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Abstract.  This paper proposes a novel time-domain homogenization model combining the viscoelastic constitutive 
law with Eshelby’s inclusion theory-based micromechanics model to predict the mechanical behavior of the particle 
reinforced composite material. The proposed model is intuitive and straightforward capable of predicting composites’ 
viscoelastic behavior in the time domain. The isotropization technique for non-uniform stress-strain fields and 
incremental Mori-Tanaka schemes for high volume fraction are adopted in this study. Effects of the imperfectly bonded 
interphase layer on the viscoelastic behavior on the dynamic mechanical behavior are also investigated. The proposed 
model is verified by the direct numerical simulation and DMA (dynamic mechanical analysis) experimental results. 
The proposed model is useful for multiscale analysis of viscoelastic composite materials, and it can also be extended 
to predict the nonlinear viscoelastic response of composite materials. 
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1. Introduction 
 

Demands of lightweight and durable composite materials have ever increased in aerospace 

industries for their high specific stiffness, strength, damping characteristics, etc. Complex behavior 

of polymer matrix composites under high-temperature and cyclic thermomechanical loadings has 

posed challenges on the predictive modeling of viscoelastic behavior, despite various advantages 

that the mechanical properties are adjustable according to the composite composition and 

applications of functional nanomaterials. The experimental evaluation of the effective properties of 

the composites is expensive and time-consuming. Therefore, computational prediction models for 

effective properties of the composites have been required and researched. A variety of computational 

micromechanics models for carbon nanotube (CNT)/polymer (Li et al. 2006, Shokrieh et al. 2016, 

Kolahchi and Cheraghbak 2017, Patnaik et al. 2020), carbon black/rubber (Liu 2017, Jung et al. 

2021), carbon black/shape memory polymer (SMP) (Pan et al. 2019, Zhao et al. 2019), porous 

polymer (Le et al. 2007), and fiber reinforced concrete (Dutra et al. 2010), have been suggested with 
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a wide range of predictive capabilities and modeling efficiencies. 

Among the composites’ material systems, composites consisting of viscoelastic matrix and stiff 

particles have been widely used in engineering applications due to their excellent combination of 

high stiffness, damping, and light-weight properties (Paipetis and Grootenhuis 1979, Zhu et al. 2014, 

Hu et al. 2018). Micromechanical constitutive models for predicting the particulate composites’ 

effective viscoelastic properties are still under active research and development. According to the 

literature, the viscoelastic constitutive models for the particulate composites can generally be 

classified into two categories: 1) the homogenization in the Laplace domain and 2) homogenization 

in the time domain.  

The initial contribution to the homogenization modeling framework based on the Laplace 

Transformation was pioneered by Hashin ( 1965) in 1965. Hashin proposed a set of homogenization 

procedures in the Laplace domain whereby the equations are transformed inversely to the time-

domain to obtain the composites’ effective responses. According to the correspondence principle, 

the Laplace Transformation enabled the linearization of the nonlinear mechanical response of 

viscoelastic materials over time. Therefore, the simple homogenization schemes could be applied to 

linearized mechanical properties in the Laplace domain. Followed by Hashin’s work, various 

micromechanical schemes in the Laplace domain were proposed, such as the self-consistent method 

(Laws and McLaughlin 1978), the Mori-Tanaka method (Brinson and Lin 1998), or the Hashin-

Shtrikman bounds (DeBotton and Tevet-Deree 2004). Various homogenization methods were used 

in the Laplace domain to evaluate the complex modulus (Christensen 1969, Hashin 1970, Li and 

Weng 1994) and damping properties (Dunn 1995) of linear viscoelastic particulate composites. 

Brinson et al. also proposed a micromechanical model to predict a three-phase viscoelastic 

composite’s mechanical property with Mori-Tanaka theory (Fisher and Brinson 2001). Azoti et al. 

presented a micromechanical model to analyze the viscoelastic composites’ damping response by 

transforming the viscoelastic equation to the Carson-Laplace transform domain (Azoti et al. 2013). 

Previous studies on homogenization based on Laplace transformation have provided a great 

advantage in analyzing the viscoelastic composites’ effective frequency-dependent properties. 

However, homogenization based on Laplace transformation has some limitations. The main 

limitation is that the Laplace domain’s homogenization solution is usually difficult to invert back to 

the time domain. This is because the Laplace domain’s homogenization solution is not always in a 

closed form or is not simple enough to be analytically inverted (Chen et al. 2020). Therefore, 

effective mechanical properties in the time domain can be obtained with simplification of models 

(Hashin 1965) or through numerical inversion of the Laplace transformation (Brenner et al. 2002), 

a computationally expensive operation. An approximate inversion method has been proposed to 

increase accuracy (Brenner et al. 2002) but is limited to monotonic loading for good accuracy. 

To overcome the limitations above, a few homogenization methods in the time domain have been 

proposed to characterize the interaction between inclusions and homogeneous media for viscoelastic 

particulate composites (Escarpini Filho and Marques 2016, Rodríguez-Ramos et al. 2020). Molinari 

et al. proposed self-consistent schemes considering the interaction with additive-interaction law to 

evaluate composites’ time-dependent viscoplastic behavior (Molinari et al. 1997). Berbenni et al. 

presented a time-incremental internal variable homogenization scheme for viscoelastic composites 

considering the interaction with an exact-interaction solution (Berbenni et al. 2015). Their approach 

could consider the interaction between inclusions and matrix in the time domain. However, the 

closed-form constitutive equation for the composites could not be obtained. For other time-domain 

homogenization approaches such as variation of incremental methods, Lahellec proposed an 

approximate scheme for estimating the effective response of linear viscoelastic composites directly 

218



 

 

 

 

 

 

A micromechanics-based time-domain viscoelastic constitutive model for particulate composites… 

in the time-domain (Lahellec and Suquet 2007). An incremental internal variables approach was 

first proposed in this research. Ricaud et al. presented an incremental formulation that combines the 

Laplace transform with internal variables (Ricaud and Masson 2009). Their approach was able to 

obtain the exact effective behavior for two-phase microstructure based on the collocation method 

and an internal variable formulation. Recently, Chen et al. presented a micromechanics-based 

homogenization model with explicitly closed-form constitutive equations (Chen et al. 2020). Their 

work provided the closed-form constitutive equation for the viscoelastic particulate composite in the 

time domain. Sevostianov et al. presented a homogenization method to predict effective viscoelastic 

properties of a short fiber reinforced composite. They utilized fraction-exponential operators of 

Scoot Blair-Rabotnov for the convenience of inverse Laplace transformation (Sevostianov et al. 

2016). Unlike models based on the Laplace transform, the time domain homogenization method can 

provide an explicit effective mechanical response of viscoelastic composites. However, it is very 

difficult to obtain the closed constitutive equation of viscoelastic composites in those time domain 

homogenization methods due to the time-dependent material characteristics. Recently, Kim et al. 

proposed a novel adaptive affine homogenization method for visco-hyperelastic composites that 

effective stress can be predicted on the time domain. In this research, the adaptive affine method is 

proposed to resolve inconsistency between the strain concentration tensor and accumulated strain 

(Kim et al. 2022). Compared with the present study, they used the adaptive affine method to correct 

for each time step strain because the strain is huge as a viscoelastic model. 

In this paper, a novel time-domain homogenization method is proposed to obtain the explicit 

mechanical response of linear viscoelastic particulate composites over time by combining the Mori-

Tanka method viscoelastic constitutive equation. We utilized the Mori-Tanaka theory to 

homogenize the composite’s compliance matrix at each time increment and calculate the stress by 

numerically integrating the effective compliance matrix and strain over time. Unlike the 

homogenization methods in the time domain discussed above, the effective compliance matrix that 

considers the inclusion shape and interaction is obtained, and stresses at a specific time are evaluated 

with the obtained compliance matrix and strain rate only. This intuitive and straightforward approach 

can obtain the homogenized stress in the time domain by numerical integrations of the Boltzman 

integral equation with a homogenized constitutive matrix over time. This approach was not 

previously reported and has unique contributions on obtaining time-domain solutions for 

viscoelastic composite with Mori-Tanaka approaches. For instance, time-domain solution for any 

input loading with varying frequencies can be obtained with the proposed methodology. 

