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Abstract.  In the present research, dynamic analysis of functionally graded (FG) graphene-reinforced beams under 
thermal loading has been carried out based on finite element approach. The presented formulation is based on a 
higher order refined beam element accounting for shear deformations. The graphene-reinforced beam is exposed to 
transverse periodic mechanical loading. Graphene platelets have three types of dispersion within the structure 
including uniform-type, linear-type and nonlinear-type. Convergences and validation studies of derived results from 
finite element approach are also presented. This research shows that the resonance behavior of a nanocomposite 
beam can be controlled by the GPL content and dispersions. Therefore, it is showed that the dynamical deflections 
are notably influenced by GPL weight fractions, types of GPL distributions, temperature changes, elastic foundation 
and harmonic load excitation frequency. 
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1. Introduction 
 

In recent decades, several carbon based structures containing carbon nanotube or carbon fiber 

have been widely utilized in composites for enhancing their mechanics and thermal specifications 

(Zhang 2017, Keleshtreri et al. 2016). A 273% enhancement of elastic modulus is obtained by 

Ahankari et al. (2010) for carbon reinforced composites in comparison to conventional 

composites. Likewise, Gojny et al. (2004) mentioned that structural stiffness of carbon based 

composites may be enhanced with incorporation of carbon nanotube within material. Impacts of 

configuration and scale of carbon nanotubes on rigidity growth of material composites having 

metallic matrices are studied by Esawi et al. (2011). Because of possessing above mentioned 

properties, beam and plate structures having carbon based fillers are researched to understand their 

static or dynamical status (Yang et al. 2017). There are also some investigations on composite or 

functionally graded materials and interested readers are refaced to new investigations on materials 

(Barati and Zenkour 2018, She et al. 2018, 2019). Furthermore, the graphene based composite 

material has been recently gained enormous attentions because of having easy producing 

procedure and high rigidity growth. Nieto et al. (2017) presented a review paper based on several 

graphene based composite material possessing ceramic or metallic matrices. The multi-scale study 
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of mechanical attributes for graphene based composite material has been provided by Lin et al. 

(2018) utilizing finite elements approach. 

Until now, many of researches in the fields of nano-composites have been interested in 

production and materials characteristics recognition of graphene based composites and structural 

components containing slight percentages of graphene fillers. For instance, it is mentioned by 

Rafiee et al. (2009) that some material characteristics of graphene based composites may be 

enhanced via placing 0.1% volume of graphene filler. However, achieving to this level of 

reinforcement employing nanotubes required 1% of their volume. Graphene based composites 

containing epoxy matrix were created by King et al. (2013) by placing 6% weight fraction of 

graphene fillers to polymeric phases. It was stated that Young modulus of the composite has been 

increased from 2.72 GPa to 3.36 GPa. Next, 57% increment for Young modulus has been achieved 

by Fang et al. (2009) based on a sample of graphene based composite.  

Moreover, many studies in the fields of nano-mechanic are associated with vibrational and 

stability investigation of various structural elements containing beam or plate reinforced via 

diverse graphene dispersions. For instance, vibrational properties of a laminated graphene based 

plate have been explored by Song et al. (2017) assuming simply support edge condition. They 

assumed that the plate is constructed from particular numbers of layers each containing a sensible 

content of graphene. Selecting a perturbation approach, static deflections and bucking loads of 

graphene based plates have been derived by Shen et al. (2017). In above papers, each material 

property has discontinuous variation across the thickness of beam or plate. Also, geometrically 

nonlinear vibration frequencies of graphene based beams having embedded graphene have been 

explored by Feng et al. (2017) selecting first-order beam theory. Moreover, vibration frequencies 

of graphene based beams having porosities have been explored by Kitipornchai et al. (2017). 

This paper is devoted to analyze mechanical-thermal dynamic behavior of a macro-size beam 

reinforced with graphene platelets (GPLs) based on finite element approach. Graphene platelets 

have three types of dispersion within the structure including uniform-type, linear-type and 

nonlinear-type. The presented formulation is based on a higher order refined beam element 

accounting for shear deformations. So, it is useful for thick beams. The graphene-reinforced beam 

is exposed to transverse periodic mechanical loading. Via finite element procedure, forced 

vibration path of the beam has been derived. It will be demonstrated that dynamic characteristics 

of the graphene-reinforced beam are dependent on geometric amplitude, thermal loading, graphene 

distribution and amount. 
 

