
, 

2j2q 
,…

1M2q 
, 

M2q . In addition, those points are assumed on an 

ellipse which is defined by  cos)a(x  and  sin)b(y . Clearly, the ellipse for the null field 

nodes
o  is located exterior to the contour   (Fig. 1). 

If we assume the source point ot in the points from 
1q , 

2q ,.. to 
1M2q 
, 

M2q , we will obtain 2M 

equations in complex variable, or 4M equations in real. 

Simply substituting the assumed shape function for )t(iv)t(u)t(U   and 

)t(i)t()t(Q NTN  into Eq. (1) and performing the integration, the BIE shown by Eq. (1) can be 

reduced to the following the following form of linear algebraic equation 

UM )}t(U{ QM )}t(Q{    (t denoting the discrete points) (10) 

where 

T

MMMMjjjj1111 }vvuu....vvuu....vvuu{)}t(U{   (11) 
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As stated previously,  j,NTj,NTj,Nj,N   denote the value of N , ds/d N , NT , 

ds/d NT at the node jp , respectively. In Eqs. (11) and (12), both vectors )}t(U{  and )}t(Q{  

have the dimension 4Mx1. 

In Eq. (10), the matrix MU is called the matrix acting upon the displacement vector )}t(U{ , 
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and MQ the matrix acting upon the traction vector )}t(Q{ . Both matrices MU and MQ have the 

dimension. 4M x 4M. 

In the Dirichlet BVP, the vector )}t(U{  is given beforehand. Substituting the known vector 

)}t(U{ into Eq. (10), the equation will be reduced to a linear algebraic equation for the traction 

)}t(Q{ . Similarly, in the Neumann BVP, the vector )}t(Q{  is given beforehand. Substituting the 

known vector )}t(Q{ into Eq. (10), the equation will be reduced to a linear algebraic equation for 

the displacement )}t(U{ . 

 

2.3 Numerical example 
 

One numerical example is presented below to prove the effectiveness of the proposed scheme 

for computation. The elastic elliptic region with two half-axes “a” and “b” is used for the 

numerical examination (Fig. 1). In computation, M=48 divisions is used for the elliptic contour  . 

The ellipse for null field nodes ot is defined by  cos)a(x ,  sin)b(y . or oot   

and a02.0 is used in computation (Fig. 1). When we perform the integration along the 

interval, for example along 1jjpp  , the Simpson integration rule with 60 divisions is used 

(Hildebrand 1974). 

In the examination, we use the following complex potentials (Muskhelishvili 1953) 

p
a

z
c)z(

2

1 , p
a

z
c)z(

2

2  (13) 

where “p” is a loading and 
ic (i=1,2) are some complex constants.  

From Eq. (13), we can evaluate the relevant displacements and stresses by using the Appendix 

A. In fact, the displacement and stress states in the region and boundary will be fully determined 

by the assumed coefficients 
ic (i=1,2).  

In the  example, we choose i8.05.0c1  , i6.01.1c2  , and  b/a=05. In addition, we 

choose a=20, b=10 and G=2 in computation   

As mentioned above, after discretization to Eq. (1), the BIE can be written in the form  

UM )}t(U{ QM )}t(Q{    (t denoting the discrete points) (14) 

where 
UM  a matrix acting upon the displacement vector )}t(U{ , and 

QM  is a matrix acting 

upon the traction vector )}t(Q{ .  

In the examination, )}t(U{ ex
 and )}t(Q{ ex

 denotes the displacement and traction vectors 

obtained from the exact solution with the complex potentials shown by Eq. (13) and some 

expressions for plane elasticity in Appendix A. 

In the first examination, we examine the properties of matrices 
UM  and 

QM . From assumed  

two vectors )}t(U{ ex
and )}t(Q{ ex

, we can formulate  and evaluate the following two vectors 

)}t(U{ op UM )}t(U{ ex ,    ( oot  ) (15) 
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)}t(Q{ op QM )}t(Q{ ex ,      ( oot  ) (16) 

From Eqs. (14), (15), (16), we see that )}t(Q{)}t(U{ opop  . Thus, the approximation of the 

vector )}t(U{ op
 to the vector )}t(Q{ op

represents the accuracy achieved in computation. Note 

that many null field points 
oot   are located at the null field nodes 

1q , 
2q ,…

1M2q 
, 

M2q (Fig. 