In Section 2, the micro-mechanical model’s fundamental is introduced, and the constitutive 

model of Mori-Tanaka viscoelastic material is presented. The numerical implementation of the 

proposed homogenization model is also introduced with a comprehensive flowchart and 

pseudocodes. In Section 3, direct numerical simulation (DNS) using the commercial software 

ABAQUS is performed to verify the proposed time-domain homogenization model. The proposed 

homogenization model considering the interphase layer is also investigated for further verification. 

In Section 4, the experiments for stress relaxation and dynamic mechanical properties are conducted 

to compare the proposed homogenization results with experiments. Finally, conclusions were 

summarized in Section 5, along with future research directions. 

 

 

2. Constitutive modeling of the micromechanical model 
 

This section presents the constitutive modeling procedure for the proposed homogenization  
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Fig. 1 RVE of the particulate composite 

 

 

model with continuum mechanics theory. The homogenization by Eshelby’s inclusion theory is 

introduced and the constitutive model of Mori-Tanaka viscoelastic material is shown. Lastly, the 

numerical implementation of the proposed homogenization model is introduced. 

 

2.1 Homogenization approach by Eshelby’s inclusion theory 
 

Consider the particulate composite material that consists of materials of N+1 phases. To estimate 

this composite material’s effective properties, a Representative Volume Element (RVE) of the 

particulate composite is considered as shown in Fig. 1. Here, 𝜺𝑚𝑖𝑐𝑟𝑜(𝒓⃑ ) is the microscopic strain 

tensor at an arbitrary location (𝒓⃑ ) within the RVE and 𝜺𝑚𝑎𝑐𝑟𝑜 is the far-field macroscopic strain 

tensor that acts on the boundaries of the RVE. The global strain concentration tensor 𝑩(𝒓⃑ ) at an 

arbitrary location 𝒓⃑  contains the information of the microstructure and links the microscopic strain 

to the macroscopic strain as follows (Vieville et al. 2006) 

𝜀𝑚𝑖𝑐𝑟𝑜(𝑟 ) = 𝐵(𝑟 ): 𝜀𝑚𝑎𝑐𝑟𝑜 (1) 

Typically, the global strain concentration tensor 𝑩(𝒓⃑ ) is obtained iteratively. To explain the 

procedure, we introduce the local strain concentration tensor 𝒃(𝒓⃑ ) in Eq. (2).  

𝜀𝑚𝑖𝑐𝑟𝑜(𝑟 ) = 𝑏(𝑟 ): 𝜀𝑚𝑎𝑐𝑟𝑜
𝑟  (2) 

where 𝜺𝑚𝑎𝑐𝑟𝑜
𝑟  is the macroscopic strain of the reference medium. Substituting Eq. (2) to 

𝜺𝑚𝑎𝑐𝑟𝑜 =(
1

𝛺
) ∫ 𝜺𝑚𝑖𝑐𝑟𝑜(𝒓⃑ )𝑑𝛺

 

𝛺
, the relationship between 𝜺𝑚𝑎𝑐𝑟𝑜

𝑟  and 𝜺𝑚𝑎𝑐𝑟𝑜  can be derived as 

follows. 

𝜺𝑚𝑎𝑐𝑟𝑜
𝑟 =< 𝒃(𝒓⃑ ) >−1: 𝜺𝑚𝑎𝑐𝑟𝑜(𝒓⃑ ) (3) 

Where the bracket <∙> is the volume-averaged quantity. Then, substituting Eq. (3) to Eq. (2), the 

global strain concentration tensor is obtained as follows 

𝜺𝑚𝑖𝑐𝑟𝑜(𝒓⃑ ) = 𝒃(𝒓⃑ ): < 𝒃(𝒓⃑ ) >−1 

𝜺𝑚𝑎𝑐𝑟𝑜(𝒓⃑ ) = 𝑩(𝒓⃑ ): 𝜺𝑚𝑎𝑐𝑟𝑜(𝒓⃑ ) 
(4) 

𝑩(𝒓⃑ ) = 𝒃(𝒓⃑ ): < 𝒃(𝒓⃑ ) >−1 (5) 

Assuming far-field macroscopic strain loads applied to the boundary of the RVE, effective 

stiffness of the micromechanical model is obtained in terms of the global strain concentration tensor 
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𝑩(𝒓⃑ )  and the local stiffness tensor 𝒄(𝒓⃑ )  at the arbitrary location 𝒓⃑  by applying the volume 

averaging method as follows 

𝑪𝑚𝑎𝑐𝑟𝑜
𝑒𝑓𝑓

=
1

𝛺
∫𝒄 (𝒓⃑ )

 

𝛺

: 𝑩 (𝒓⃑ )𝑑𝛺 (6) 

The local stiffness tensor 𝒄(𝒓⃑ ) is decomposed into a homogenized part and a fluctuation part 

that varies according to the location, 𝒓⃑ . 

𝒄(𝒓⃑ ) = 𝑪𝑚𝑎𝑐𝑟𝑜
𝑒𝑓𝑓

+ 𝛿𝑪𝑓𝑙𝑢𝑐 (𝒓⃑ ) (7) 

From Eq. (2) and (7), Eq. (7) can be substituted within the equilibrium equation and therefore 

enables the derivation of the kinematic integral equation of Dederichs and Zeller. The microscopic 

strain tensor 𝜺𝒎𝒊𝒄𝒓𝒐(𝒓⃑ ) is expressed with a modified Green tensor 𝝃 as follows (Dederichs and 

Zeller 1973) 

𝜺𝑚𝑖𝑐𝑟𝑜(𝒓⃑ ) = 𝜺𝑚𝑎𝑐𝑟𝑜
𝑟 − ∫ 𝝃(𝒓⃑ − 𝒓⃑ ′

 

𝛺′
): 𝛿𝑪𝑓𝑙𝑢𝑐 (𝒓′⃑⃑  ⃑): 𝜺𝑚𝑖𝑐𝑟𝑜(𝒓⃑ ′)𝑑𝛺′ (8) 

By utilizing the mean-field volume average on Eq. (8), the average strain on 𝐼𝑡ℎ  phase is 

obtained as 

𝜺̅𝐼 = 𝜺𝑚𝑎𝑐𝑟𝑜
𝑟 − 

∑
1

𝛺𝐼
∫ ∫ 𝝃(𝒓 −𝒓𝐽⃑⃑  

 

𝛺𝐽

)𝑑𝛺𝐽𝑑𝛺𝐼

 

𝛺𝐼

𝑁

𝐽=0

: 𝛿𝑪𝑓𝑙𝑢𝑐
𝐽

: 𝜺𝑚𝑖𝑐𝑟𝑜
𝐽

 
(9) 

𝜺̅𝐼 = 𝜺𝑚𝑎𝑐𝑟𝑜
𝑟 − ∑𝑻𝐼𝐽

𝑁

𝐽=0

: 𝛿𝑪𝑓𝑙𝑢𝑐
𝐽

: 𝜺𝑚𝑖𝑐𝑟𝑜
𝐽

 (10) 

where N is the number of phases. Fahri et al. (Fassi-Fehri 1985) proposed the interaction tensor 𝑻𝐼𝐽 

that contains the interaction information between 𝐼𝑡ℎ phase and the 𝐽𝑡ℎ phase of the composite 

material. 𝑻𝐼𝐽 is expressed as 

𝑻𝐼𝐽 =
1

𝛺𝐼
∫ ∫ 𝝃(𝒓⃑ −𝒓𝐽⃑⃑  ⃑)𝑑𝛺𝐽𝑑𝛺𝐼

 

𝛺𝐽

 

𝛺𝐼

, (11) 

Now, we utilize the concept of the local strain tensor 𝒃𝐼(𝒓⃑ ) that links the homogeneous strain 

𝜺𝑚𝑎𝑐𝑟𝑜 to the average strain field within the 𝐼𝑡ℎ inclusion. For the 𝐼𝑡ℎ inclusions, the following 

relationship is satisfied. 

