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Abstract.  Variation Analysis (VA) is used to simulate final product variation, taking into consideration part 
manufacturing and assembly variations. In VA, all the manufacturing and assembly processes are defined at the 
product design stage. Process Capability Data Bases (PCDB) provide information about measured variation from 
previous products and processes and allow the designer to apply this to the new product. A new challenge to this 
traditional approach is posed by the Industry 4.0 (I4.0) revolution, where Smart Manufacturing (SM) is applied. The 
manufacturing intelligence and adaptability characteristics of SM make present PCDBs obsolete. Current tolerance 
analysis methods, which are made for discrete assembly products, are also challenged. This paper discusses the 
differences expected in future factories relevant to VA, and the approaches required to meet this challenge. Current 
processes are mapped using I4.0 philosophy and gaps are analysed for potential approaches for tolerance analysis 
tools. Matching points of simulation capability and I4.0 intents are identified as opportunities. Applying conditional 
variations, incorporating levels of adjustability, and the un-suitability of present Monte Carlo simulation due to 
changed mass production characteristics, are considered as major challenges. Opportunities including predicting 
residual stresses in the final product and linking them to product deterioration, calculating non-dimensional 
performances and extending simulations for process manufactured products, such as drugs, food products etc. are 
additional winning aspects for next generation VA tools. 
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1. Introduction 
 

The purpose of Variation Analysis (VA) is to simulate real-time production scenarios. VA takes 

variation in Design Parameters (DPs) as input and follows the assembly process to replicate 

production. VA tools are also often termed as Computer Aided Tolerancing (CAT) tools. They have 

been developed to include the nature of DP variations (for example the statistical distribution type) 

and also to allow DP values to be randomly varied to estimate the Functional Performance (FP) 

variation in long-term production. Monte Carlo simulation is considered a realistic replication of 

long run mass production (Arya et al. 2012, Yan et al. 2015). The designer depends on the Process 

Capability Database (PCDB), constructed from historic manufacturing and product data, for DP 

variations to understand final product variation using the simulation. Figure 1 shows the  
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Fig. 1 Information flow from design and manufacturing to VA simulation workflow 

 

 

information flow from product design and manufacturing as input to a typical VA work-flow.  

In discrete assembly products, it is the practice that all DPs are maintained through quality 

control, it is expected that variation will follow the standard distribution (normal, lognormal, 

uniform, etc.). It is further considered that the assembly process parameters are independent of the 

DP status. This allows current VA tools (3DCS, VisVSA, CETOL, RD&T etc.) (Prisco and Giorleo 

2002, Mikael et al. 2016) to follow in sequence the VA work-flow steps shown in Fig. 1. 

The new industrial revolution Industry 4.0 (I4.0) has brought changes to these basic processes 

of discrete assembly production through Smart Manufacturing (SM) (Suri et al. 2017). This new 

revolution is based on processes with self-aware and self-adaptive characteristics (Dopico et al. 

2016). In Fig. 2 a schematic representation showing differences to the current approach is 

presented. 

Through for example the concept of Internet of Things (IoT), in I4.0 the parameter status at 

each stage is communicated to the next. Every station process may be self-adjusted according to 

the state of the previous station to meet final product function accuracy. A key opportunity in I4.0 

is to absorb the variation passed by the previous station. This is expected to reduce the significance 

of variations at part level and also in assembly. This change challenges the current VA tool 

architecture, which is made for the current discreet assembly production process. Both the 

structure of information input and method of the simulation may need to be different for I4.0 

production. This paper is focused on identifying such potential threats and discusses the possible 

solutions for future VA tools. 