1). 

Thus, we can define a vector 

 )}t(Q{)}t(U{)}t(e{ opopo1 UM )}t(U{ ex - QM )}t(Q{ ex     ( oot  ) (17) 

and define an error estimation value 

1rE
)}t(Q{Mand)}t(U{Mofmax

 )}t(e{max

oexQoexU

o1
 (18) 

After computation, we find the following error 
4

1r 10*867.0E   from 2M discrete points. 

Clearly, the error is very small. 

In the second examination, we study the Dirichlet problem. In the Dirichlet problem, the U(t) 

component denoted by )}t(U{ ex can be exactly evaluated beforehand, which is from the complex 
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Fig. 2 Comparisons for three non-dimensional stresses p/)(f N1  , p/)(f NT2   and

p/)(f T3  in a Dirichlet problem for an elliptic plate in the case of i8.05.0c1  , 

i6.01.1c2  , and b/a=05 (see Fig.  1, Eq. (13) and Appendix A) 
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potentials shown by Eq. (13) with i8.05.0c1   and i6.01.1c2   directly. Thus, from Eq. 

(14), we can get the solution for )}t(Q{ num  by 

)}t(Q{ num UQ MM
1 )}t(U{ ex ,    (t denoting the discrete points) (19) 

where 1

QM  denotes the inverse of the matrix 
QM . Here, we only consider the elliptic region 

with a=20 and b=10. Thus, the inverse matric 1

QM exists when the real scale is different to the 

degenerate scale.  

From the obtained vector )}t(Q{ num
from numerical solution, we can get the traction 

components )t(,numN , )t(,numNT  at many discrete points along the boundary. Those values are 

compared with )t(,exN  )t(,exNT . Finally, we find the following errors:  

)t(max/)t()t(max jex,Njex,Njnum,N 
310*181.0  and )t(max/)t()t(max jex,NTjex,NTjnum,NT 

310*283.0  at many discrete points (Fig. 2).  

For the examination of the circumference stress component 
T  (Fig. 1), the following 

technique is suggested. In fact, in the plane strain case, the strain component 
T (in T-direction) 

can be expressed as (Fig. 1) 

))1()1((
E

1
N

2

TT   (20) 

Considering 
T  and N  as two known values, from Eq. (20) we can evaluate 

T  by (Chen 

2012b, 2012a) 

2

NT
T

1

)1(E




  (21) 

where E is the Young’s modulus of elasticity, and  is the Poisson’s ratio (Chen  2012a).  

In the Dirichlet problem, the component 
N  in Eq. (21) is obtained from the solution for Q(t) 

shown in Eq. (19). The strain component 
T  in the T-direction can be obtained from the given 

condition for U(t) (Chen 2012a).  

In the Neumann problem, the component 
N  in Eq. (21) is given beforehand from the 

boundary condition. The strain component 
T  in the T-direction can be evaluated from the 

obtained solution for displacement on the boundary, or U(t) along the boundary (Chen 2012a). 

In addition, the numerical solution )t(,numT  is compared with exact one. After computation, 

we find the following error 4

jex,Tjex,Tjnum,T 10*502.0)t(max/)t()t(max   from many 

discrete points. From above mentioned results we see that the suggested technique provides a very 

accurate result in the example.  

In addition, the stress components along the boundary   (  cosax ,  sinby ) are 

expressed by 

p)(f1N  ,  p)(f2NT  , p)(f3T   (22) 
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(a) (b) 

Fig. 3 Different techniques in the solution of Neumann problem for the interior region: (a) scheme 

of solution in the second technique, (b) scheme of solution in the third technique (M=48 used in 

computation) 

 

 

The exact and the computed results for )(f1  , )(f2  and )(f3  are plotted in Fig. 2. In Fig. 2, 

the solid line is derived from the exact solution, and the dashed line from the numerical solution. 