𝜺𝐼(𝒓⃑ ) = 𝒃𝐼(𝒓⃑ ): 𝜺𝑚𝑎𝑐𝑟𝑜
𝑟       (12) 

𝑩𝐼(𝒓⃑ ) = 𝒃𝐼(𝒓⃑ ): < 𝒃𝐼(𝒓⃑ ) >−1     (13) 

Substituting Eq. (2) to Eq. (10) and enforcing the validity of Eq. (10) for all macroscopic strain 

𝜺𝑚𝑎𝑐𝑟𝑜
𝑟 , the local strain tensor at the (i+1)th iteration 𝒃𝑖+1

𝐼 (𝒓⃑ ) is derived as follows 

𝒃𝑖+1
𝐼 (𝒓⃑ ) = [𝑰𝑡𝑒𝑛𝑠𝑜𝑟 + 𝑻𝐼𝐼 : (𝑪𝐼 − 𝑪𝑟)]−1:  
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[
 
 
 

𝑰𝑡𝑒𝑛𝑠𝑜𝑟 − ∑ 𝑻𝐼𝐽: (𝑪𝐽 − 𝑪𝑟)

𝑁

𝐽=0,
𝐽≠𝐼

: 𝒃𝑖
𝐼(𝒓⃑ )

]
 
 
 

 (14) 

here 𝒃𝑖
𝐼(𝒓⃑ ) is the approximate local strain concentration tensor of the 𝐼𝑡ℎ phase at the i-th iteration 

and 𝑰𝑡𝑒𝑛𝑠𝑜𝑟 is an identity tensor. Depending on the choice of the reference medium, two approaches 

exist; 1) Mori-Tanaka approach when 𝑪𝑟 is assumed to be 𝑪0 (i.e., stiffness of the surrounding 

matrix) and 2) Self-consistent approach when 𝑪𝑟  is assumed to be 𝑪𝑚𝑎𝑐𝑟𝑜
𝑒𝑓𝑓

. In this paper, we 

adopted the Mori-Tanaka approach. Therefore, Eq. (10) and (14) change to 

𝜺̅𝐼 = 𝜺𝑚𝑎𝑐𝑟𝑜
0 − ∑𝑻𝐼𝐽

𝑁

𝐽=0

: ∆𝑪𝐽: 𝜺𝑚𝑖𝑐𝑟𝑜
𝐽

 (15) 

𝒃𝒊+𝟏
𝐼 (𝒓⃑ ) = [𝑰𝑡𝑒𝑛𝑠𝑜𝑟 + 𝑻𝐼𝐼: (𝑪𝐼 − 𝑪0)]−1:

[
 
 
 

𝑰𝑡𝑒𝑛𝑠𝑜𝑟 − ∑ 𝑻𝐼𝐽: (𝑪𝐽 − 𝑪0)

𝑁

𝐽=1,
𝐽≠𝐼

: 𝒃𝑖
𝐼(𝒓⃑ )

]
 
 
 

,  

  𝐼 = 0,1,2, … , 𝑁 

(16) 

Herein, ∆𝑪𝐽 is a difference between the stiffness of fiber phase (J) and the matrix. In a condition 

that considers the interaction between the individual inclusions and surrounding matrix (i.e., one-

site approximation), the interaction tensor 𝑻𝐼𝐼 can be expressed as follows 

𝑻𝐼𝐼 = 𝑺: (𝑪0)−1 (17) 

where S is the Eshelby’s tensor that contains the information of the inclusion’s shape and 𝑪0 is the 

stiffness tensor for matrix phase following the Mori-Tanaka scheme. 𝑻𝐼𝐽 is neglected in the one-

site approximation, which means the interaction between I and J-th inclusions is not included. 

Consequently, the effective stiffness tensor 𝑪𝑚𝑎𝑐𝑟𝑜
𝑒𝑓𝑓

 from Eq. (6) can be represented with a 

volume fraction of the 𝐼𝑡ℎ inclusion 𝑣𝐼 and stiffness tensor of 𝐼𝑡ℎ inclusion 𝑪𝐼. It is given as 

𝑪𝑚𝑎𝑐𝑟𝑜
𝑒𝑓𝑓

= ∑ 𝑣𝐼

𝑁

𝐼=0

𝑪𝐼: 𝑩𝐼 = 𝑣0𝑪
0: 𝑩0 + ∑ 𝑣𝐼

𝑁

𝐼=1

𝑪𝐼: 𝑩𝐼 = [𝑣0𝑪
0 + ∑ 𝑣𝐼

𝑁

𝐼=1

𝑪𝐼 : 𝒃𝐼] : 𝑩0 (18) 

In Eq. (18), the following relationship 𝑩𝟎 = 𝒃𝟎: < 𝒃𝐼 >−𝟏=< 𝒃𝐼  >−𝟏  and 𝑩𝐼 = 𝒃𝐼: <
𝒃𝐼 >−𝟏= 𝒃𝐼: 𝑩𝟎 are used assuming the Mori-Tanaka scheme. 

 

2.2 Constitutive model of the Mori-Tanaka viscoelastic material 
 

In this paper, the Generalized Maxwell model is adopted for the viscoelastic behavior of the 

polymer matrix. The Boltzmann superposition integral for a general viscoelastic constitutive model 

is expressed in terms of the relaxation modulus as follows 

𝝈𝑖𝑗(𝑡) = ∫ 𝑪𝑖𝑗𝑘𝑙
𝑉𝐸 (𝑡 − 𝜏)

𝑡

−∞

:
𝜕𝜺𝑘𝑙

𝜕𝜏
𝑑𝜏 (19) 
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where 𝝈 and 𝜺 are the stress and the strain tensor of the viscous matrix; and 𝑪𝑖𝑗𝑘𝑙
𝑉𝐸  is the time-

dependent constitutive matrix showing the relaxation effect. The constitutive matrix is expressed in 

terms of the bulk modulus 𝑘𝑚(𝑡) and the shear relaxation modulus 𝜇𝑚(𝑡) as 

𝑪𝑖𝑗𝑘𝑙
𝑉𝐸 = [𝑘𝑚(𝑡) −

2

3
𝜇𝑚(𝑡)] 𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇𝑚(𝑡)(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) (20) 

The shear relaxation modulus of the matrix is expressed as 

𝜇𝑚(𝑡) = 𝜇∞ + ∑𝜇𝑖𝑒𝑥𝑝(−
𝑡

𝜏𝑖
)

𝑛

𝑖=1

 (21) 

where 𝜇∞ is the shear modulus of the equilibrium branch; 𝜇𝑖  and 𝜏𝑖 are the shear modulus of the 

non-equilibrium branches and the relaxation time, respectively. In this research, the bulk modulus 

𝑘𝑚(𝑡) is assumed to be constant over time since many experimental results show that the matrix’s 

shear relaxation modulus is dominant (Zhao et al. 2019). Consequently, it is assumed 𝑘𝑚(𝑡) =
𝐸/3(1 − 2𝑣).  According to Eq. (18), multi-phase viscoelastic particulate composite has the 

effective constitutive matrix given as follows 

𝑪 
𝑀𝑇 𝑒𝑓𝑓 = 𝑣0𝑪 

𝑉𝐸: 𝑩0 + ∑𝑣𝐼

𝑁

𝐼=1

𝑪 
𝐼: 𝑩𝐼 = (𝑣0𝑪 

𝑉𝐸 + ∑𝑣𝐼

𝑁

𝐼=1

𝑪 
𝐼: 𝒃𝐼) :𝑩0 (22) 

where 𝑩0 and 𝑩𝐼 are the global strain concentration tensors for the matrix phase and particles, 

respectively. The second equality in Eq. (22) is established with Eq. (13), and the relationship 𝑩0 =
< 𝒃I >−1. Here, we consider the interphase region effect. The macroscopic strain that considers the 

interfacial effect is proposed by Qu (1993). It is given as: 

𝜺𝑚𝑎𝑐𝑟𝑜 = ∑𝑣𝐼𝜺
𝐼 + ∑𝑣𝐼𝑯

𝐼: 𝑪𝐼: 𝜺𝐼

𝑁

𝐼=1

𝑁

𝐼=0

 (23) 

Where 𝑯𝐼 is the fourth-order tensor that contains the interfacial properties. As shown in Fig. 2, 

a spring element is utilized to reflect the imperfectly bonded interphase behavior (Qu 1993). Here, 

𝛼  and 𝛽  are the compliances in the tangential and normal directions on the interphase, 

respectively. 