 

2. Graphene based composites 
 

According to Fig.1, it is assumed that graphene platelets have three types of dispersion within 

the structure including uniform-type, linear-type and nonlinear-type. According to Fig.2, a 

graphene reinforced composite micro-scale beam is illustrated. Micro-mechanic theory of such 

composite materials (Liew et al. 2015) introduces the below relationship between graphene 

platelets weight fraction (WGPL) and their volume fraction (VGPL) by: 

GPL
GPL

GPL GPL
GPL GPL

M M

W
V

W W
 

 

=

+ −
 

(1) 
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(a) Uniform GPL distribution (b) Linear GPL distribution 

 
(c) Nonlinear GPL distribution 

Fig. 1 GPL dispersions in the thickness direction 

 

 
Fig. 2 Geometry and coordinates of GPL-reinforced beam 

 

 

where 
GPL and 

M  define the mass densities of graphene and polymeric matrices, respectively. 

Next, the elastic modulus of a graphene based composite might be represented based upon matrix 

elastic modulus (EM) by: 

179



 

 

 

 

 

 

Ammar F.H. Al-Maliki, Ridha A. Ahmed, Nader M. Moustafa and Nadhim M. Faleh 

1

1 13 5

8 1 8 1

GPL GPL GPL GPL

L L GPL W W GPL
M MGPL GPL

L GPL W GPL

V V
E E E

V V

   
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   + +
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− −   
 (2) 

so that 
GPL

L and 
GPL

W  define two geometrical factors indicating the impacts of graphene 

configuration and scales as: 

2GPL GPL
L

GPL

l

t
 =  (3a) 
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/
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so that wGPL , lGPL , and tGPL define platelets average widths, length, and thickness, respectively. 

Furthermore, Poisson’s ratio for graphene based composite might be defined based upon Poisson’s 

ratio of the two constituents in the form: 

1

1

GPL GPL M M

GPL GPL M M

v v V v V

V V  

= +

= +
 (4) 

in which 1M GPLV V= − expresses the volume fractions of matrix component. Herein, three 

dispersions of the platelets have been assumed as: 

Uniform: 

0

1GPL GPLW W=  (5a) 

Linear: 

0

2

1
( )

2
GPL GPL

z
W W

h
= +  (5b) 

Nonlinear: 

0 2 2
2 2 4 2 23

2 2 2 2

16
4 ( )

(4 )

GPL
GPL

W z s
W h z h s z

s h s h n

  
= − + − 

−  
 (5c) 

where 
0 1%GPLW = expresses a particular weight fraction for graphene platelets. 
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3. Beam modeling via refined theory 
 

With the employment of refined beam theory, a displacement field having following forms 

might be expressed to start mathematical modeling of the beam (Barati 2017, Mouffoki et al. 

2017, Fenjan et al. 2019, Ahmed et al. 2019, Zemri et al. 2015, Bounouara et al. 2016): 

𝑢𝑥(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧
𝜕𝑤𝑏

𝜕𝑥
− 𝑓(𝑧)

𝜕𝑤𝑠

𝜕𝑥
 (6a) 

𝑢𝑦(𝑥, 𝑧, 𝑡) = 0 (6b) 

𝑢𝑧(𝑥, 𝑧, 𝑡) = 𝑤𝑏(𝑥, 𝑡) + 𝑤𝑠(𝑥, 𝑡) (6c) 

Here u ; bw and sw  express the axial and transverse field coefficients. 

For the refined beam model, the strain field might be expressed by (Ahmed et al. 2019): 

𝜖𝑥 =
𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤𝑏

𝜕𝑥2
− 𝑓(𝑧)

𝜕2𝑤𝑠

𝜕𝑥2
 (7a) 

𝜖𝑦 = 𝜖𝑧 = 𝛾𝑥𝑦 = 𝛾𝑦𝑧 = 0 (7b) 

𝛾𝑥𝑧 = 2𝜖𝑥𝑧 = 𝑔(𝑧)
𝜕𝑤𝑠

𝜕𝑥
 (7c) 

where
1

( ) sinh( ) cosh( )
2

z
f z z h z

h
= − +  and 𝑔(𝑧) = 1 − 𝑓′(𝑧).  