From the figure we see that the numerical solution provides very accurate result.  

In the third examination, we study the Neumann problem. In the Neumann problem, the Q(t) 

component denoted by )}t(Q{ ex
can be exactly evaluated beforehand, which is derived from the 

complex potentials shown by Eq. (13) with i8.05.0c1   and i6.01.1c2   directly.  

Three techniques are suggested to solve the Neumann problem (Fig. 3).  

In the first technique, from Eq. (14) we can get the solution for )}t(U{ num
 by 

)}t(U{ num

1

UM QM )}t(Q{ ex     (t denoting the discrete points) (23) 

where 1

UM  denotes the inverse of the matrix 
UM . In the numerical solution, we hav 0)det( UM  

and 0)det( UM . Thus, we can evaluate the matrix 1

UM  accordingly. 

As stated previously, we can evaluate the component )t(,numT . The numerical solution 

)t(,numT  is compared with exact one. The computed results for )t(
num,T  in the first technique 

is plotted in Fig. 4. In computation, we find the following error 

)t(max/)t()t(max jex,Tjex,Tjnum,T   
310*357.0  from many discrete points. The computed 

results for )t(
num,T  in the first technique is plotted in Fig. 4. 

The second technique for the solution in the Neumann problem is suggested below (Fig. 3).   
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Fig. 4 Comparisons for three non-dimensional stresses  p/)(f T3  in a Neumann problem for 

an elliptic plate in the case of i8.05.0c1  , i6.01.1c2  , and  b/a=05 by using different 

techniques (see Fig. 1, Eq. (13) and Appendix A) 

 

 

In the Neumann problem for the interior region, three rigid motion modes may be involved in 

the solution for the displacement. In order to obtain a definite solution for the displacement, the 

second technique for the problem is suggested. In the second technique, we assumed that (a) at the 

point A (x=a, y=0) in Fig. 3, or at the point 
1p , we take u=0 and v=0, (b) at the point B (x=-a, 

y=0), or at the point 12/Mp  , we take v=0. In addition, we consider the problem as a mixed 

boundary value problem. That is to say at the point A (x=a, y=0) two displacements u=0 and v=0 

are two known values and two tractions 
N and 

NT  become the unknowns. Similarly, at the 

point B (x=a, y=0) the displacements v=0 is a known value and the traction 
NT  become the 

unknown. In the mixed BVP, we just move three columns from left side of Eq. (14) to right side, 

and relevant three columns from right side of Eq. (14) to left side. Since the second technique can 

model the physical situation very well, this technique provides most effective way in the solution 

of the Neumann problem. 

In addition, the numerical solution )t(,numT  is compared with exact one. The computed 

results for )t(
num,T  from the second technique is also plotted in Fig. 4. In computation, we find 

the following error 3

jex,Tjex,Tjnum,T 10*359.0)t(max/)t()t(max   from many discrete 

points in the second technique.  

The third technique for the solution in the Neumann problem is suggested below (Fig. 3). The 

assumptions used in the second technique, or (a) at the point A (x=a, y=0), we take u=0 and v=0, 

(b) at the point B (x=-a, y=0), we take v=0, are still used in the present technique. However, in 

order to satisfy the mentioned conditions, we only assume that there elements in the diagonal in 

the matrix 
UM  take a huge value. In the M=48 case, corresponding to the mentioned conditions 

we can let 13

U 10)1,1(M  , 16

U 10)3,3(M  , 19

U 10)99,99(M  . Physically, the stress field at 

the vicinity of points 1p  and 12/Mp  has been seriously disturbed. Thus, the third technique cannot 
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Solution for null field CVBIE in plane elasticity using an accurate shape function 

provide an accurate result within the whole range (  20 ) along the elliptic contour.       

