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Abstract.  Space-telescopes placed in the Sun-Earth second Lagrange point (L2) observe the sky following a scan 
strategy that is usually based  on a spin-precession motion. Knowing which regions of the sky will be more observed 
by the instrument is important for the science operations and the instrument calibration. Computing sky observation 
parameters numerically (discretizing time and the sky) can consume large amounts of time and computational 
resources, especially when high resolution is required. This problem becomes more critical if quantities are evaluated 
at detector level instead of considering the instrument entire Field of View (FoV). In previous studies, the authors 
have derived analytic solutions for quantities that characterize the observation of each point in the sky in terms of 
observation time according to the scan strategy parameters and the instrument FoV. Analytic solutions allow to obtain 
results faster than using numerical methods as well as capture detailed characteristics which can be overseen due to 
discretization limitations. The original approach is based on the analytic expression of the instrument trace over the 
sky. Such equations are implicit and thus requires the use of numeric solvers to compute the quantities. In this work, a 
new and simpler approach for computing one of such quantities (mean observation time) is presented. The quantity is 
first computed for pure spin motion and then the effect of the spin axis precession is incorporated under the 
assumption that the precession motion is slow compared to the spin motion. In this sense, this new approach further 
simplifies the analytic approach, sparing the use of numeric solvers, which reduces the complexity of the 
implementation and the computing time. 
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1. Introduction 
 

The second Lagrange point (L2) of the Sun-Earth system is a predilected destiny for sky 
observation missions. This location provides ideal conditions for deep space observations: 

thermally stable environment, distance from near Earth perturbations (atmosphere, radiation, 
debris, etc), lack of eclipses and continuous observation of the sky. A significant part of the 
observation missions planned or already launched to this location (Planck, Gaia, WMAP, 
LiteBIRD, CORE, or EPIC) cover the whole sky along the year following a scan strategy that 
determines their attitude motion (Wallis et al. 2017, Delabrouille et al. 2018, Hazumi et al. 2020). 
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Such motion is usually a combined spin-precession motion, where the satellite spins over one of its 

axes which rotates around a defined precession axis as shown in Fig. 1. 

Commonly, the precession axis is parallel to Sun-Earth line and its positive direction is 

considered towards deep space (anti-Sun direction). The selection of the scan strategy parameters 

(𝛼, the separation between spin and precession axes, 𝛽, separation of the instrument axis from the 

spin axis, 𝑇𝑠𝑝𝑖𝑛, spin motion period, and 𝑇𝑝𝑟𝑒𝑐, precession motion period) depends mainly on the 

scientific objectives and is also subjected to several constraints. For example, the sum of 𝛼 and 𝛽 

angles must be larger than 90º to cover the whole sky (after half-year) but not so high that the Sun 

enters the FoV. Other constraints are related to the speed of the spin and the precession motions or 

their ratio, which will affect different mission aspects such as the sky coverage homogeneity, the 

required sampling frequency, or the attitude subsystem specifications. 

The attitude motion causes the instrument to produce a scan pattern over the sky as the one 

shown in Fig 2. The instrument pointing direction (�⃗�) can be obtained combining the attitude 

matrix of the satellite (Eq. (1)) and the instrument mounting matrix (Eq. (2)). By choosing an 

adequate Euler angle sequence (1-3-1), the attitude matrix of the satellite can be expressed as a 

function of three of the scan strategy parameters (𝛼,  𝑇𝑠𝑝𝑖𝑛 and 𝑇𝑝𝑟𝑒𝑐) 

 

 

 

Fig. 1 Scheme of scan strategy based on a spin-precession attitude motion 

 

 

Fig. 2 Hammer projection of the instrument trace over the sky. The center of the projection 

corresponds to the precession axis 

450



 

 

 

 

 

 

Alternative analytic method for computing mean observation time in space-telescopes… 