To derive weak formulation required for finite element method, first it is necessary to express 

the Hamiltonian of a dynamic system as: H = 𝑈 − 𝑉 − 𝐾. 

Here U is strain energy and K is kinetic energy. The strain energy can be stated as (Faleh et al. 

2018, She et al. 2018): 

𝑈 = 0.5 ∫ ∫(𝜎𝑖𝑗𝛿𝜖𝑖𝑗)𝑑𝑧𝑑𝑥

ℎ
2

−
ℎ
2

𝐿

0

= ∫ ∫(𝜎𝑥𝛿𝜖𝑥 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝑧𝑑𝑥 =

ℎ
2

−
ℎ
2

𝐿

0

∫ (𝐴11

𝑑𝑢0

𝑑𝑥

𝑑𝑢0

𝑑𝑥
− 2𝐵11

𝑑𝑢0

𝑑𝑥

𝑑2𝑤𝑏

𝑑𝑥2

𝐿

0

+ 𝐷11

𝑑2𝑤𝑏

𝑑𝑥2

𝑑2𝑤𝑏

𝑑𝑥2
− 2𝐵11

𝑠
𝑑𝑢0

𝑑𝑥

𝑑2𝑤𝑠

𝑑𝑥2
− (2𝐷11

𝑠 + 0.5 ∗ (𝐴𝑠 ))
𝑑2𝑤𝑏

𝑑𝑥2

𝑑2𝑤𝑠

𝑑𝑥2

+ 𝐻11
𝑠 ) 𝑑𝑥 

(8) 

where 𝐴11 , 𝐵11
𝑠  , etc., are the beam stiffness, defined by: 
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(𝐴11, 𝐵11, 𝐷11, 𝐵11
𝑠 , 𝐷11

𝑠 , 𝐻11
𝑠 ) = ∫ 𝐸(𝑧)(1, 𝑧, 𝑧2 , 𝑓, 𝑧𝑓, 𝑓2)𝑑𝑧

ℎ
2

−
ℎ
2

 (9) 

𝐴𝑠 = ∫ 𝐺(𝑧)𝑔2𝑑𝑧

ℎ
2

−
ℎ
2

 (10) 

The kinetic energy of beam is written as: 

𝐾 = ∫ ∫ 𝜌(𝑧)[𝑢̇𝑥𝑢̇𝑥 + 𝑢̇𝑦𝑢̇𝑦]

ℎ
2

−
ℎ
2

𝐿

0

𝑑𝑧𝑑𝑥

= ∫ {𝐼0[𝑢̇0𝑢̇0 + (𝑤̇𝑏 + 𝑤̇𝑠)(𝑤̇𝑏 + 𝑤̇𝑠)] − 2[𝐼1 (𝑢̇0

𝑑𝑤̇𝑏

𝑑𝑥
)] + 𝐼2[(

𝑑𝑤̇𝑏

𝑑𝑥

𝑑𝑤̇𝑏

𝑑𝑥
)]

𝐿

0

− 2𝐽1[(𝑢̇0

𝑑𝑤̇𝑠

𝑑𝑥
)] + 𝐾2[(

𝑑𝑤̇𝑠

𝑑𝑥

𝑑𝑤̇𝑠

𝑑𝑥
)] + 2𝐽2[(

𝑑𝑤̇𝑏

𝑑𝑥

𝑑𝑤̇𝑠

𝑑𝑥
)]} 𝑑𝑥 

(11) 

in which dot-superscript denote the differentiation with respect to the time variable t; and the 

mass inertias are expressed as: 

(𝐼0, 𝐼1, 𝐽1, 𝐼2, 𝐽2, 𝐾2) = ∫(1, 𝑧, 𝑓, 𝑧2, 𝑧𝑓, 𝑓2)𝜌(𝑧)𝑑𝑧

ℎ
2

−
ℎ
2

 (12) 

Also, the work done by the external applied forces can be expressed as:  

𝑉 = 0.5 ∫[(𝑘𝑝 − 𝑁𝑇)(

𝐿

0

𝜕(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥

𝜕(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥
− 𝑘𝑤(𝑤𝑏 + 𝑤𝑠) + 𝑞(𝑤𝑏 + 𝑤𝑠)]𝑑𝑥 (13) 

where kw and kp are Winkler and Pasternak constants; qdynamic is applied transverse dynamic load 

and NT is in-plane thermal loading: 
/2

1 1 0
/2

( )
h

T

h
N E T T dz

−
= − ; T= 0( 0.5)

z
T T

h
 + + and T  

is temperature rise. In the present paper, the linear temperature rise has been adopted. 
 