 

 

2. Method 
 

The approach taken in the research was to map I4.0 characteristics onto the input information 

and process steps of a VA workflow (Fig. 1) to identify the challenges.  
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Industry 4.0 – A challenge for variation simulation tools for mechanical assemblies 

 
Fig. 2 Industry 4.0 is equipped with parameters status information flow (dashed arrows) from one stage to 

next 
 

 

2.1 Design parameters with process capability  
 

Manufacturing processes are expected to be highly automated with induced intelligence (Wang 

et al. 2016) in this new revolution. When numerical control systems were added in Industrial 

revolution 3, process capabilities were improved. For example, a metal block machined to its size 

improved its accuracy from ±0.2mm to ±0.05mm from conventional machine to CNC machine. 

But the changes expected in I4.0 are greater. Consider the example of a product with two blocks 

that need to maintain the total height of the two blocks together as performance. One block is 

sourced as a cast item without finishing and the other one is machined in-house with a possibility 

of closer tolerances as in Fig. 3. 

Adaptive control systems (Bort et al. 2016) for CNC machines make them self-adjustable for 

the optimized machining process. This ability may be extended with more information feed to the 

machine for higher adaptability.  

In the I4.0 scenario, an in-house CNC machining station is fed with the status of the incoming 

cast block size (between 49.5 and 50.5). The machine adjusts itself and makes the DP2 aiming to  
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Fig. 3 Design communication possibilities in I4.0 

 

 

compensate for casting variation as much as possible. Remaining casting variation and machining 

tolerance are passed to FP. The in-house machine adjustability (29.7-30.3) absorbed the portion of 

casting tolerance (up to 0.3); higher machine adjustability may absorb all the casting tolerance. 

Here the design information change is visible at DP2, with its conditional nominal value. 

Machining and casting tolerances from present PCDBs are not by themselves sufficient for VA in 

I4.0. VA tools need to accept not only variation (±0.05) but also a possibility for change in the 

nominal as input. Here adjustability and accuracy may change for each machine. VA tools should 

provide a dedicated interface to manufacturing to provide their variation inputs for each production 

concept and optimize the adjustability options. 

 

2.2 Assembly process with Assembly fixture design 
 

There are two types of assemblies defined by Whitney (Whitney et al. 1999). I4.0 brings a third 

type of assembly with intelligent fixtures. The three together are:  

Type 1: Assembly depends on part features; 

Type 2: Assembly depends on fixture features; and 

Type 3: Assembly depends on dynamically adjusted fixture features according to part features. 

Even adaptive (Wan et al. 2017) and intelligent (Gonzalo et al. 2017) fixture system is not new, 

their application is expected to increase in I4.0 which influences the VA process. Fig. 4 shows the 

simplest part with its features referenced for least variation for hole position. In current traditional 

manufacturing, the longer side (A) is taken as a first datum, because that gives smaller variation in 

hole position compared to the shorter side (B) for the same waviness. However, this does not help 

when the real waviness effect of B is less than A. I4.0 gives the opportunity to switch the first 

datum either A or B dynamically according to whichever contributes least variation to hole 

position, with part geometry sensed every time, and with clamping follow the sensing. 

VA tools fixture specification methods are required to be updated to allow such a conditional 

referencing system.  

Assembly process parameters are also self-adjustable in I4.0 (Müller et al. 2016). For example, 

a sealant dispensing system cope part variability (Maiolino et al. 2017), the voltage for weld spot 

could be changed according to the part geometry to reduce distortions and stresses; tightening 

torque can be adjusted according to incoming spring constant to maintain uniform preload, and so 

on. VA tools should be able to take account of these capabilities as well in calculating the final 

product variation. 
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Fig. 4 Fixture design possibility with intelligence in I4.0. An adaptive fixture chooses the best possible 

reference every time according to the geometry arrived at 
 

 
Fig. 5 A snap geometry DPs and their relationship with FP 

 

 

2.3 Functional parameters – from product design 
 

Often many measurements are performed to estimate the final product performance. A selected 

number of units only from production goes for testing to accept that batch. In the case of I4.0 

testing (non-destructive) can be incorporated within the production line itself, meaning all the 

products are tested. For example, a cap engaging force through a plastic snap is one FP, shown in 

Fig. 5. 
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In traditional manufacturing individual snap dimension (T, W, and Θ) are maintained through 

part quality control and monitored and maintained assembly dimensions (I and D) through the 

assembly process. The force value (which is important FP) is typically not checked for every 

product but sampled from production. Current VA tools follow this production approach and 

estimate the assembly dimension variation but do not calculate the force value. In I4.0, however, 

every unit of production is tested by engaging the snap and noting the force and apply a possible 

adjustment for the desired force value. Product quality monitoring is through a collection of testing 

station data. This means variation simulation needs to estimate Force (F) variation. 