𝐶𝑠𝑎𝑡 = (

𝑐𝛼 𝑐𝜉𝑠𝛼 𝑠𝜉𝑠𝛼

−𝑐𝜓𝑠𝛼 𝑐𝜓𝑐𝛼𝑐𝜉 − 𝑠𝜓𝑠𝜉 𝑐𝜓𝑐𝛼𝑠𝜉 + 𝑠𝜓𝑐𝜉

𝑠𝜓𝑠𝛼 −𝑠𝜓𝑐𝛼𝑐𝜉 − 𝑐𝜓𝑠𝜉 −𝑠𝜓𝑐𝛼𝑠𝜉 + 𝑐𝜓𝑐𝜉

) (1) 

𝜉 =
2𝜋

𝑇𝑠𝑝𝑖𝑛
𝑡 (2) 

𝜓 =
2𝜋

𝑇𝑝𝑟𝑒𝑐  
𝑡 (3) 

The instrument frame is considered to be rotated an angle 𝛽 from the satellite frame and its 

pointing direction to be its 𝑋𝑖𝑛𝑠𝑡-axis 

𝐶𝑖𝑛𝑠𝑡 = (

𝑐𝛽 𝑠𝛽 0

−𝑠𝛽 𝑐𝛽 0

0 0 1

) (4) 

�⃗�(𝑡) = 𝐶𝑠𝑎𝑡𝐶𝑖𝑛𝑠𝑡 {
1
0
0

} (5) 

The geometry of the pattern will depend on the values of the scan strategy parameters. As the 

instrument follows that path, it will observe those points in the sky that enter its Field of View 

(FoV). However, it is not intuitive how often this will occur and how long each point will be seen. 

Normally, this and other parameters to quantitatively assess the quality of a scan strategy are 

computed directly using numerical methods (Bennet et al. 2003, Bock et al. 2008, Dupac and 

Tauber 2004, Kelsall et al. 1998), discretizing the sky and the time interval, checking which points 

are seen each step time and computing the required quantities. The main disadvantage of this 

approach is that the computational cost grows proportionally to the spatial and temporal 

discretization., becoming inefficient for studying the impact of the scan strategy parameters on the 

mission performance. Nevertheless, these methods may be imperative in some cases as with the 

systematic errors, whose modelling can be too complex to use analytical methods. 

In previous studies (Bermejo-Ballesteros et al. 2022, 2019, Casas et al. 2021) the authors have 

employed such numerical methods and derived analytic expressions for observation quantities in 

order to assess the impact of the scan strategy on calibration activities for the telescope. These 

quantities are defined for each point in the sky (whose position is defined by two angles, 𝜃 and 𝜑, 

as shown in Fig. 3) and characterize the periods of time when such point is inside the instrument 

FoV (which are called here accesses).  

The studied quantities are the sum of all accesses duration (𝑇𝑡𝑜𝑡𝑎𝑙), the mean duration of the 

accesses (𝑇𝑚𝑒𝑎𝑛 ), and the maximum duration between all the access (𝑇𝑚𝑎𝑥 ). These analytic 

solutions have been successfully validated against numerical results, require far less computational 

resources and provide results much faster. The main assumption of the study is that these 

quantities are symmetric regarding the precession axis. Therefore, if the precession axis coincides 

with the X0-axis, these quantities do not depend on 𝜃  coordinate, only on 𝜑  coordinate. This 

assumption will be valid as long as the combined period of the spin and precession motion and the 

period of time considered are high (compared to both motion periods). 

In Figs. 4-6, examples of the three quantities are shown. These results have been obtained with 

the methods presented in Bermejo-Ballesteros et al. 2022. The Figs. 4(a), 5(a) and 6(a) show a  
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(a) Hammer projection (b) Variation regarding 𝜑 

Fig. 4 Total access time 

 

 

Hammer projection of the numerical results obtained analyzing each point of the discretized sky 

mesh, where the axial-symmetry around the precession axis can be clearly appreciated. Therefore, 

these results can be simplified, analyzing the variation of the quantities regarding the 𝜑 coordinate, 

which is shown in the Figs. 4(b), 5(b) and 6(b), where the analytical and numerical results are 

compared. 