 

4. Method of finite elements 
 

Through the present section, the method of finite elements has been selected for solving the 

dynamical problem of a graphene based beam having S-S and C-C edges. For this goal, the refined 

beam element has been used with ten degrees of freedom indicated in Fig.3. Herein, a shape 
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Fig. 3 Degrees of freedom for the refined master element 

 

 

function has been introduced for axial field component, and also Hermit shape function have been 

introduced for lateral field components which are: 

2

0 1 1 2 2

1

( , ) ( ) ( )i i

i

u x t U t N x N U N U
=

= = +  (14) 

4

1 1 2 1 3 2 4 2

1

( , ) ( ) ( )b bi i b b b b

i

w x t W t N x N W N W N W N W
=

 = = + + +  (15) 

4

1 1 2 1 3 2 4 2

1

( , ) ( ) ( )s si i s s s s

i

w x t W t N x N W N W N W N W
=

 = = + + +  (16) 

So that 𝑈𝑖 , 𝑊𝑏𝑖 and 𝑊𝑠𝑖 are field coefficients and shape functions are: 

1 1
e

x
N

L
= −  (17) 

2
e

x
N

L
=  (18) 

( )3 2 3
1 3

1
2 3 e e

e

N x x L L
L

= − +  (19) 

( )3 2 2 3
2 3

1
2e e e

e

N x L x L xL
L

= − +  (20) 

( )3 2
3 3

1
2 3 e

e

N x x L
L

= − +  (21) 

( )3 2 2
4 3

1
e e

e

N x L x L
L

= −  (22) 

so that Le defines the length for master element. 
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Placing Eqs. (8)-(13) in Hamiltonian and minimizing it to field coefficients Ui, Wbi, and Wsi 

(Rezaiee-Pajand et al. 2018, Al-Maliki et al. 2019) results in below relation containing 

simultaneous algebraic equations: 

0
i bi si

H H H

U W W

  
= = =

  
 (23) 

Next, the solution trend yields: 

11 12 13 11 12 13

2

21 22 23 21 22 23 1

31 32 33 31 32 33 110*10 10*10

[ ] [ ] [ ] [ ] [ ] [ ] 0

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

i

ex bi

si

Uk k k m m m

k k k m m m W F

k k k m m m FW



       
       

+ =       
       
       

 (24) 

so that kij and mij define stiffness and mass matrices for master element, respectively; F1 defines 

exerted dynamical loading to master element. Obtained system may be solved for deriving 

transverse center deflections of a beam W=Wb+Ws as a function of external frequency ex . Based 

on adequate numbers of beam element, it is feasible to reach the exact solutions. 

Next, normalized factors may be selected by: 

24
2 ρ

, ,
E

p

e
wM

w p

M

x

M M

k Lk LA
L K K

I E I E I
 = = =  (25) 

All components for mass and stiffness matrices together with load vector achieved by Eq.(23) 

have been introduced as: 

11 11
0

eL ji
NN

k A dx
x x


=

   

2

12 11 20

eL ji
NN

k B dx
x x


= −

  , 

2

21 11 20

eL j i
N N

k B dx
x x

 
= −

   

22

22 11 2 20 0 0
( )

e e eL L Lj jTi i
w i j p

N NN N
k D dx k N N dx k N dx

x x x x

  
= − + −

       

2

13 11 20

eL js i
NN

k B dx
x x


= −

  , 

2

31 11 20

eL js i
N N

k B dx
x x

 
= −

   

22

23 11 2 20 0 0
( )

e e eL L Lj js Ti i
w i j p

N NN N
k D dx k N N dx k N dx

x x x x

  
= − − + −

       