In addition, the numerical solution )t(,numT  is compared with exact one. The computed 

results for )t(
num,T  in the third technique is also plotted in Fig. 4. After computation, we find 

the following error 387.0)t(max/)t()t(max jex,Tjex,Tjnum,T   from many discrete 

points in the third technique. From Fig. 4, we see that in most range 6/116/   the 

computed results )t( jnum,T
 coincide with the )t( jex,T

very well. 

 

 

3. The Null Field CVBIE for an exterior region in plane elasticity 
 

As studied in the second section, general formulation for the null field CVBIE for an exterior 

region is suggested. The same accurate shape function proposed in the second section is still used 

here in the discretization of BIE. Numerical examples are carried out  

 
3.1 General formulation for the null field CVBIE for an exterior region 
 

Previously, a CVBIE for the exterior region was suggested (Chen 2012a). After dropping the 

free term in the usual  CVBIE, and assuming the source point ot  to be inside the contour  ,or 

Sto
 (Fig. 5), we have the following null field CVBIE for the exterior BVP (boundary value 

problem)  

 














dt)t(U)t,t(Ldt)t(U)t,t(Ldt)t(U

tt

1
G2 o2o1

o

 

 













 td)t(Q

tt

tt
dt)t(Qttln2

o

o
o (

Sto , for exterior BVP) 

(24) 

It is worth pointing out that the left side terms in Eqs. (1) and (24) (in Eq. (1) 
Sto , and in 

Eq. (24) 
Sto ) have quite different property, even though they have same expression. If one 

evaluates the first term in the left hand of Eqs. (1) and (24), we will find the following results 

0
tt

dt

i2

1

o


 

,     (
Sto ) (25) 

1
tt

dt

i2

1

o


 

,     (
Sto ) (26) 

From Eqs. (25) and (26), we will find a significant difference between two operators shown in 

left side of Eqs. (1) and (24). 

In addition, if substituting Q(t)=0 in Eqs. (1) and (24), we will obtain the following 

homogenous CVBIE 
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0dt)t(U)t,t(Ldt)t(U)t,t(Ldt)t(U
tt

1
o2o1

o
















  (

Sto , for interior BVP) (27) 

0dt)t(U)t,t(Ldt)t(U)t,t(Ldt)t(U
tt

1
o2o1

o
















  (

Sto , for exterior BVP) (28) 

We have numerically checked that the rigid mode motions along the boundary  are non-trivial solution 

for interior BVP shown by Eq. (27), or 
Sto  for interior BVP. For the limitation of space, we do not 

show the detailed result. On contrary, for the homogeneous BIE shown by Eq. (28), or 
Sto  for exterior 

BVP, we only have the trivial solution U(t)=0 along the boundary  .  

Similar to the interior BVP, we can use the same interpolation for the shape function, which is shown by 

Eqs. (7) and (8) (Fig. 5). 

As mentioned above, after making discretization to Eq. (24), the BIE can be written in the form 

UM )}t(U{ QM )}t(Q{    (t denoting the discrete points) (29) 

 

 

 
Fig. 5 Formulation of the null field CVBIE for an exterior region 
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Solution for null field CVBIE in plane elasticity using an accurate shape function 

where 
UM is a matrix acting upon the displacement vector )}t(U{ , and 

QM  is a matrix acting 

upon the traction vector )}t(Q{ . Even though the form of  matrix 
UM  in the exterior BVP is 

same as the form for the matrix in the interior BVP which is obtained in the second section, the 

two matrices have significant difference.  In the 
UM )}t(U{ expression for the interior BVP, the 

source point 
ot  is located outside of the elliptic contour   (Fig. 1). However, in the 

UM )}t(U{

expression for the  exterior BVP,  the source point 
ot  is located inside of the elliptic contour   

(Fig. 5). Clearly, the inverse matrix 1

UM  exists in the exterior BVP. 

 

3.2 Numerical examples 
 

Two numerical examples are provided to prove that the higher accuracy has been achieved in 

the suggested technique. Particularly, in the second example, the influences caused by (a) the scale 

of discritization, (b) the location of the null field nodes and (3) the type of the BVP are carefully 

examined. 