Current VA tools are focused on accepting independent part dimensions and estimating 

assembly dimensions. VA tools architecture is made to accept only dimensional variations and 

results also only in dimensional variations. It matches well to traditional quality control methods, 

in which DP is monitored and maintained. In I4.0 VA tools need to take non-dimensional DPs (e.g. 

Young’s Modulus of the material, E, in the snap example) as input and also the relationship 

equation of FP with its DPs such as F (Fig. 5). 
 

2.4 Production system- from manufacturing 
 

Mass production quality metrics have been based on standard deviation for many decades. 

Measuring the production ability in Six-sigma (Ferryanto 2007) is a well-accepted practice across 

the globe. Even if production systems are different (JIT, JIS, Manual, semi/fully automated, etc.) 

the six-sigma approach is found suitable. That has driven present VA tools to report their 

calculation results in a similar format. This probability-based approach is suitable when variables 

are random, but in the case of I4.0, variables may be conditional. Every variable may change its 

position according to the status of other previously manufactured variables. The present Monte-

Carlo (Rubinstein and Kroese 2016) simulation does not reflect this new production approach. 

Even the basic probability theory of random variables does not work. Fig. 6 shows a random 

variables simulation and an I4.0 possibility, demonstrating the unsuitability. 
 

 

 
Fig. 6 A representation of traditional manufacturing and I4.0 simulations 
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In Figure 6, in I4.0, measurement 30.3 after the first station informs station2, aiming to make 

59.7 and results in 59.6, then informs station3, aiming to make 90.1, ends up with 90.25. This 

results in total length T as 180.15. 

Current VA tools calculate the contribution of variables to final product variation. In I4.0 it is 

required to find the remaining variation in the final product after all possible adjustments at each 

station. In I4.0 the real contributors are not the tolerances defined in the product design. Variation 

gets passed to the next station 

•  When variation status is not communicated;  

•  When self-adjustment is not present; and 

•  When self-adjustment is not enough. 

Sometimes adjustability accuracy may lead to partial absorption. Measurement uncertainty also 

may carry over to the product, which was never a part of VA tools calculations. This means all the 

variation information (levels of adjustability and measurement uncertainty of each station for each 

DP) is required to be taken from the production concept. This may lead to the designer not to 

require specifying the tolerances in the drawing. 

To reflect I4.0 production VA tools needs different input and output architecture. In the present 

VA approach, variation contribution is counted at every assembly stage and accumulated to give 

the final resultant variation. In I4.0 it is required to start with nominal FP and pass station by 

station by adding and absorbing until the end. This shifts the focus from the contribution of DP 

tolerances to the ability of a station to absorb variation. How much a DP is varying is not really 

important, so long as it may be absorbed. 

 
 
3. Results 

 
The study shows the difference required for VA tools at each stage of the present process. With 

I4.0, manufacturing will move forward from Zero Defect Manufacturing (ZDM) to a target of Zero 

Variation Manufacturing (ZVM) (Murthy et al. 2018). VA tools have significant scope in this 

change. Potential challenges identified by mapping I4.0 philosophy to the VA philosophy are: 

•  The aim is to calculate leftover variation, not accumulated. This changes the VA tool 

architecture. At every stage of assembly, some variation is generated and some absorbed. 

Generated is on that station equipment/machine accuracy and absorption depends on its self-

adjustability. Received variation from a previous station and steps of adjustability may vary. 