The total access time is not affected by the precession as a higher speed will shorten the 

accesses duration, but it will increase the number of accesses proportionally. Meanwhile, the mean 

access time and the maximum access time change as the precession speed does, especially for 

large values of 𝜑 coordinate. However, the original approaches followed for the mean access time 

and the maximum access time to include the precession effect are different. In the former case, the 

precession motion is considered from the start, analyzing the trace of the instrument while in the 

latter case, 𝑇max is calculated for a pure spin motion and then the effect of the precession is added 

using a correction factor which depends on the precession motion and spin motion speeds. 

In this work, the correction factor applied for the maximum access time will be applied to the 

mean access time and the results will be compared against the previous approach and the  

 

Fig. 3 Coordinates used to describe the position of each point of the sky. The X0-axis 

coincides with the precession axis 
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(a) Hammer projection (b) Variation regarding 𝜑 

Fig. 5 Mean access time 

 

 

 
(a) Hammer projection (b) Variation regarding 𝜑 

Fig. 6 Maximum access time 

 

 

numerical results. This new approach will simplify the calculation process as it requires less and 

simpler operations. Furthermore, it will facilitate the software implementation of the approach. 

The error in all the results is in the same order of magnitude as the numerical time step. 

 

 
2. Alternative method for TMEAN 
 

In the original approach, the complete motion (spin and precession) is considered to compute 

𝑇𝑚𝑒𝑎𝑛 . This requires evaluating the derivate of the expression that determines the instrument 

pointing (Eq. (5)) and find the root of nonlinear functions (Eqs. (15)-(18)). With the new approach, 

this is avoided, requiring only the evaluation of explicit formulas. This is achieved by making the 

assumption that the precession motion is slow compared to spin motion, which allows to decouple 

the effect of both motions. Thus, 𝑇𝑚𝑒𝑎𝑛 is computed for the case of pure spin motion and then its 

value is corrected by a factor that depends on the spin and precession speeds. 
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2.1 Original approach 
 

The mean access time is computed by dividing the total access time by the number of accesses. 

The derivation of the analytical expression for the total access time (Eq. (6)) is not included here 

for succinctness but it can be found in detail in Bermejo-Ballesteros et al. 2022. 

𝑇𝑡𝑜𝑡𝑎𝑙(𝜑) = 𝑇𝑠𝑖𝑚

1

𝜋
∫

1

𝜋
Re(arccos (

cos(𝛿) − cos(𝜑𝑣) cos(𝜑)

sin(𝜑𝑣) sin(𝜑)
) 𝑑𝜙) 

𝜋

0

(6) 

where 𝛿 is the FoV half-angle and 𝜑𝑣 can be obtained from 

𝜑𝑣 = arccos(𝑐𝑜𝑠(𝛼) 𝑐𝑜𝑠(𝛽) − 𝑠𝑖𝑛(𝛼) 𝑠𝑖𝑛(𝛽) 𝑐𝑜𝑠(𝜙)) (7) 

As previously said, the total access time is not affected by the precession speed. However, the 

number of accesses 𝑁(𝜑) does. As the motion is periodic, the proportion of points (𝑓𝑚) in the sky 

with the same 𝜑  coordinate that have been inside the instrument FoV after a spin period is 

constant. Thus, the total number of accesses during a given period can be obtained by multiplying 

the number of spin cycles by 𝑓𝑚. 