In the first example, we study the exterior BVP with the elliptic contour  (Fig. 5). The same 

computation conditions used in second section are used in the present example. The ellipse for null 

field nodes ot is defined by  cos)a(x ,  sin)b(y . or 
oot   (Fig. 5). and a02.0

is used in computation. 

In the present example, we use the following complex potentials 

zln
)1(2

P
)z(


 ,     zln

)1(2

P
)z(




  (30) 

where “P” is a loading, which is corresponds a concentrated force acted at the origin. 

From Eq. (30), we can evaluate the relevant displacements and stresses by using the Appendix 

A. In addition, we choose a=20, b=10 and G=2 in computation   

As mentioned above, after discretization to Eq. (24), the BIE can be written in the form  

UM )}t(U{ QM )}t(Q{    (t denoting the discrete points) (31) 

where 
UM is a matrix acting upon the displacement vector )}t(U{ , and 

QM  is a matrix acting 

upon the traction vector )}t(Q{ . 

In the first examination, we will check the approximate behavior for the left hand and the right 

hand term of Eq. (31). From Eq. (31), we can evaluate the relevant displacements and stresses by 

using the Appendix A.   

As stated before in second section, we can define a vector 

 )}t(Q{)}t(U{)}t(e{ opopo1 UM )}t(U{ ex - QM )}t(Q{ ex     ( oot  ) (32) 

and define an error estimation value 

)}t(Q{Mand)}t(U{Mofmax

 )}t(e{max

oexQoexU

o1  (33) 
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Fig. 6 Three non-dimensional stresses P/a)(g N1  , P/a)(g NT2  , P/a)(g T3   in a 

Dirichlet problem for an elliptic plate (see Fig. 5 and Eq. (35)) 

 

 

After computation, we find the following error 
5

1 10*701.0 rE  from 2M discrete points. 

Clearly, the error is very small. 

In the second examination, we study the Dirichlet problem. In the Dirichlet problem, the U(t) 

component denoted by )}t(U{ ex can be exactly evaluated beforehand, which is from the complex 

potentials shown by Eq. (30).  

Thus, from Eq. (24), we can get the solution for )}t(Q{ num  by  

)}t(Q{ num UQ MM
1 )}t(U{ ex ,    (t denoting the discrete points) (34) 

In addition, the stress components along the boundary (  cosax ,  sinby ) are expressed 

by 

a

P
)(g1N  , 

a

P
)(g2NT  , 

a

P
)(g3T   (35) 

The exact and the computed results for )(g1  , )(g2  and )(g3  are plotted in Fig. 6. In the 

figure, the solid line is derived from the exact solution, and the dashed line from the numerical 

solution. From the figure we see that the numerical solution provides very accurate result.  

In addition, we can find the following error estimation: 

)t(max/)t()t(max jex,Njex,Njnum,N 
310*485.0  ,

)t(max/)t()t(max jex,NTjex,NTjnum,NT 
210*100.0   and  

)t(max/)t()t(max jex,Tjex,Tjnum,T 
310*534.0   at many discrete points. Clearly, the  

90



 

 

 

 

 

 

Solution for null field CVBIE in plane elasticity using an accurate shape function 

0 60 120 180 240 300 360

-0.3

-0.2

-0.1

0.0

0.1

Exact  

- - Numerical

h
1
()=Gu/P max error 0.109*10

-4

h
2
()=Gv/P max error 0.492*10

-4

(z)={P/(2+1))} ln z

(z)={-P/(2+1))} ln z

at (x=acos   y=bsin)

b/a=0.5

( degree)

N
o
n
-d

im
e
n
s
io

n
a
l 
d
is

p
la

c
e
m

e
n
ts

 h
1
(

) 
 h

2
(

) 
 

 
Fig. 7 Two non-dimensional displacements P/Gu)(h1  , P/Gv)(h2  , in a Neumann 

problem of the exterior BVP for an elliptic plate (see Fig. 5 and Eq. (37)) 

 

 

Fig. 8 The non-dimensional stress P/a)(g T3   in a Neumann problem of the exterior BVP 

for an elliptic plate (see Fig. 5 and Eq. (37)) 

 

 

error is very small. 