The modified Eshelby tensor can be formulated for imperfectly bonded interfacial behavior as 

follows 

 

 

 

Fig. 2 Imperfectly bonded interfacial behavior of sphere inclusions  
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𝑺𝑀 = 𝑺 + (𝑰𝑡𝑒𝑛𝑠𝑜𝑟 − 𝑺): 𝑯: 𝑪0: (𝑰𝑡𝑒𝑛𝑠𝑜𝑟 − 𝑺) (24) 

For spherical inclusions, H can be represented with fourth-order tensor P and Q with interphase 

layer compliance parameters 𝛼 and 𝛽 as follows 

𝑯 = 𝛼𝑷 + (𝛽 − 𝛼)𝑸 

𝑃𝑖𝑗𝑘𝑙 =
1

𝑎
𝐼𝑖𝑗𝑘𝑙
𝑡𝑒𝑛𝑠𝑜𝑟 ,               𝑄𝑖𝑗𝑘𝑙 =

1

5𝑎
(2𝐼𝑖𝑗𝑘𝑙

𝑡𝑒𝑛𝑠𝑜𝑟 + 𝛿𝑖𝑗𝛿𝑘𝑙) 
(25) 

In this equation, 𝑎 denotes the radius of the spherical inclusions. On the other hand, the average 

strain within the inclusions by applying the Mori-Tanaka scheme can be represented as 

𝜺𝐼 = 𝒃 
𝐼: 𝜺𝑜 (26) 

The local strain concentration tensor with one-site approximation assumed is given as 

𝒃 
𝐼 = [𝑰𝑡𝑒𝑛𝑠𝑜𝑟 + 𝑺𝑀: (𝑪0)−1: (𝑪𝐼 − 𝑪0)]−1 (27) 

Substituting Eq. (26) into Eq. (23), the macroscopic strain is expressed as 

𝜺𝑚𝑎𝑐𝑟𝑜 = [∑ 𝑣𝐼

𝑁

𝐼=0

𝒃 
𝐼 + ∑ 𝑣𝐼

𝑁

𝐼=1

𝑯𝐼: 𝑪𝐼: 𝒃 
𝐼] : 𝜺𝑜 (28) 

𝜺𝑜 = [∑ 𝑣𝐼

𝑁

𝐼=0

𝒃 
𝐼 + ∑ 𝑣𝐼

𝑁

𝐼=1

𝑯𝐼: 𝑪𝐼: 𝒃 
𝐼]

−1

: 𝜺𝑚𝑎𝑐𝑟𝑜  (29) 

Comparing Eq. (29) with Eq. (22), the global strain concentration tensor (𝑩0) for the matrix is 

given as 

𝑩𝑜 = [∑𝑣𝐼

𝑁

𝐼=0

𝒃 
𝐼 + ∑𝑣𝐼

𝑁

𝐼=1

𝑯𝐼: 𝑪𝐼: 𝒃 
𝐼]

−1

 (30) 

Substituting Eq. (30) into Eq. (22), the modified viscoelastic effective stiffness of the particulate 

composite is expressed as follows 

𝑪𝑖𝑗𝑘𝑙
𝑀𝑇 𝑒𝑓𝑓

= [𝑣0𝑪
𝑉𝐸 + ∑ 𝑣𝐼

𝑁

𝐼=1

𝑪𝐼: 𝒃 
𝐼]: 

[∑ 𝑣𝐼

𝑁

𝐼=0

𝒃 
𝐼 + ∑ 𝑣𝐼

𝑁

𝐼=1

𝑯𝐼: 𝑪𝐼: 𝒃 
𝐼]

−1

 

(31) 

For the two-phase particulate composite, Eq. (31) can be written as 

𝑪𝑖𝑗𝑘𝑙
𝑀𝑇 𝑒𝑓𝑓

= [(1 − 𝑣𝑓)𝑪
𝑉𝐸 + 𝑣𝑓𝑪

𝑓: 𝒃 
𝑓]: 

[(1 − 𝑣𝑓)𝑰
𝑡𝑒𝑛𝑠𝑜𝑟 + 𝑣𝑓(𝑰 + 𝑯𝑓 : 𝑪𝑓): 𝒃 

𝑓]
−1

 
(32) 

It is also worth noting that the mean-field homogenization such as the Mori-Tanaka approach 

considers stress-strain fields are homogeneous per phase, which allows using of average values of 

each phase instead of the local values at each point. Such approximation might cause a difference in 

estimated volumetric stress since the actual stress-strain fields are non-uniform for phases, especially 
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on the matrix domain. Because of the above limitations, the isotropization technique and incremental 

Mori-Tanaka schemes have been developed and utilized in previous research (Doghri and Ouaar 

2003, Vieville et al. 2006, Tchalla et al. 2015). However, there is a literature report that 

isotropization seems not to improve the accuracy of visco-platic model’s predictions compared to 

the anisotropic model due to local concentration and anisotropic material characteristics of 

composites (Czarnota et al. 2015). Therefore, it should be selected with care. The isotropization can 

also be applied for the linear isotropic problem, in which case the result is the same as not applying 

the isotropization technique. 

Analytical representation of Eshelby tensor S is only available if the Inclusion is an ellipse and 

the matrix material is isotropic or transversely isotropic. Therefore, in the case of matrix material is 

anisotropic, Eshelby tensor S can directly be computed using the stiffness of matrix (Doghri and 

Ouaar 2003, Vieville et al. 2006). This Incremental Mircromechanical Scheme (IMS) results in 

stiffer prediction for the mechanical behavior of composites. The isotropic part of the tangent 

stiffness matrix is given as 

𝐶𝑖𝑠𝑜 = 3𝐾𝑰𝑣𝑜𝑙 + 2𝐺𝑰𝑑𝑒𝑣 (33) 

Here, K and G are bulk moduli and shear modulus, respectively. 𝑰𝑣𝑜𝑙  and 𝑰𝑑𝑒𝑣  are the 

volumetric part and deviatoric part of the fourth-order identity tensor. We have adopted this 

methodology in the proposed model. However, the effect of the IMS was not significant compared 

to the Mori-Tanaka method.  

In this research, we are proposing the novel stress prediction methodology utilizing the above 

homogenization methodology. The homogenized constitutive matrix is obtained for every time 

increment. In the case of strain input boundary conditions, the macro strain is also a known value. 

Therefore, the strain rate  
𝜕𝜺𝑘𝑙

𝑚𝑎𝑐𝑟𝑜(𝑠)

𝜕𝑠
 for every time step is also known value. In this research, the 

stress prediction of the viscous composite is obtained by computing 

𝝈𝑖𝑗
 (𝑡) = ∫ 𝑪 𝑖𝑗𝑘𝑙

𝑀𝑇 𝑒𝑓𝑓(𝑡 − 𝑠):
𝑡

0

𝜕𝜺𝑘𝑙
𝑚𝑎𝑐𝑟𝑜(𝑠)

𝜕𝑠
𝑑𝑠 (34) 

This stress prediction methodology is intuitive and straightforward. However, to the best 

knowledge of authors, there has been no study on the viscoelastic composite material’s stress 

prediction with this methodology. Therefore, this methodology is proposed with both numerical and 

experimental verifications. The verification results are presented in Section 3. 