𝑇𝑚𝑒𝑎𝑛(𝜑) =
𝑇𝑡𝑜𝑡𝑎𝑙(𝜑)

𝑁(𝜑)
(8) 

𝑁(𝜑) = 𝑓𝑚

𝑇𝑠𝑖𝑚

𝑇𝑠𝑝𝑖𝑛

(9) 

𝑓𝑚 =
2Δ𝜃

2𝜋
(10) 

Δ𝜃 = 𝜃𝑒 − 𝜃𝑖 (11) 

To compute fm for a given 𝜑, the θ coordinates of the intersection points of the interior and 

exterior curves that delimit the area swept by the instrument FoV are determined (Fig. 7). To do so,  

 

 

 
Fig. 7 Geometrical scheme of the instrument trace for a half of 𝑇𝑠𝑝𝑖𝑛. The area swept by the instrument 

FoV is delimited by two curves parallel to the trace. The angle 𝛿 is the half-angle of the FoV 
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the equations of such curves are obtained from the expression of the instrument pointing over time 

�⃗�(𝑡) 

 

�⃗�𝑒(𝑡) = �⃗� cos(𝛿) + �⃗⃗� sin(𝛿) = (

𝑥𝑒(𝑡)

𝑦𝑒(𝑡)

𝑧𝑒(𝑡)
) (12) 

�⃗�𝑖(𝑡) = �⃗� cos(𝛿) − �⃗⃗� sin(𝛿) = (

𝑥𝑖(𝑡)

𝑦𝑖(𝑡)

𝑧𝑖(𝑡)
) (13) 

�⃗⃗� =
�⃗�′(𝑡)^�⃗�(𝑡)

|�⃗�′(𝑡)|
(14) 

with �⃗⃗� being the unitary normal to the instrument trace �⃗�(𝑡), whose expression has been derived in 

the previous section. 

𝜑𝑒(𝑡) = Re(arccos(𝑦𝑒(𝑡))) (15) 

𝜃𝑒(𝑡) = Re (arccos (
𝑧𝑒(𝑡)

sin(𝜑𝑒(𝑡))
)) (16) 

𝜑𝑖(𝑡) = Re(arccos(𝑦𝑖(𝑡))) (17) 

𝜃𝑖(𝑡) = Re (arccos (
𝑧𝑖(𝑡)

sin(𝜑𝑖(𝑡))
)) (18) 

Such expressions are solved to find the instant when both curves reach the coordinate 𝜑. Then, 

the coordinates 𝜃𝑒 and 𝜃𝑖 are computed for the resulting time and thus the value of 𝑇𝑚𝑒𝑎𝑛(𝜑) can 

be computed. A summary of the steps is shown in Fig. 8. 

 

 

 

Fig. 8 Scheme of the steps followed to compute 𝑇𝑚𝑒𝑎𝑛 using the original approach 
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2.1 New approach 
 

In this approach, first 𝑇𝑚𝑒𝑎𝑛 for negligible precession is calculated. In such case, the trace can 

be approximated as a circle (due to the spin motion) that slowly rotates around the precession axis 

(Fig. 10(a)). This allows to simplify the calculation of θe and θi, for which analytic solutions can be 

found 

𝜃𝑒|𝜑 = Re (arccos (
cos(𝛽 + 𝛿) − cos(𝛼) cos(𝜑)

sin(𝛼) sin(𝜑)
)) (19) 

 𝜃𝑖|𝜑 = Re (arccos (
cos(𝛽 − 𝛿) − cos(𝛼) cos(𝜑)

sin(𝛼) sin(𝜑)
)) (20) 

These expressions allow to compute directly the 𝜃 coordinate of the interior and exterior curves 

from the area swept by the instrument for a given 𝜑. An example of the result obtained for 𝑇𝑚𝑒𝑎𝑛 

when precession is negligible is shown in Fig. 9. 