In the third examination, we study the Neumann problem. In the Neumann problem, the Q(t) 

component denoted by )}t(Q{ ex
can be  exactly evaluated beforehand, which is from the 

complex potentials shown by Eq. (30).  
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Fig. 9 An elliptic notch in an infinite plate with loading applied on the contour 
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Fig. 10 Non-dimensional stresses )(gex  , )(g3   ( p/T ) for four cases at the point 

 cosax ,  cosby  in the case of M=36 (see Figs. 5 and 9). 

 

 

Thus, from Eq. (31), we can get the solution for )}t(U{ num
 by  

)}t(U{ num QU MM
1 )}t(Q{ ex ,    (t denoting the discrete points) (36) 

In addition, the computed displacement and the stress components along the boundary (  cosax , 

 sinby ) are expressed by 
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G

P
)(hu 1  , 

G

P
)(hv 2  , 

a

P
)(g3T   (37) 

Table 1 Non-dimensional stresses gex (θ), g3(θ)(=σT/p) for four cases at the point x=acos θ, y=bcos 

θ in the case of M-36 (see Figs. 5 and 9) 

 (deg) 0 10 20 30 40 50 60 70 80 90 

)(gex   8.000 5.010 1.885 0.421 -0.266 -0.621 -0.816 -0.926 -0.983 -1.000 

)(g3  *1 8.000 5.010 1.885 0.421 -0.266 -0.621 -0.816 -0.926 -0.983 -1.000 

)(g3  *2 7.978 5.022 1.885 0.420 -0.267 -0.621 -0.817 -0.926 -0.983 -1.000 

)(g3  *3 8.000 5.010 1.885 0.421 -0.266 -0.621 -0.816 -0.927 -0.983 -0.999 

)(g3  *4 7.978 5.023 1.886 0.420 -0.267 -0.621 -0.816 -0.928 -0.983 -0.998 

*1 a02.0 in Dirichlet BVP      *2 a02.0 in Neumann  BVP 

*3 a01.0 in Dirichlet BVP      *4 a01.0 in Neumann  BVP 

 

 

The exact and the computed results for )(h1  , )(h2  and )(g3  are plotted in Figs. 7 and 8. In 

the figure, the solid line is derived from the exact solution, and the dashed line from the numerical 

solution. From the figure we see that the numerical solution provides very accurate result. 

In addition, we can find the following error estimation: )t(umax/)t(u)tumax jexjexj,num   

410*109.0  , )t(vmax/)t(v)tvmax jexjexj,num 
410*493.0   and )t()t(max jex,Tjnum,T   

)t(max/ jex,T
210*599.0   at many discrete points. Clearly, the error is very small. 

In the second example, we check the accuracy archived in the suggested method. In the 

example, it is assumed that at the boundary point  cosx  sinby the following loading is 

applied (Fig. 9) 

 2

N sinp ,  cossinpNT       (with 





cosb

sina
tanArc ) (38) 

After using the following conformal mapping (Muskhelishvili 1953) 

)
m

(R)(z


 , (with 
2

ba
R


 ,   

ba

ba
m




 ) (39) 

We can obtain the following complex potentials (Muskhelishvili 1953) 






1

2

Rp)m1(
)(  (40) 

)m(

1

2

Rp)m1)(m1(1

2

Rp)m1(
)(

2

22









  (41) 

If we assume the displacements along the boundary from the complex potentials shown by Eqs. 

