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Abstract.  The usual assumption that the increase of fractures in aging bone is due entirely to lower bone 
density is taken back with respect to the possibility that aging bone fractures result from a loss of stability, or 
buckling, in the structure of the bone lattice. Buckling is an instability mode that becomes likely in end-
loaded structures when they become too slender and lose lateral support. The relative importance of bone 
density and architecture in etiology bone fractures are poorly understood and the need for improved 
mechanistic understanding of bone failure is at the core of important clinical problems such as osteoporosis, 
as well as basic biological issues such as bone formation and adaptation. These observations motivated the 
present work in which simplified adaptive-beam buckling model is formulated within the context of the 
adaptive elasticity (Cowin and Hegedus 1976, Hegedus and Cowin 1976). Our results indicate that bone loss 
activation process leads systematically to the apparition of new elastic instabilities that can conduct to bone-
buckling mechanism of fracture. 
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1. Introduction 
 

What is well known is that bone modeling/remodeling and architectural changes in our skeleton 

occur with age and are exaggerated in patients with post-menopausal osteoporosis who suffer from 

spine fractures. Osteoporosis, characterized as loss of bone mass with deterioration of 

microstructure and material properties, is known as a growing public health problem (Bell 1967, 

Kanis et al. 2008, Ionovici et al. 2009). For example, Paget’s disease is known as a chronic focal 

abnormality in bone turnover. This disease causes an increased and irregular formation of bone as 

bone cells become uncontrollable. Over a period of time, the deformed new bone becomes larger 

and weaker, and develops more blood vessels than normal bones. Unlike normal bone, the 

structure is irregular, which makes it weaker and therefore prone to fracture even from a minor 

injury (Selby 2002). Three abnormalities that can account for skeletal fragility disproportional to 

the degree of bone loss have been described (Hasegawa et al. 1995, Recker 1995): (a) a loss of  
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trabecular connectivity such that vertical weight-bearing bars lose their cross attachments with 

each other, thus becoming susceptible to buckling; (b) an inefficient and prolonged micro damage 

repair due to periods of pause in the formation phase of remodeling; and (c) an accumulation of 

unpaired micro damage in unremodeled bone tissue in the central part of trabeculae due to 

reduced osteon wall thickness coupled with the maintenance of trabecular thickness.  

Müller et al. (1998) measured samples of bovine tibiae and whale spine to investigate the 

influence of bone structure type on the failure mechanism; and they found that, in the whale 

spine’s rod like type of architecture, structural failure consisted of the initial buckling and bending 

of structural elements followed by the collapse of the overloaded trabeculae. Aging and 

osteoporosis are known to cause thinning cortices, expansion of outer diameter and loss of internal 

trabecular support which may lead to local buckling. Lee et al. (2005, 2009, 2012), for example, 

have analyzed eight cross-section models of the femoral neck cortex using dimensions from 

studies of hip fracture cases and non-fractured controls. Sections were selected to span a range of 

cortical slenderness based on the buckling ratio; i.e., maximum outer radius from the center of 

mass divided by the mean wall thickness. Potential for local instability was investigated using 

finite strip models, a specialized variant of the finite element method, of each cross-section and 

determined the elastic local buckling stress. Their analyses performed under pure compression 

(Lee et al. 2005) suggested that geometries seen in fracture cases are less stable than those in 

controls and concluded simple constructs to estimate cortical instability such as the buckling ratio 

may have some value but may not be sufficiently accurate for predictive use whereas more 

realistic analyses generated in a combination of bending and compression should better simulate 

the fall conditions producing hip fracture (Lee et al. 2009, 2012). It has been hypothesized that the 

femoral neck of young subjects are more prone to fracture by yielding, whereas those of elderly 

subjects are more susceptible to fracture initiated by local buckling (Lee et al. 2012).  

Hydraulic and buckling theories are two accepted mechanisms of the orbital blowout fracture 

which have been investigated from a clinical, experimental, and theoretical stand point (Warwar et 

al. 2000). These are incomplete fractures where only part of the bone gave way.  

Computational analysis using the finite-element method was conducted by Goto et al. (2003) in 

order to compare changes in the coronal and the transverse planes of idiopathic thoracic scoliosis 

with changes produced in a finite-element buckling model, and to investigate the influence of bone 

modeling on the buckling spine. As a result, they suggested that scoliotic changes in the spinal 

column triggered by the buckling phenomenon are counteracted by bone formation, but worsened 

by bone resorption. The authors hypothesized that scoliosis progressed with resorption of loaded 

bone. 