Then, considering that the instrument sweep speed is produced both by spin and precession and 

assuming that the latest is slow compared to the spin speed (at least one order of magnitude 

slower), it is reasonable to expect that the component of the precession motion parallel to the spin 

speed component will be the more significant one in changing the accesses duration. Then, 𝑇𝑚𝑒𝑎𝑛 

is corrected by a factor that depends on the spin and precession speeds, 𝜔 and Ω respectively 

 𝑇𝑚𝑒𝑎𝑛
∗ = 𝑇𝑚𝑒𝑎𝑛𝑓𝑝𝑟𝑒𝑐 = 𝑇𝑚𝑒𝑎𝑛

𝜔 sin(𝛽)

𝜔 sin(𝛽) + Ω sin(𝜑)𝛾
(21) 

where 𝛾 is the angle between the projection of the precession velocity unitary vector over the spin 

velocity vector as shown in Fig. 10(a). This approximation is based on the fact that the precession 

motion modifies the speed of the instrument proportionally to its separation to the precession axis 

(𝜑). To obtain 𝛾, the expressions of both unitary vectors are derived as a function of 𝜙 and 𝜏 

angles, which are defined in Fig. 10(b) 

𝑣𝑠𝑝𝑖𝑛 = {

sin(𝛼) sin(𝜙)

cos(𝜙)

− cos(𝛼) sin(𝜙)
} (22) 

𝑣𝑝𝑟𝑒𝑐 = {
cos(τ)

0
− sin(𝜏)

} (23) 

The relation between both angles is 

𝜏 = arctan (
sin(𝜑𝑡𝑚𝑎𝑥

∗ ) sin(𝜙)

cos(𝛼) sin(𝜑𝑡𝑚𝑎𝑥

∗ ) cos(𝜙) + sin(𝛼) cos(𝜑𝑡𝑚𝑎𝑥

∗ )
) (24) 

and 𝛾 is obtained projecting both vectors 

𝛾 = cos(𝜙) cos(𝜏) + cos(𝛼) sin(𝜙) sin(𝜏) (25) 

where 𝜙 can be expressed as a function of 𝜑, 𝛼 and 𝜑𝑡𝑚𝑎𝑥

∗ , which is the value for the maximum 

access time achievable (Bermejo-Ballesteros et al. 2022). 

𝜙 = arccos (
cos(𝛼) cos(𝜑𝑡𝑚𝑎𝑥

∗ ) − cos(𝜑)

sin(𝛼) sin(𝜑𝑡𝑚𝑎𝑥

∗ )
) (26) 
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Fig. 9 Example of 𝑇𝑚𝑒𝑎𝑛 profile for negligible precession 

 

  
(a) Definition of 𝛾 (b) Definition of 𝜏 and 𝜙 

Fig. 10 Geometrical scheme of the instrument trace for a half of 𝑇𝑠𝑝𝑖𝑛 when precession is negligible 

 

 

𝜑𝑡𝑚𝑎𝑥

∗ = arctan (
√cos2(𝛿) − cos2(𝛽)

cos(𝛽)
) (27) 

In Fig. 11 is shown the effect of the precession in the 𝑇𝑚𝑒𝑎𝑛 profile from Fig 9. The effect of 

the precession is more noticeable as 𝜑 grows, decreasing the value of 𝑇𝑚𝑒𝑎𝑛. 

In Fig. 12, the evolution of the value of the correction factor 𝑓𝑝𝑟𝑒𝑐 regarding 𝜑, for different  
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Fig. 11 Example of 𝑇𝑚𝑒𝑎𝑛 profile after applying correction factor 

 

 
Fig. 12 Value of the 𝑓𝑝𝑟𝑒𝑐 correction factor along the 𝜑 domain for different precession speeds 

 

 

values of 𝑇𝑝𝑟𝑒𝑐, is shown. Its value decreases until 𝜑 = 𝛼 + 𝛽 = 95°, where it starts to grow, as 

the angular separation regarding the precession axis reduces again. In Fig. 13, a summary of the 

steps of this new approach is shown. 