2 22 2

33 11 2 2 2 20 0

0 0
( )

e e

e e

L Lj js si i

L L jT i
w i j p

N NN N
k H dx A dx

x x x x

NN
k N N dx k N dx

x x

  
= +

   


− + −

 

 

 

 

(26) 
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11 0
0

eL

i jm I N N dx=   

22 0 2
0 0

e eL L ji
i j

NN
m I N N dx I dx

x x


= +

    

12 1
0

eL j

i

N
m I N dx

x


= −

 , 21 1
0

eL
i

j

N
m I N dx

x


= −

  

13 1
0

eL j

i

N
m J N dx

x


= −

 , 31 1
0

eL
i

j

N
m J N dx

x


= −

  

23 2
0

eL ji
NN

m J dx
x x


=

   

33 0 2
0 0

e eL L ji
i j

NN
m I N N dx K dx

x x


= +

    

0

eL

i dynamic iF q N dx=   

 

Table 1 Gradient index effects on total content of graphene 

Uniform (λ1) Linear (λ2) Nonlinear (λ3) %W*
GPL 

0 0 0 0 

0.33 0.67 0.43 0.33 

1 2 1.29 1 

 

Table 2 Material and geometrical factors for graphene based beams 

GPLs Matrix (Epoxy resin) 

EGPL=1.01 TPa EM=2.85 GPa 

ρGPL=1062.5 kg/m3 ρM=1200 kg/m3 

vGPL=0.006 vM=0.34 

αGPL=2.35× 10−5/K αM=8.2× 10−5/K 

tGPL=1.5 nm - 

wGPL=1.5 µm - 

lGPL=2.5 µm - 

 

 

5. Graphical results and discussions 
 

In the present section, dynamic analysis of functionally graded (FG) graphene-reinforced 

beams under thermal loading has been carried out based on finite element approach. The presented  
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Fig. 4 Validation of the dimensionless vibration frequency of GPL-reinforced beams (L/h=20) 

 

Table 3 Convergence of the vibrational frequency of uniformly graphene based beam (L/h=10, 

W*
GPL=1%) 

Elements number S-S C-C 

2 20.8610 47.5977 

3 20.7961 47.0170 

4 20.7846 46.8766 

5 20.7814 46.8328 

10 20.7794 46.7934 

12 20.7793 46.7901 

15 20.7792 46.7872 

20 20.7792 46.7848 

25 20.7792 46.7836 

30 20.7792 46.7830 

35 20.7792 46.7830 

 
 

formulation was based on a higher order refined beam element accounting for shear deformations. 

The graphene-reinforced beam is exposed to transverse periodic mechanical loading. Graphene 

platelets have three types of dispersion within the structure including uniform-type, linear-type and 

nonlinear-type. Tables 1 and 2 provide excellent information about material properties. 

The convergences and verifications of proposed approach have been respectively represented 

by Table 3 and Fig.4. Based upon Table 3, one can deduce that vibrational frequencies are 

converged via selecting fifteen elements for S-S beams and thirty elements for C-C beams. The 

number of elements have been adopted for presented investigation in this article. Furthermore, 

Fig.4 depicts that achieved frequency for graphene based beams are identical to those represented 

by Kitipornchai et al. (2016) based upon different graphene weight fractions. 
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(a) Uniform GPL distribution (b) Linear GPL distribution 

 
(c) Nonlinear GPL distribution 

Fig. 5 Dynamical deflections of graphene based beams versus external frequency for 

different graphene distributions and temperature changes (L/h=10, Kw=0, Kp=0, 

W*GPL=1%) 

 

 
Dynamical deflections of graphene based beams with respect to external frequency based on 

different graphene dispersions and temperatures have been depicted in Fig.5 when L =10h and 

W*GPL=1%. The graphene based beam has been assumed as simply-supported at left and right  
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(a) S-S 

 
(b) C-C 

Fig. 6 Dynamical deflections of graphene based beams versus external frequency for different 

uniform graphene weight fractions and boundary conditions (L/h=10, Kw=0, Kp=0, ΔT=50) 

 

  
(a) S-S (b) C-C 

Fig. 7 Dynamical deflections of graphene based beams versus external frequency for different 

linear graphene weight fractions and boundary conditions (L/h=10, Kw=0, Kp=0, ΔT=50) 
 

 

edges. Firstly, it is better to express that this graph illustrates normalized deflection as a function of 

external frequency of exerted harmonic mechanical load. This means that at a particular value of 

the external frequency the resonance phenomena together with large deflections may be observed. 