 

2.3 Numerical implementation of the micromechanical model 
 

Fig. 3 shows a flowchart of the proposed algorithm. For every increment, the local and global 

strain concentration tensors are iteratively updated by constantly changing tangent constitutive 

stiffness matrices of the particle and the matrix. Viscoelasticity is applied to only the matrix, and the 

particle is assumed to be linear elastic. After the strain concentration tensors are computed, the 

effective constitutive matrix and effective stress of the composite material are computed.  

Detailed numerical procedures for the proposed method are summarized in Table 1. The 

numerical procedures are shown by presenting the case that the interphase area effect and IMS are 

considered. For a time [𝑡𝑛, 𝑡𝑛+1] increment, the input variables are: the macro strain 𝜺𝑚𝑎𝑐𝑟𝑜
𝑟 (𝑡𝑛) 

at time step 𝑡𝑛 and the macro strain increment ∆𝜺𝑚𝑎𝑐𝑟𝑜
𝑟  such as 𝜺𝑚𝑎𝑐𝑟𝑜

𝑟 (𝑡𝑛+1) = 𝜺𝑚𝑎𝑐𝑟𝑜
𝑟 (𝑡𝑛) +

∆𝜺𝑚𝑎𝑐𝑟𝑜
𝑟    The output variable is the effective stress of the composites. The effective stress is  
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Fig. 3 Flowchart of the proposed algorithm for viscoelastic particulate composites  
 

 

calculated by Boltzmann integrating the incremental value of the 𝑪 𝑖𝑗𝑘𝑙
𝐼𝑀𝑆 𝑒𝑓𝑓(𝑡𝑛 − 𝑠) and 

𝜕𝜺𝑘𝑙
𝑚𝑎𝑐𝑟𝑜(𝑠)

𝜕𝑠
 

over time. Assuming that ∆𝑡𝑖  is small enough, the strain rate at time 𝑡𝑖  value 
𝜕𝜺𝑘𝑙

𝑚𝑎𝑐𝑟𝑜

𝜕𝑠
(𝑡𝑖)  is 

calculated as 

𝜕𝜺𝑘𝑙
𝑚𝑎𝑐𝑟𝑜

𝜕𝑠
(𝑡𝑖) ≈

𝜺𝑘𝑙
𝑚𝑎𝑐𝑟𝑜(𝑡𝑖) − 𝜺𝑘𝑙

𝑚𝑎𝑐𝑟𝑜(𝑡𝑖−1)

∆𝑡𝑖
=

∆𝜺𝑘𝑙
𝑚𝑎𝑐𝑟𝑜(𝑡𝑖)

∆𝑡𝑖
 (35) 

Combining Eqs. (34) and (35), the effective stress at time 𝑡𝑛 can be represented as 

𝝈𝑖𝑗
 (𝑡𝑛) = ∑ 𝑪 𝑖𝑗𝑘𝑙

𝐼𝑀𝑆 𝑒𝑓𝑓(𝑡𝑛 − 𝑡𝑖)
∆𝜺𝑘𝑙

𝑚𝑎𝑐𝑟𝑜(𝑡𝑖)

∆𝑡𝑖

𝑛

𝑖=1

𝛥𝑡𝑖  (36) 
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Table 1 Pseudocodes for the proposed homogenization method 

Numerical implementation 

1. Compute the strain increment in the inclusions: ∆𝜺𝐼 = 𝑩𝐼∆𝜺𝑚𝑎𝑐𝑟𝑜
𝑟  

2. Compute the constitutive matrix of the matrix:  

𝑪𝑖𝑗𝑘𝑙
𝑉𝐸 (𝑡𝑛) = [𝑘𝑚(𝑡𝑛) −

2

3
𝜇𝑚(𝑡𝑛)] 𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇𝑚(𝑡𝑛)(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)  

3. Compute the strain increment in the matrix: ∆𝜺0 =
∆𝜺𝑚𝑎𝑐𝑟𝑜

0 −𝑣𝐼∆𝜀𝐼

1−𝑣𝐼
 

4. Update the algorithmic constitutive matrix of matrix: 𝑪𝑖𝑗𝑘𝑙
𝑉𝐸 (𝑡𝑛+1) 

5. Apply the mid-point (𝛼 = 0.5) rule at the time 𝑡𝑛+𝛼 for obtaining the algorithmic constitutive matrix: 

𝑪𝑖𝑗𝑘𝑙
𝑉𝐸 (𝑡𝑛+𝛼) = (1 − 𝛼)𝑪𝑖𝑗𝑘𝑙

𝑉𝐸 (𝑡𝑛) + 𝛼𝑪𝑖𝑗𝑘𝑙
𝑉𝐸 (𝑡𝑛+1)  

6. Compute the global strain concentration tensor: 𝑩𝐼 = 𝒃𝐼: 𝑩0 

7. Calculate the residual to determine the compatibility of the mean strain in the inclusion phase: 𝑅 =
𝑩𝐼∆𝜺𝑚𝑎𝑐𝑟𝑜

𝑟 − ∆𝜺𝐼 

8. If |𝑅| ≤ 𝑇𝑂𝐿, exit the loop and go to step 10 

9. If not |𝑅| ≤ 𝑇𝑂𝐿, go to step 1 for the new iteration using the computed 𝑩𝐼 

10. Volume fraction increment A=1  

11. Compute volume increment: ∆𝑣𝑓 = 𝐴 ∗ 𝑣𝑓/20 

12. Compute constitutive matrix of composites and save: 𝑪 
𝐼𝑀𝑆 = (𝑣0𝑪𝑖𝑗𝑘𝑙

𝑉𝐸 (𝑡𝑛+𝛼) +

∑ 𝑣𝐼𝑪 
𝐼(𝑡𝑛+𝛼): 𝑏𝐼𝑁

𝐼=1 )(∑ 𝑣𝐼𝑏
𝐼𝑁

𝐼=0 + ∑ 𝑣𝐼𝐻
𝐼: 𝑪 

𝐼(𝑡𝑛+𝛼): 𝑏𝐼𝑁
𝐼=1 )−1 

13. If 𝐴 = 20, exit the loop and go to step 15 

14. If 𝐴 ≠ 20, update 𝐴 and go to step 11 

15. Compute the effective stress of the composites: 

𝝈𝑖𝑗
 (𝑡𝑛) = ∑ 𝑪 𝑖𝑗𝑘𝑙

𝐼𝑀𝑆 𝑒𝑓𝑓(𝑡𝑛 − 𝑡𝑖)
∆𝜺𝑘𝑙

𝑚𝑎𝑐𝑟𝑜(𝑡i)

∆𝑡𝑖

𝑛
𝑖=1 Δ𝑡𝑖  

 

 

For instance, in the particular case of given strain input 𝜺𝑘𝑙
𝑚𝑎𝑐𝑟𝑜(𝑠) = 𝐴𝑘𝑙sin (2𝜋𝑓𝑠) where 𝐴𝑘𝑙 

is a constant matrix for strain magnitude, the 
𝜕𝜺𝑘𝑙

𝑚𝑎𝑐𝑟𝑜(𝑠)

𝜕𝑠
 value is obtained as 2𝜋𝑓𝐴𝑘𝑙cos (2𝜋𝑓𝑠). 