Resultant variation of final product performance at every station is an outcome. 

•  DP variation should be defined as conditional instead of random. Also, the importance shifts 

from DPs to process stations. Performance sensitivity to DP variation is no longer so critical in 

I4.0. Optimization algorithms are to be focused on nullifying contribution through absorption, not 

reducing the contribution itself. 

•  Simulation of non-dimensional performances should be part of a VA tools offering. 

Accepting non-dimensional variables (material properties, spring constant, torque etc.) and their 

relationship as inputs is needed.  

•  The major variation in input comes from the production process concept. VA tools need to 

develop a manufacturing interface, into which production concept, equipment accuracies, limits 

and levels of adjustability can be fed. For data integrity, VA tools may exchange data with 

production planning tools, as they do now with CAD tools. 

•  Present PCDBs data need big revision, as they do not reflect I4.0 manufacturing. DP 
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tolerances are unknown until a new set of the database is developed. However, in this new 

scenario, assembly equipment accuracy may be more influential than DP tolerance. VA tools 

should provide options for feeding measurement uncertainty values also at each station. 

•  The simulation technique may need to adapt a combination of random variables and 

Conditionally selective variables methods, for example, Markov chain (Salimans et al. 2015) 

based, in which outcome of a stage depends on the outcome of the previous stage. Simulation 

reports and optimization cycles are required to align with I4.0 metrics: 

Adaptability/Intelligence: Gap between absorption required and self-adjustability limitations. 

IOT/CPS: Gap between measurement and communication requirements for zero variation for 

specific production concept. 

ZVM: How many are away from the nominal performance? (Instead how many are within 

accepted limits?). 
 

 

4. Discussion 
 

At present, research is largely focused on changes in manufacturing processes and systems for 

successful I4.0 (Böckenkamp et al. 2017). Product design for I4.0 is yet to be strongly developed 

and research is required (LinkedIn. 2017). Furthermore, VA tool developers may see their tools 

more as production process verification tools, rather than as design verification tools. This 

situation, along with the challenges, many opportunities are also opened: 

•  Extending the present Finite Element Method (FEM) integration with VA tools, currently 

limited to dimensional variation, will allow performance variation (including stress development 

in assembly, deflections, etc.) into VA and linked to product life deterioration and service 

requirements. 

•  Categorizing variables into controlled, semi-controlled and uncontrolled parameters (Boorla 

and Howard 2016), simulation can identify the effect of outsourcing and optimization can 

recommend best production scenarios.  

•  Batch accuracy and measurement frequency are drivers for estimation accuracy, VA tools 

can recommend the operational settings for them. 

•  VA tools could provide different interfaces to product design and manufacturing staff to 

allow them to provide their inputs, and also report separately recommendations for improvement. 

This helps to support Ubiquitous Manufacturing (UM) concept (design anywhere and make 

anywhere) (Chen and Tsai 2017, Putnik 2012) developing along with I4.0.  

•  Performance metrics for I4.0 factories are also under development. VA tools have the 

opportunity to be part of the information standardization. 

VA tools made compatible for I4.0 will also be suitable for simulating products made with 

continues process manufacturing (drugs, recipes, etc.) also (Boorla et al. 2017). 
 

 

5. Conclusion 
 

In conclusion, I4.0 is a game changer in manufacturing technology, and will also drastically 

influence VA tools. As the aim of VA tools is to replicate the production process, new trends in 

mass production demand them update. Study of the present VA tool architecture and work-flow 

along with the new I4.0 philosophy clearly shows the big changes required in accepting inputs, 

simulation process, target definitions and reporting system.  

50



 

 

 

 

 

 

Industry 4.0 – A challenge for variation simulation tools for mechanical assemblies 

Along with these new challenges, VA tools have the opportunity to play a bigger role in product 

development in the industry than at present, by expanding variation analysis to the product 

lifecycle and extending outcomes to concurrent engineering and manufacturing teams. 
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