Even though the reality of many bone fractures mechanisms are complex, what is well argued 

is that (Parker 2006): (a) bone loss makes the trabeculae longer and more slender, (b) bone 

turnover introduces physical defects, in terms of resorption pits, (c) in younger trabecular bone, 

strength-initiated failure dominates, in which the stress overcomes the strength of the bone tissue, 

(d) in older bone, stability-initiated failure dominates because of the instability of the individual 

trabeculae which is prone to inelastic buckling at stresses far less than expected for strength-based 

failure. The need for improved mechanistic understanding of cancellous bone failure is at the core 

of important clinical problems such as osteoporosis, as well as basic biological issues such as bone 

formation and adaptation. With respect to known investigations, there is a great need for a 

theoretical framework that provides insight into the bending–buckling process coupled to bone 

adaptation which accounts for many fracture mechanisms. As a first step in this direction, we have 

taken back the previous theory due to Ramtani and Abdi (2005) and stated the particular case of 
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adaptive Euler-Bernoulli beam hypothesis which has been numerically investigated using a finite 

difference method. Based on both theoretical and computational analysis, this study intends 

globally to establish a better knowledge about bone fractures and, in particularly to evaluate the 

influence of the bone adaptation upon the buckling of micro structural bone-beam elements. In this 

contribution, among other results, we indicate that the activation of bone loss process leads 

systematically to the apparition of new elastic instabilities that can conduct to local bone-buckling 

mechanism of fracture localized at the trabeculae scale. 

 

 

2. Theoretical formulation 
 

The present work is conducted within the context of the theory of adaptive elasticity due to 

Cowin and Hegedus (1976) as a model for the physiological process of bone adaptation and 

specialized to the case of small strains in isothermal processes (Hegedus and Cowin 1976) will 

now be summarized. Let   be the bulk density of the porous bone material expressed as 

 e 0                                                             (1) 

where e=ξ - ξ0 is the measure of the change in solid phase volume fraction from a reference 

volume fraction ξ0, ξ is the solid phase volume fraction of the reference unstrained state and γ is 

the density of the material that composes the matrix structure assumed to be always constant.  

The constitutive equation for the Cauchy stress is  

  klijklijklij EeCCT 10

0                                                       (2) 

where 0

ijklC , 1

ijklC  are constants tensors representing the elastic properties of the adaptive material, 

and 
ijE  is the linearized strain tensor.  

The modified Hooke’s law from which the proportionality between the Cauchy stress and the 

linearized strain components is dependent upon the volume fraction of the material present e, can 

be written as 

10

0 ijijij eTTT                                                           (3) 

 
2.1 Initially stressed adaptive elastic beam 
 

2.1.1 General theory formulation 

In this section we apply simplified Timoshenko beam theory subjected to an initial stress 0

 . 

For our purposes, we neglect body forces, and write local equilibrium equations as 

0, iij                                                             (4) 

where i, j=x, y, z and summations are to be carried out for repeated Greek subscripts only.  

One can first write both the local stress partition for the initially pre-stressed beam  
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and the bone density resultant over the beam’s cross-section 

    ydzdtzyxetxe 
0

,,,,                                                  (6) 

According to the classical one dimensional Timoshenko beam theory, incremental 

displacements measured from the initially stressed equilibrium configuration are stated as 

   xwuxzu zx                                                 (7) 

whereas the incremental strain resultants are defined by the following expressions 
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where S0=b h, with h and b as the height and width of the rectangular cross-section area of the 

beam.  

In the subsequent development, it will be convenient to define the following adaptive beam 

stress-resultants 
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The combination of the Eqs. (8) and (9) leads to the pertinent adaptive-beam resultant stress-

strain relation 
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where S0 and k2 are respectively the cross-sectional area and the “shear correction factor” to 

compensate for the error in assuming a constant shear strain or stress through the beam thickness 

(Vinson 1989). 

 Next we set j =x in Eq. (4), and multiply each term by z. Subsequent application of the 
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operation dydz 
0

 to each term results in 
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With the aid of (9), the first integral in (11) can be reduced as 
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The third integral in (11) can be reduced by Green’s theorem in the y ˗ zplane, 
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           (13) 

On the lateral surface of the beam (i.e., on C) we have nx=0, either exactly or approximately. 