Therefore, the stress can be predicted by using Eq. (34) as  

𝝈𝑖𝑗
 (𝑡𝑛) = ∑𝑪 𝑖𝑗𝑘𝑙

𝐼𝑀𝑆 𝑒𝑓𝑓(𝑡𝑛 − 𝑡𝑖)2𝜋𝑓cos (2𝜋𝑓𝑡𝑖)

𝑛

𝑖=1

Δ𝑡𝑖 (37) 

For general strain input histories, 
𝜕𝜺𝑘𝑙

𝑚𝑎𝑐𝑟𝑜(𝑠)

𝜕𝑠
 can be calculated numerically and the stress can be 

obtained by summation of 𝑪 𝑖𝑗𝑘𝑙
𝑀𝑇 𝑒𝑓𝑓(𝑡𝑛 − 𝑠)

𝜕𝜺𝑘𝑙
𝑚𝑎𝑐𝑟𝑜(𝑠)

𝜕𝑠
. In Eq. (37), time delaying effect and 

relaxation effect is shown by calculating the stress by Boltzmann integrating the multiplication of 

the tangent stiffness and the strain rate. This stress prediction methodology formulated in this paper 

was implemented as an ABAQUS UMAT to solve large scale problems with a commercial finite 

element solver. The implementation of the ABAQUS UMAT provides benefits 1) to control effects 

of the volume fraction, imperfect interphase layer and inclusion stiffness and 2) to use the 

viscoelastic model for the pure resin calibrated with experimental relaxation test. 

 

 

3. Numerical verification 
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(a) DNS FE models without an interphase layer 

 
(b) cyclic normal loading & PBC 

 
(c) cyclic shear loading & PBC 

Fig. 4 FE model and Load & boundary condition for DNS model 

 

 

In this section, the proposed homogenization model is verified with FE based DNS results in 

dynamic mechanical responses. Six representative volume finite element models are generated using 

commercial software, DIGIMAT (Digimat 2011), and DNS is performed with ABAQUS.  

 

3.1 Direct numerical simulation 
 

The RVE DNS model was meshed with voxels. Total 125,000 elements (50 × 50 × 50) are used 

for the DNS models. The dimension of the model is 1 mm × 1 mm × 1 mm. Element type C3D8 

with full integration method is used considering the unidirectional loading condition without 

bending. The two kinds of FE models have generated: 1) models without interphase layer 2) models 

with an interphase layer. Fig. 4(a) shows the FE models without an interphase layer. The volume 

fractions of the RVE#1 to RVE#6 are 1%, 2%, 3%, 5%, 10%, and 20%, respectively. Fig. 4 (b) and 

(c) shows the given uniaxial and shear boundary condition for the FE models. The periodic boundary 

condition is applied. Although the periodic boundary condition is not clearly seen in Fig. 4, it is 

applied with constraints equation in the ABAQUS input files. 

Fig. 5 shows the geometry and a FE model with an interphase layer. The interphase thickness is 

assumed to be 15% of the particle radius. 

For the DNS model’s material properties, the elastic material properties are applied to the particle 

phase, and the viscoelastic material properties are applied to the matrix phase. The generalized  
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(a) Geometry of the DNS model 

 
 

(b) Interphase layer modeling (c) FE model (VF 15%) 

Fig. 5 DNS FE models with an interphase layer 

 
Table 2 Material parameters for DNS model and homogenization model 

Particle Matrix 

E (MPa) ν E (MPa) ν 𝐸1 (MPa) 𝐸2 (MPa) 𝐸3 (MPa) 𝜏1 (s) 𝜏2 (s) 𝜏3 (s) 

100 0.22 0.195 0.497 0.351 1.75 0.186 0.442s 0.0084s 0.218s 

 

 

Maxwell model with one spring and three Maxwell elements is used for the viscoelastic material 

parameters. Table 2 shows the material parameters used for the FE analysis and material parameters 

used for the homogenization model’s matrix and inclusion constitutive matrix. For the 

homogenization model, the volume fraction of the RVE is also given as material input data. Here, E 

is young’s modulus, ν is the Poisson’s ratio and 𝐸1, 𝐸2, 𝐸3, 𝜏1, 𝜏2, 𝜏3 are the Generalized Maxwell 

Model parameters. The viscoelastic material properties are obtained from the literature (Gillani 

2018). The viscoelastic material parameters are obtained from the literature to make it objective and 

the materials parameters for the particle is assumed to be almost 50 times stiffer compared to the 

matrix phase. In this paper, Young’s modulus of the interphase model is assumed to be 1% of 

Young’s modulus of the particle. 

The periodic boundary condition is applied for the loading boundary condition. The sinusoidal 

strain loading is applied with normal macro strains (𝜺𝑖𝑗
𝑚𝑎𝑐𝑟𝑜) as follows 

𝜺𝑖𝑗
𝑚𝑎𝑐𝑟𝑜 = [

0.1 0 0
0 −0.05 0
0 0 −0.05

] 𝑠𝑖𝑛(2𝜋𝑓𝑡) (38) 

The shear loading condition is also applied with pure shear macro strains (𝜺𝑖𝑗
𝑚𝑎𝑐𝑟𝑜) as follows 

𝜺𝑖𝑗
𝑚𝑎𝑐𝑟𝑜 = [

0 0.05 0.05
0.05 0 0.05
0.05 0.05 0

] 𝑠𝑖𝑛(2𝜋𝑓𝑡) (39) 

Here, f is the loading frequency of the sinusoidal loading. For DNS, the loading frequency of 2 

Hz is applied considering the computing time of the DNS. Total 50 volume-averaged stress and 

strain datasets are obtained from the DNS. The total time is assumed to be 1 second, and datasets  

229



 

 

 

 

 

 

Hangil You, Hyoung Jun Lim and Gun Jin Yun 

 

  

 

 Volume fraction=1% (RVE#1) Volume fraction=2% (RVE#2)  

 

  

 

 Volume fraction=3% (RVE#3) Volume fraction=5% (RVE#4)  

 

  

 

 Volume fraction=10% (RVE#5) Volume fraction=20% (RVE#6)  

Fig. 6 Comparisons of the effective bulk stress-strain hysteresis curves for the DNS and the proposed 

homogenization models 

 

 

are obtained every 0.02 seconds. 

 

3.2 Verification results without ınterphase layer 
 

3.2.1 Stress-strain hysteresis curve 
Stress-strain hysteresis curves of composites with different volume fractions are examined to  
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 Volume fraction=5% Volume fraction=10%  

 

  

 

 Volume fraction=15% Volume fraction=20%  

Fig. 7 Comparisons of the effective stress-strain hysteresis curves for the DNS and the proposed 

homogenization model 

 

 

verify the proposed model. The effective bulk response from the homogenization model is compared 

by the DNS models in Fig. 4(a) subjected to the uniaxial loading condition of Eq. (38). Fig. 6 shows 

comparisons of the von-Mises stress (𝜎𝑣𝑜𝑛 = √3𝐽2 =
1

2
∗ [(𝜎11 − 𝜎22)

2 + (𝜎22 − 𝜎33)
2 + (𝜎33 −

𝜎11)
2 + 6 ∗ (𝜎23

2 + 𝜎31
2 + 𝜎12

2 )])) and equivalent strain (𝜀𝑒𝑞 = √
2

3
𝜀𝑖𝑗
𝑑𝑒𝑣: 𝜀𝑖𝑗

𝑑𝑒𝑣) hysteresis curves 

for the proposed model and DNS model. 

The effective shear response is also compared to verify the homogenization model. The DNS 

models in Fig. 5(a) with no interphase layer are used under the pure shear loading condition in Eq. 

(39). Because the RVE models have a symmetric geometry, the shear stresses (𝜎12, 𝜎13, 𝜎23) are 

identical to each other. Fig. 7 shows comparisons of the stress (𝜎12)-strain (𝜀12) hysteresis curves 

for the proposed homogenization model and DNS model. 