(40) and (41), the Dirichlet BVP (boundary value problem) is formulated. Therefore, the tractions 
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along the boundary will be obtained from the null field BIE shown by Eq. (24). Similarly, if we 

assume the tractions along the boundary from the complex potentials shown by Eqs. (40) and (41), 

the Neumann BVP is formulated. In addition, the displacements along the boundary will be 

obtained from the BIE shown by Eq. (24). 
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Fig. 11 Non-dimensional stresses )(gex  , )(g3   ( p/T )for four cases at the point 

 cosax ,  cosby  in the case of M=48 (see Figs. 5 and 9) 

 

Table 2 Non-dimensional stresses gex (θ), g3(θ)(=σT/p) for four cases at the point x=acosθ, y=bcosθ 

in the case of M=48 (see Figs 5 and 9) 

 (deg) 0 15 30 45 60 75 90 

)(gex   8.000 3.188 0.421 -0.471 -0.816 -0.960 -1.000 

)(g3  *1 8.000 3.188 0.421 -0.471 -0.816 -0.960 -1.000 

)(g3  *2 7.992 3.190 0.421 -0.471 -0.816 -0.960 -1.000 

)(g3  *3 8.000 3.188 0.421 -0.471 -0.816 -0.960 -1.000 

)(g3  *4 7.991 3.190 0.420 -0.471 -0.816 -0.960 -1.000 

*1 a02.0 in Dirichlet BVP      *2 a02.0 in Neumann  BVP 

*3 a01.0 in Dirichlet BVP      *4 a01.0 in Neumann  BVP 

 

 

As before, the computed stress component T along the boundary (  cosax ,  sinby ) 

is expressed by 

p)(g3T   (42) 

In the meantime, the exact solution derived from the complex potentials shown by Eqs. (40) 

and (41) is expressed by 

p)(gexT   (43) 

94



 

 

 

 

 

 

Solution for null field CVBIE in plane elasticity using an accurate shape function 

We can define an error estimation value as follows 

)(gmax

 )(g)(gmax
E

ex

3ex

r



  (44) 
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Fig. 12 Non-dimensional stresses, gex(θ), g3(θ)(=σT/p) for two cases  at the point x=acosθ, 

y=bcosθ in the case of using usual BIE (Chen 2012a) ( see Fig. 9) 

 

Table 3 Non-dimemsional stresses gex(θ), g3(θ)(=σT/p) for four cases at the point x=acosθ, y=bcosθ 

in the case of using usual BIE (Chen 2012a, see Fig. 9) 

 (deg) 0. 15 30 45 60 75 90 

)(gex   8.000 3.188 0.421 -0.471 -0.816 -0.960 -1.000 

)(g3  *1 7.896 3.201 0.426 -0.470 -0.818 -0.962 -1.002 

)(g3  *2 8.009 3.180 0.419 -0.468 -0.811 -0.953 -0.993 

*1  in Dirichlet BVP      *2 in Neumann  BVP 

 

 

In fact, the error estimation defined by 
rE depends on three factors (a) the number of division 

used along the boundary  , or the number M in Eqs. (11) and (12), (b) the locations of nodes 

used in the computation, or the value for  assumed in the computation (see Fig. 5) and (c) the 

type of the BVP used, or the Dirichlet BVP and the Neumann BVP in the formulation.  

In the condition of (a) a02.0 or a01.0 and (b) the Dirichlet problem or the Neumann 

problem in the formulation, we can define the following four error estimation values 

In the following analysis, we propose three groups for computation. In all cases, we choose 

b/a=0.25. 

In the first group computation, we choose M=36 and use the null field BIE Shown by Eq. (24). 

For the mentioned four cases, the computed gex(θ), g3(θ) (four cases) are plotted in Fig. 10 and 
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Table 1. In addition, the computed error estimation values are also listed in Fig. 10. 

In the numerical computation, we provide four kinds of variation, or (1) case-1, a02.0 in 

Dirichlet BVP, (2) case-2, a02.0 in Neumann BVP, (3) case-3 , a01.0 in Dirichlet BVP 

and (4) case-4, a01.0 in Neumann  BVP. The results for gex(θ) =σT/p) and the computed 

results for the non-dimensional stresses g3(θ) (σT/p) for four cases at the point x=acosθ, y=bcosθ in 

the case of M=36 (see Eqs. (11) and (12)) are plotted in Fig. 10. From Fig. 10 we see that, the 

computed results for gex(θ) (with solid line) and g3(θ) (four cases with dashed lines) are merged 

into one curve. In all four cases, the 
rE  values generally take a rather small value. For example, 

in the case-2 (or a02.0 in Neumann BVP), we have 2

2caser 10*272.0E 

   (or 0.00272) (see 

Fig. 10). This is a very small value.  