In this case, 0 z

r

zxy

r

yx

r

x nTnTt  on C for r =0,1. Thus, Eq. (13) becomes 
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Upon utilization of (12) and (14), Eq. (11) assumes the form 
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and in view of the first equation of (9), this equation can be written as 
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Next, we set j =z in (4) and apply the operator dydz 
0

 to each. With the aid of (5), we 
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obtain 
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and in view of (9) we obtain,  
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The third term in (18) can be reduced by application of Green’s theorem. We have, 
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and because on the beam lateral surface  z

r
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z nTnTt  , r =0,1, either exactly or 

approximately.    xpexpxp 10

0)(   , corresponds to the distributed transverse applied force 

acting on the beam. Finally, we obtain the following equation, 
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The rate of change in the resultant volume fraction  txe ,  of the material present is now 

expressed in terms of resultant strains as 
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210,                (22) 

An important prediction of the theory of buckling of adaptive elastic bone-beam can be derived 

following the system of Eqs. (17), (21), (22) and the associated initial and boundary conditions. 

 

2.1.2 Euler Bernoulli hypothesis 
Trabeculae are known as anastomosing bony spicules in cancellous bone which form a 

meshwork of intercommunicating spaces that are filled with bone marrow. In some bone of the 

skull, these internal spaces are enlarged and lined by respiratory epithelium and are contiguous 

with the nasal cavity. The insertion of these elements could probably affect the boundary 

conditions, and/or introduce some of viscous damping. However, changing the boundary 

conditions do not disturb notably the bone adaptation process as well as the apparition of observed 



 

 

 

 

 

 

A simplified theory of adaptive bone elastic beam buckling 

elastic instabilities. As an application of the stated adaptive beam buckling theory, it is proposed to 

neglect: (a) the effects of shear deformation by setting  
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 , (b) both the first xe, and 

second xxe,  derivatives of the remodeling variable, and (c) both transverse applied loads p0≈0, 
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where 
L

x
x   is the dimensionless length, P is the applied compressive load, 

0

1

E

E
  is a material 

parameter derived as the ratio of the primary E0 and secondary E1 elastic modulus.  

For commodity reason, let us assume that AAA ijij  10
 which leads to the following bone 

remodeling law 
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3. Results and discussion 
 

It should be remarked that the beam is in a remodeling equilibrium. This means that before 

insertion the equation (24) reduces to 02

210  eaeaa  where the initial solid volume fraction

0667.00 e  is one of the dominating roots.  

It is well known that boundary conditions have a notable effect on the critical load of slender 

columns (Saha, 2007). They determine the mode of bending (i.e., buckled shape) and the distance 

between inflection points on the deflected column. 

Our numerical solutions are conducted and  illustrated  with respect to 10  , the 

hypothetical data given in table 1 (Cowin and van Buskirk, 1978) and concerns a particular 

situation of a bone-beam column which is fixed at one end ( 0x ), pinned at the other end (

1x ) and  loaded at the free end by a concentrated compressive force P (Fig. 1). The 

corresponding boundary conditions are as follows:  
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Let us consider firstly, the case where the remodeling rate coefficient is A=0.5 and η=0.1. It 

can be observed that the beam’s deflection remains stable during the remodeling process (Fig. 

2a) and its associated bone remodeling distribution exhibits a singular node, located at 3.0x , 

for which the bone density is constant (Fig. 2b). It is shown that at both left and right sides of this 
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node, bone resorption (i.e., decreasing bone density) and apposition (i.e., increasing bone density) 

occur respectively. 

 
 

Table 1 Hypothetical parameters 

Bone remodeling 

parameters 

a0(s
-1) a1(s

-1) a2(s
-1) A(s-1) γ(g/cm3) ξ0 

10-8 2.50 10-7 1.50 10-6 0.50 0.65 0.892 

Geometrical and elastic 

parameters 

L(mm) b(mm) h(mm) E0(Pa) η n 

1.00 0.10 0.10 18.40 109 0.10 35 

 

 
Fig. 1 Beam’s column with end axial load 

 

 
Fig. 2a Beam’s deflection  xw  over the time for A=0.5 and η=0.1 
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Fig. 2b Bone density (g/cm) distribution over the time for A=0.5 and η=0.1 

 

 
Fig. 3a Beam’s deflection  xw  over the time for A=0.5 and η=0.85 

 

 

Both beam’s deflection and density distributions are analyzed (Fig. 3) for the remodeling rate 

coefficient A=0.5 and η=0.85. In this case, the beam’s situation is different because it can be noted 

that the bone beam starts with a stable positive deflection and at t =46.76 days, a small shift 

appears. This shift leads to a change of sign of the beam’s deflection at t =49.10 as well as a light 

shift with respect to the stabilized situation (Fig. 3a). In Fig. 3b we observe that when the beam’s 

deflection is positive, at the left side of the singular node, also located at 3.0x , resorption 

process occurs whereas at the right side the opposite process (i.e., apposition) is in action. Just  
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Fig. 3b Bone density (g/cm3) distribution over the time for A=0.5 and η=0.85 

 

 
Fig. 4a Beam’s deflection  xw  over the time for A=0.5 and η=1.0 

 

 

after the change of sign of the deflection, the opposite process is in activity on both sides of the 

singular node.  
As a result, one can see that the bone density at the left side is reinforced whereas at the right 

side the bone density is weakened. At the end of the bone remodeling process this situation is 

opposite to the preceding case (Fig. 2b). 