The shape of the stress-strain hysteresis curve was ellipsoidal representing the viscoelasticity of 

the material. As the volume fraction increases, the stress amplitude and stiffness of hysteresis curves 

are varied. The proposed homogenization model results showed well matching prediction 

considering that the Mori-Tanaka model generally has a limitation in the accuracy of the global 

stress-strain response at relatively high-volume fractions. For the 20% volume fraction, the proposed 

model appeared to underestimate the bulk stiffness but overestimate the shear stiffness. This 

discrepancy is caused by assumptions of homogeneous stress and strain fields in the Eshelby  
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(a) Stress and strain curves in the time domain 

 
(b) time-varying strain contours 

Fig. 8 Numerical simulation of DNS model 

 

 

inclusion theory-based micromechanics model while actual stress and strain fields are 

heterogeneous. To improve the accuracy of the stress prediction by the proposed homogenization 

scheme, we have also tried the Mori-Tanaka model with IMS. However, the effects of the IMS on 

the stress prediction were negligible.  

 

3.2.2 Stress and strain responses in time domain 
The time-varying stress and strain responses are examined for the proposed homogenization 

model and DNS model. Fig. 8(a) shows the stress and strain curves in the time-domain at a volume 

fraction of 5% with normal strain loading condition. Fig. 8(b) shows the time-varying strain contours 

of the DNS model. According to the load and boundary condition, the proposed model’s strain shows 

exact sinusoidal behavior while the stress of the DNS model and homogenization model shows the 

response delay and stress relaxation effect. The result shows that the prediction of the 

homogenization model is reasonable and consistent with the DNS results.  

 

3.2.3 Prediction of dynamic mechanical property 
The tangent delta (Tan 𝛿) is an important index for viscoelastic materials. The periodic sinusoidal 

strain loading condition generates sinusoidal periodic stress with a different phase due to the time 

delay characteristics of the viscoelastic material properties. This creates a phase shift (𝛿) between 

the applied strain and resulted stress. The dynamic mechanical properties are defined using this 

phase shift and expressed as follows 

𝐸′ =
𝜎0

𝜀0
cos(𝛿) , 𝐸′′ =

𝜎0

𝜀0
sin(𝛿) , Tan 𝛿 =

𝜎0

𝜀0
cos (𝛿) 

Where 𝜀 = 𝜀0 sin(𝑤𝑡)  and 𝜎 = 𝜎0 sin(𝑤𝑡 + 𝛿) 

(40) 

Here, 𝐸′, 𝐸′′, and  Tan 𝛿 are the storage modulus, loss modulus and tangent delta of the 

viscoelastic material. Fig. 9 shows the tangent delta results of the DNS and the proposed 

homogenization model in the frequency domain. The pure matrix response is provided for  
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Fig. 9 tan(𝛿) prediction results according to the loading frequency (𝑉𝑓: 5 %) 

 

 

comparison. In particular, there is a major deviation of tangent delta between the MT model (VF 

5%) and MT model (VF 0%), especially at low and high frequencies. This deviation is caused by 

varying viscoelastic characteristics according to the composite’s volume fraction. At low frequency, 

the viscosity of the system is larger if volume fraction is lower and therefore, the tangent delta of 

MT model (VF 0%) is higher. However, at high frequency, the tangent delta of the MT model (VF 

5%) is higher since the rubbery phase and plastic phase varies according to the frequency (Khan et 

al. 2005). The tangent delta values showed a peak in the frequency on the 0.1 Hz, which is well-

known behavior of the viscous material. The peak of the Tan 𝛿 exhibits because the ratio of the 

elastic response to viscous response changes as the loading frequency changes. The deviation of 

tangent delta between the MT model (VF 5%) and DNS result (VF 5%) at low frequencies can be 

explained by the relaxation of viscoelastic material. When the frequency is extremely low, the 

constitutive matrix of viscoelastic material relaxes largely between step increments since the time 

increment is large, resulting such a deviation. The loss modulus is low at the low-temperature glass 

state because of the slow molecules’ mobility. Therefore, as the temperature increases, the 𝑇𝑎𝑛 𝛿 

value increases toward a peak value. However, as the material state enters into a rubbery state at the 

high temperature, the Tan 𝛿 value decreases again because the molecules are physically entangled. 

For this reason, the Tan 𝛿 value has a peak value at a certain frequency considering the time-

temperature superposition principle. The tangent delta results by the proposed model are also well 

matched with the data from the DNS. 

 

3.3 Verification results with ınterphase layer 
 

The verification of the proposed homogenization model with the interphase layer is also 

conducted. Four FE models are generated. According to the literature (Qu 1993), 𝜶 and 𝜷 in Eq. 

(25) can be calculated with material properties of the interphase layer as follows 

𝛼 =
𝑡

𝜇𝑖
,                   𝛽 =

𝑡

(𝐾𝑖 +
4𝜇𝑖
3

)
 (41) 

Here, t is the interphase thickness, and 𝜇𝑖  and 𝐾𝑖  are the shear and bulk moduli of the 

interphase layer, respectively. Stress-strain hysteresis curves of composites with the interphase layer  
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Volume fraction=5% Volume fraction=10% 

  
Volume fraction=15% Volume fraction=20% 

Fig. 10 Stress-strain hysteresis curve considering the interphase layer 

 

 
Fig. 11 DNS stress results according to the time (𝑉𝑓: 15 %) 

 

 

are examined to verify the proposed homogenization model. Fig. 10 shows comparisons of the 

proposed homogenization model and DNS results. The proposed homogenization model’s stress 

prediction with the interphase layer showed a better matching tendency with DNS results than the 

model without an interphase layer for the 20% high-volume fraction. Since the predicted stress 

values of the Mori-Tanaka model have the same value for DNS model that have same volume 

fraction and the same shape regardless of the number of particles, the accuracy of the two models is 

compared. This result shows that modeling the appropriate interphase layer can improve the 

proposed homogenization method’s accuracy versus corresponding DNS model. 
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Fig. 11 shows the DNS stress results over the time increments. The results show that the stress is 

concentrated on the particle phase. Although strain contours were not provided, the strain in the 

interphase layer and matrix phase was much larger than that of the particle phase. 

 

 

4. Experimental verification 
 

To experimentally verify the proposed homogenization model, experiments with DMA 

equipment were conducted. After presenting the experimental specimen, equipment, materials 

properties, and dynamic mechanical analysis results, the proposed homogenization method model’s 

numerical results are compared with experimental results. 

 

4.1 Materials and Equipment for DMA test 
 

Four types of specimens are fabricated with silicone and glass beads for DMA tests of particulate 

composites. The silicone is a viscous matrix and the glass beads are elastic reinforcements. The 

silicone used in the experiment is a SORTA-Clear 40™ Smooth-On, Inc®  and the glass beads used 

in the experiment are spherical-shaped high-purity grade silica (SiO2) with 75 micrometers from the 

Supelco®  Sigma-Aldrich® . Particulate composites with volume fractions of 0%, 5%, 10%, and 20% 

are fabricated for the DMA. The silicone and glass beads were mechanically mixed for five minutes 

and degassed using a Lab1st®  vacuum chamber at -99.28 kPa for seven minutes. After degassing, 

the composite was poured into cuboid-shaped molds and cured for 24 hours. The physical 

dimensions of the cuboid are 10 mm×10 mm×4 mm. Total ten specimens with the same volume 

fraction ratio are fabricated. Fig. 12 shows the schematics of specimen samples and the equipment 

used for the experiments. For the dynamic mechanical analysis, DMA/SDTA861e from the Mettler 

Toledo AG®  is utilized. 