 

 

3. Results comparison 
 

The new approach, due to the reduction of θe and θi to simple expressions, is considerable faster 

to compute that the original approach. In Table 1, the computation time used in both approaches is  
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Fig. 13 Scheme of the steps followed to compute 𝑇𝑚𝑒𝑎𝑛 with the new approach 

 

 

compared for different levels of 𝜑 discretization. The computer employed has an Intel® Core™ 

i7-10700K CPU of 3.80 GHz processor. In all simulated cases, the performance of the new method 

is over 100 times faster. Nevertheless, it must be noted that both methods are significantly faster 

than the numerical approach. For similar resolution in 𝜑  coordinate (𝑁𝑟 = 1000) , 1 day of 

simulated time, and a time step of 1 s, the numerical approach consumes 1 h. As the computation 

times scales proportionally to the time step used, a time step of 0.1 s would require roughly 10 h of 

computation time. Unlike in the numerical approach, the computation time of analytical 

approaches does not depend on the simulated time. 

For validation, both methods were compared to the numerical results for different values of 

𝑇𝑝𝑟𝑒𝑐 . The scan strategy parameters used were 𝛼 = 46°, 𝛽 = 49° and 𝑇𝑠𝑝𝑖𝑛 = 9 min, similar to 

those used in CMB missions (Wallis et al. 2017). In Fig. 14 are shown the results of the three 

methods, which fit properly. In Fig. 15 the error of the analytical methods regarding the numerical 

is shown. For slow precession motion (𝑇𝑝𝑟𝑒𝑐  large), both methods present similar error, with a 

RMSE (root-mean-square error) below the time step used in the numerical method (0.1 s). 

However, as the precession motion speed grows (𝑇𝑝𝑟𝑒𝑐 decreases), the error of the new method 

becomes larger than with the original method. Note, however, that the error has roughly the same 

order of magnitude that the time step used in the numerical approach (0.1 s). This behaviour was 

expected as, contrary to the original method, which is derived from the analytical expression of the 

trace, the effect of the precession has been considered with an approximation of such effect. The 

four peaks of error present in both pictures from Fig. 15 are due to steep changes in the value of 

𝑇𝑚𝑒𝑎𝑛, which increases the error of the bilinear interpolation method used to process the numerical 

results and it depends on the level of spatial discretization used. 
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Fig. 14 Comparison between numerical results and both analytical approaches 𝑇𝑝𝑟𝑒𝑐 = 85 min. 

 

  
(a) Error with the original method (b) Error with the new method 

Fig. 15 Comparison of the error between the numerical and analytical solutions for the original (a) and new 

method (b) for different values of 𝑇𝑝𝑟𝑒𝑐. 

 
Table 1 Comparison between both methods’ execution times. Nr indicates the number of points in which the 

domain of 𝜑 is divided 

Nr Original method [ms] New method [ms] Ratio 

10 70.49 ± 0.76 0.526 ± 0.008 133 

100 674.6 ± 3.9 5.01 ± 0.02 134 

1000 6642.3 ± 23.9 ms 49.62 ± 0.81 s 133 

 

 
4. Conclusions 
 

The new method has proven to be as accurate as the original for slow precession speeds. For 

large precession speed, the error will be higher. Nevertheless, whether the speed of the precession 
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motion can be considered slow or fast, and therefore, whether to expect higher error with the new 

method, will depend on its comparison with the spin motion speed. For precession speeds at least 

one order of magnitude slower than spin speeds, the error of both methods will be similar. 

The new method proposed has been validated as an alternative to account for the precession 

motion in the computation of the mean observation time. This approach reduces the operations 

involved in the calculation and their complexity, avoiding the use of equation solvers, and thus 

decreasing the amount of time required in calculation and in the implementation process. 

In terms of accuracy and computation time, both methods are adequate for a preliminary study 

phase, where the amount of time available for observation is a main driver for the mission design 

and it may require considering long periods of observation. In further design stages, numerical 

calculations are preferred as they enable the computation of other effects related to the signal itself 

and the instrument used to measure it. 
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