It is well known that the beam structural rigidity will be reduced via linear temperature rise. 

Accordingly, the forced vibration curves will move to the left highlighting smaller resonance  
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(a) W*GPL=0.33 (b) W*GPL=1 

Fig. 8 First mode shape of C-C nano-composite beam for various GPL distributions (L/h=10, 

Kw=0, Kp=0, Ω=5, ΔT=50) 

 

 

frequency. Furthermore, linear temperature rise impacts are dependent on the kinds of graphene 

dispersions. One may note that nonlinear graphene type results in greater resonance frequency 

compared to linear/uniform types. Therefore, dynamic behavior of a graphene based beam under 

thermal loads may be controlled employing a suitable distribution of graphene.  

In Figs.6 and 7, forced vibration curves for graphene based beams have been depicted based on 

uniform and linear types of graphene dispersion. Linear temperature rise across the thickness has 

been assumed as ΔT=50. Increase of graphene weight fractions may lead to greater resonance 

frequency together with lower deflection before resonances zone. It means that the amplitude-

frequency curves may move toward higher frequencies with enlargement of graphene amount.    

This highlights that the graphene based beams become more rigid and represent superior 

mechanical performances under dynamical loading. Accordingly, the resonances may be delayed 

via increase of graphene content. According to the graphs, one may find that nonlinear graphene 

type may lead to greatest resonance frequency than uniformly or linearly types. These observations 

are owning to highest structural rigidity of graphene based beams provided by nonlinear dispersion 

type. Therefore, dynamic behavior of a graphene based beam under mechanical-thermal loads may 

be controlled employing a suitable distribution for graphene. 

Fig.8 depicts 1st mode shape for clamped graphene based beams based upon different graphene 

dispersion types at L=10h. Linear temperature rise across the thickness has been assumed as 

ΔT=50 and exerted harmonic loading has the external frequency as Ω=5. There are two important 

results in the presented graph. Firstly, nonlinear and linear graphene types respectively represent 

lowest and greatest dynamical amplitudes. Secondly, one may understand that dynamical 

amplitude based on all dispersion kinds is remarkably decreased via increase of graphene weight 

fractions. 
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(a) Ω=2 (b) Ω=5 

 
(c) Ω=10 

Fig. 9 Dynamic response of S-S nano-composite beam with uniform GPLs for various 

foundation parameters and excitation frequencies (L/h=10, W*GPL=1%, ΔT=50) 
 

 

Another crucial factors for investigating dynamical behaviors of graphene based beams are 

external frequency (Ω) of exerted force together with foundation parameters which their impacts 

on time responses of graphene based beams have been depicted in Fig.9 at ΔT=50 K. Another 

deduction is that the graphene based beams experience larger numbers of oscillation within a 

particular time intervals by increasing in magnitude of external frequency. Furthermore, the 

dynamical amplitude is influenced by foundation parameters which are Winkler and Pasternak 

models. Enlargement of Winkler or Pasternak parameter will reduce the deflections of graphene 

based beams at every values of external frequencies. 
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6. Conclusions 
 

In the present article, dynamic analysis of functionally graded (FG) graphene-reinforced beams 

under thermal loading was carried out based on finite element approach. The presented 

formulation was based on a higher order refined beam element accounting for shear deformations. 

The graphene-reinforced beam was exposed to transverse periodic mechanical loading. Graphene 

platelets had three types of dispersion within the structure including uniform-type, linear-type and 

nonlinear-type.  

•  Increase of graphene weight fractions led to greater resonance frequency together with 

lower deflection before resonances zone. 

•  It is well known that the beam structural rigidity will reduced via linear temperature rise. 

Accordingly, the forced vibration curves will move to the left highlighting smaller resonance 

frequency.  

•  Linear temperature rise impacts were dependent on the kinds of graphene dispersions.  

•  Nonlinear graphene type results in greater resonance frequency compared to linear/uniform 

types.  
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