From Table 1 we see that at o0 we have 000.8)(g o0ex 


and 

978.7)(g
2case03 o 



 and 978.7)(g
4case03 o 


. Note that, the casa-2 and the case-4 

correspond to a02.0  and a01.0 , respectively. Thus, both the options a02.0  and 

a01.0  provide an accurate result. 

In the second group computation, we choose M=48 and use the null field BIE (24). 

For the mentioned four cases, the computed )(gex   and )(g3  (four cases) are plotted in 

Fig.11 and Table 2. In addition, the computed error estimation values are also listed in Fig. 11. 

From a comparison between Figs. 10 and 11, we find the following result. In the case of M=36, 

we have 4

1caser 10*299.0E 

  , 2

2caser 10*272.0E 

  , 4

3caser 10*664.0E 

  and 

2

4caser 10*278.0E 

  . In the case of M=48, we have 4

1caser 10*200.0E 

  , 

3

2caser 10*967.0E 

  , 4

3caser 10*296.0E 

   and 2

4caser 10*107.0E 

  . That is to say, if 

the number of divisions along the boundary is changed from M=36 to M=48, a more accurate 

result will be obtained. 

In the third group computation, we choose N=96 and use the usual BIE (Chen 2012a). N=96 is 

the number of divisions used in the usual BIE. In addition, N=98 corresponds M=48 used in the 

second group computation for the null field BIE. 

Under the same geometry and loading conditions, for the two cases, the computed )(gex   and 

)(g3  ( p/T ) ( two cases) are plotted in Fig. 12 and Table 3. In addition, the computed error 

estimation values are also listed in Fig.12. 

From a comparison between Figs. 11 and 12, we find the following result. For example, in the 

null field BIE formulation with M=48 (see Fig. 11 ), we have 4

1caser 10*200.0E 

  , 

3

2caser 10*967.0E 

  . However, in the usual BIE formulation with N=96 (see Fig. 12 ), we have 

1

1caser 10*130.0E 

  , 2

2caser 10*110.0E 

  . Therefore, we can conclude that the accuracy 

achieved in the usual BIE is worse than that achieved in the null field formulation. 

 

 
4. Conclusions 

 
This paper provides a numerical solution for null field CVBIE in plane elasticity. In the 

formulation, an accurate shape function along the contour is suggested. The suggested shape 
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Solution for null field CVBIE in plane elasticity using an accurate shape function 

function belongs to the C1 continuity. Since the suggested shape function has a higher accuracy, 

the errors in numerical examples generally take a very small value, for example, less than one 

percentage. 

In order to obtain a definite displacement in the Neumann problem for interior BVP, the best 

way is to reduce the interior BVP into a mixed BVP for the interior region.  
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Appendix: A Some preliminary knowledge in complex variable method in plane 
elasticity 
 

The complex variable function method plays an important role in plane elasticity. Fundamental of 

this method is introduced. In the method, the stresses ( xyyx ,,  ), the resultant forces (X, Y) 

and the displacements (u, v) are expressed in terms of complex potentials )z( and )z(  such 

that (Muskhelishvili 1953) 

)z(Re4yx  , )]z()z(z[2i2 xyxy  , ])z()z(z[2i2 xyxy   (a1) 

)z()z(z)z(iXYf   (a2) 

)z()z(z)z()ivu(G2   (a3) 

where a bar over a function denotes the conjugated value for the function, G is the shear modulus 

of elasticity, )1/()3(   in the plane stress problem,  43  in the plane strain 

problem, and   is the Poisson’s ratio. Sometimes, the displacements u and v are denoted by 
1u  

and 
2u , the stresses 

x , y  and xy  by 
1 ,

2  and 
12 , the coordinates x and y by 

1x  and 

2x .  
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