The same investigations are now renewed for the case A=0.5 and η=1.0. In this case, the  
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Fig. 4b Bone density (g/cm3) versus position x over the time for over the time for A=0.5, η=1.0 

 

 
Fig. 5a Beam’s deflection  xw  over the time for A=-0.5, η=1.0 

 

 

beam’s situation is still different from the preceding case, and it is interesting to note the 

appearance, at t =46.76 and t =49.10days, of particular instabilities (Fig. 4a). Moreover, the first 

deflection mode of the beam remains stable despite the complex remodeling process that occurs 

throughout the beam (Fig. 4a). The density distribution presented in Fig. 4(b) is quite similar to the 

previous case at its final stage. Our study demonstrates that bone loss is behind the apparition of 

additional elastic instabilities 
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Fig. 5b Bone density (g/cm3) versus position x over the time for A=-0.5, η=1.0 

 

 
Fig. 6a Buckling parameter versus time for A=0.5 

 

 

The last case concerns the situation where the remodeling rate coefficient is positive A=-0.5 

and η=1.0 but remains valid and representative for the other values of η (i.e., 0.10 and 0.85). It can 

be observed in Fig. 5(a) that the beam’s deflection remains stable during the remodeling process 

and seems to be the same as previous result shown in Fig. 2(a).  

As regards the bone density distribution (Fig. 5b), the remodeling process is reversed. One 

witnesses an important reinforcement activity on the left of the singular node, still located at 



 

 

 

 

 

 

A simplified theory of adaptive bone elastic beam buckling 

 
Fig. 6b Buckling parameter versus time for A=-0.5 

 

 

3.0x , whereas resorption activity occurs at its right side.  

We define the buckling load parameter 

OyIE

xP
0

0

2





  where ∆x is the step size of the finite 

difference approximation; and as we can see in Fig. 6, its temporal evolution is significantly 

affected by the variation of the material parameter η. When the remodeling rate coefficient is 

A=0.5, the critical load parameter is increasing nonlinearly until reaching a peak value (two peaks 

for η=1.0) and then, for particular values of the material parameter η, decreases asymptotically.  

The case where is investigated in Fig. 6(b) and it is shown that the buckling load parameter 

exhibits a decreasing evolution which is accentuated with respect to the increase of the material 

parameter. It is thus rather easy to establish the link between the peaks values and the elastic 

instability (intermediate deflection mode (Fig. 4a), change of sign of the mode I of deflection (Fig. 

3a)). 

 

 

4. Conclusions 
 

This study concerns a single trabecula known as anastomosing bony spicules in cancellous 

bone which form a meshwork of intercommunicating spaces that are filled with bone marrow. In 

some bone of the skull, these internal spaces are enlarged and lined by respiratory epithelium and 

are contiguous with the nasal cavity. The insertion of these elements could probably affect the 

boundary conditions, and/or introduce some of viscous damping.  

In our knowledge, this contribution is the first attempt that used adaptive elasticity in order to 

state a new adaptive-beam (or column) buckling theory at the scale of trabeculae. It is clearly 

shown that, except for the initial first mode which appears systematically with respect to the stated 

boundary conditions, the activation of bone loss process, which appears only for A>0, is behind the 



 

 

 

 

 

 

Salah Ramtani, Hamza Bennaceur and Toufik Outtas 

 

apparition of a new elastic instability that leads to changes in sign of the curvature of the bone-

beam’s deflection.  

For one, it is clearly stated here that from the choice of the bone remodeling rate coefficient A 

depends the elastic stability of the bone-column. For another, the authors believe that the number 

of these elastic instabilities which are potentially implied in the mechanisms of bone fracture, 

localized at the trabeculae scale, depends strongly upon the material parameterη. 

It is evident that both the illustrative character of the example treated here with specific 

boundary conditions; and the lack of experimental data remains the main limitations of the present 

contribution. We only are at the beginning of something which is promising but still enough far 

from the clinical applications. However, this study will provides a new basis for developing 

appropriate experimental protocols and/or to establish a better knowledge about old bone fractures 

which is known as prone to inelastic buckling at stresses far less than expected for strength-based 

failure.  
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