 

4.2 Materials and equipment for relaxation test 
 

The material properties of the glass bead and matrix are obtained from the literature and 

relaxation test, respectively. Table 3 shows the material properties of the glass bead and matrix. In 

the case of the glass beads’ properties, it is presented as a range and the intermediate values were 

used in the simulation. The relaxation test is conducted to obtain the viscoelastic material properties 

for the matrix (SORTA-Clear 40™ Smooth-On, Inc® ). The cylindrical shape samples with a 

 

 

 
Fig. 12 The schematics of specimen samples and experimental equipment for DMA 
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Table 3 Particle and matrix properties: values in the parentheses are used for the simulation 

Parameter Value Unit 

𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 66.3 – 74.8 (70) GPa 

𝜈𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 0.15 – 0.19 (0.17) - 

𝐸𝑚𝑎𝑡𝑟𝑖𝑥 24.99 MPa 

𝜈𝑚𝑎𝑡𝑟𝑖𝑥 0.45 - 

 

 
Fig. 13 Stress & strain according to the time and specimen & equipment 

 
Table 4 Generalized maxwell parameters of the matrix 

i 𝜏𝑖(𝑠) 𝑊𝑖(Mpa) 

1 0.2300 8.6154 

2 20.0 13.498 

3 0.2865 8.7361 

4 0.3980 8.4561 

5 1.0780 7.8483 

 

 

diameter of 10 cm and a thickness of 3 cm are used for the relaxation test. Fig. 13 shows the stress, 

strain over time, specimens, and testing equipment. A UTS (Universal Testing Machine) machine, 

Quasr 25 (GALDABINI, Inc® ), is used for the relaxation test.  

Generalized Maxwell parameters are obtained by curve fitting the relaxation test results as a 

prony series with an optimization method in the literature (Babaei et al. 2016). Table 4 shows the 

obtained Generalized Maxwell parameters for the matrix (SORTA-Clear 40™ Smooth-On, Inc® ). 

 

4.3 Experimental results of the dynamic mechanic analysis 
 

The dynamic mechanical analysis is performed for the specimen with volume fractions 0%, 5%, 

10%, and 20%. From DMA tests, the tangent delta, loss modulus, and specimens’ storage modulus 

were evaluated. Fig. 14 shows the tangent delta, loss modulus, and storage modulus of specimens 

according to the loading frequency. The experimental data were obtained by averaging the 
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(a) Volume fraction 0%     (b) Volume fraction 5% 

 
(c) Volume fraction 10%    (d) Volume fraction 20% 

Fig. 14 Dynamic mechanical properties of the particulate composite (The color is distinguished in the online 

version) 

 

 

Fig. 15 Tangent delta of the particulate composite 

 

 

experimental results of the five samples from each volume fraction. 

Fig. 15 shows the tangent delta values according to the volume fraction of the particulate 

composite specimens. The larger the volume fraction is, the smaller the peak value of the tangent 

delta is. This observation implies that glass beads physically interfere with the molecular motions, 

resulting in reductions of viscosity. Moreover, the higher the volume fraction is, the later the peak 

value of tan delta occurs. The glass bead increases the free volume, while interacting with polymer 
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Fig. 16 Tangent delta value from the experiment and the proposed model 

 

 

molecules. The free volume lowers the activation energy barrier and has a tendency of increasing 

molecular mobility at a relatively low temperature. Therefore, the peak of the tangent delta is shifted 

to the higher frequency owing to the time-temperature superposition principle. In other words, 

because the glass beads inhibit the polymer molecules’ mobility, it requires a higher loading 

frequency to reach the peak tangent delta. Therefore, relaxation and retardation time decreases, 

resulting in the peak at a higher frequency.  

 

4.4 Verification of the proposed model with DMA test results 
 

The dynamic mechanical properties are predicted using the proposed homogenization method 

and compared with the experimental results. The tangent delta, which is the phase difference 

between the stress and strain, is obtained by the proposed homogenization method. The material 

properties shown in Table 3 and Table 4 are used as inputs for the proposed model. For the load and 

boundary conditions, sinusoidal strain loading according to the time is applied. Fig. 16 shows the 

tangent delta value obtained by the proposed method and experiment. For the experiment, five tests 

were conducted for each volume fraction and averaged results with an error bar representing the 

minimum and the maximum value is shown in Fig. 16. Tangent delta is predicted by two models: 

one without considering the interphase layer and one with the interphase layer. Considering the 

literature study that the mechanical properties of the interphase layer are higher than that of the 

matrix but lower than that of glass beads, it is assumed that Young’s modulus of the interphase layer 

is 2.8 times that of the matrix. (Kitey and Tippur 2005, Müller 2017) The interphase thickness is 

assumed to be 15% of the particle radius. For volume fraction 0%, the tangent delta prediction was 
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identical since there are no particles and interphase layer. The tangent delta values from the proposed 

model are dependent on the applied strain rate and the total time. The comparison results show that 

the tendency is consistent according to the frequency. However, there are differences in the proposed 

model’s tangent delta peak and the experimental data for volume fractions of 5%, 10%, and 20%. 

The tangent delta peak values’ difference may be caused by the stochastic nature of material 

properties during the experiment and inaccurate assumptions of parameters used in the proposed 

model. Another possibility for the difference between tangent delta value of experiment and 

simulation is due to dimensional difference between DMA test obtaining tangent delta and relaxation 

test obtaining material properties. It is noticeable that the proposed model with the interphase layer 

showed closer results to the experimental results than the one without the interphase layer. By 

assuming the interfacial layer effect, it is possible to predict the mechanical behavior of the 

composite considering the debonding between the filler and matrix. However, the 2.8 times higher 

interphase modulus than the matrix’s modulus is not an exact number obtained from the experiment 

but to show the consideration of the interphase layer effect can affect the simulation results.  

 

 

5. Conclusions 
 

This paper proposed a novel micromechanics-based time-domain viscoelastic constitutive model 

for particulate composites based on the viscoelastic constitutive model and Eshelby inclusion 

theory-based micromechanics model. The incremental micromechanical scheme and isotropization 

techniques were also applied to the proposed model to resolve the original micromechanics model’s 

limitations. Besides, imperfect interfacial bonding was considered for better correlation with 

experimental test data. The proposed model is intuitive and straightforward in that the stresses are 

calculated from Boltzmann integral equation in terms of the homogenized viscoelastic stiffness and 

strain rate histories. The merits of the presented model can be summarized as follows. Unlike models 

based on the Laplace-Carson transformation, the proposed model does not need a cumbersome 

inverse Laplace-Carson transformation to obtain time-domain responses of viscous composites and 

can also be extended to a nonlinear viscoelastic constitutive model. In addition, the adoption of the 

proven homogenization technique, the Mori-Tanaka method, retained the advantage of being easily 

implemented in finite element codes and the ability to adapt most viscoelastic models, as presented 

with the generalized maxwell model.  

For verifications, dynamic mechanical properties and stress responses by the proposed model 

were compared with those by DNS models and DMA tests. The proposed model was well verified 

with DMA and DNS results by comparing time-varying stress response, cyclic stress-strain curves, 

and tangent delta dynamic mechanical properties. The strain-stress hysteresis curves according to 

the volume fraction were examined and validated by the DNS. The proposed model’s validation 

results are more reliable on a region with a relatively low volume fraction. Further investigations 

considering the interphase layer were also conducted. The stress prediction results considering the 

interphase layer showed that the proposed model shows well-matching predictions on high-volume 

fractions. Also, the dynamic mechanical property was examined with DNS and the proposed 

method. The experiment to obtain the viscous composite’s dynamic mechanical properties was 

conducted and compared with the proposed model’s prediction results. The tangent delta, an 

important index of viscoelastic materials, was also examined according to the loading frequency. 

The comparison results of the experiment and the proposed model showed a consistent tendency. 

The proposed model can also be extended to nonlinear viscoelastic composite materials and is useful 
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for multiscale analyses of viscoelastic composite materials. In addition, a constitutive model that 

can reflect the stochastic layout of particles is also an interesting topic that can be expanded in this 

study.  

• Novel micromechanics-based time-domain viscoelastic constitutive model for particulate 

composites is proposed. 

• Pseudo code and flowchart for implementation of proposed micromechanics model is 

presented.  

• Stress response according to the volume fraction of the particulate composite is examined. 

• Numerical and experimental verification of the proposed micromechanics model is presented. 

• Dynamic mechanical properties of the viscous particulate composite can be predicted with 

proposed micromechanics model. 
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