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Abstract.  The paper presents the analytical solutions for thick orthotropic laminated plates using trignometric 
shear deformation theory. The effects transverse shear and transverse normal strains are included with linear and 
nonlinear thermal loads. The displacement field of the theory includes the trigonometric functions in thickness 
coordinate of plate to account for these effects. The displacement field enforces to give the realistic variation of shear 
stresses across the thickness of plate and thus obviates the need of shear correction factor. The main novelty of the 
present study is the inclusion of thickness stretching effect in the theory. Another novelty is the application of 
nonlinear thermal profile consistent with the displacement field of the theory. The principle of virtual work is used to 
obtain the governing equations and boundary conditions. Simply supported laminated square plates are considered 
for numerical study to evaluate thermoelastic response. The results obtained by present theory with thickness 
stretching effect are compared with other refined theories disregarding this effect. It is observed that the results of 
present theory deviate significantly from the results of other higher order shear deformation theories for 
antisymmetric crossply laminated plates. The results of symmetric cross-ply laminated plates subjected to linear 
sinusoidal thermal load are in close agreement with those of exact theory, which validates the accuracy of present 
shear and normal deformation theory. 
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1. Introduction 
 

Laminated composites with unidirectional fibers are widely used in aerospace, naval, 

automobile, sport, and civil engineering and electronics packaging industries due to their high 

specific strength and high specific stiffness and other superior mechanical and thermal properties. 

The importance of thermal stresses has been received considerable attention in strength and 

stability of composite structures made up of laminated plates subjected to severe thermal loadings. 

A laminated plate consists of orthotropic layers with different fiber orientations. Laminated 

composite plates may experience thermal deformations due to severe changes in temperature 

through heating. Failures due to delamination of layers and longitudinal cracks in matrix are the 
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serious problems of laminated structures due to excessive stresses induced by thermal loads at the 

interfaces between layers. This type of failure is attributed to the large difference in the 

coefficients of thermal expansion in the direction of fibers and the transverse direction, which 

develops the high normal stresses in the layers and high shear stresses at the interfaces. Hence, the 

determination of distribution of these stresses between the layers of laminated composites is highly 

important in design of composite structures. The aim of the present work is to develop an efficient 

computational model for thermal analysis of composite laminated plates which includes the effects 

of both transverse shear and normal stresses. In the literature, different theories and methods of 

solution exist to assess the flexural behavior of laminated composite plate under various 

mechanical, thermal, and thermomechnical loadings. 

   Thermal analysis of thin laminated composite plates by using classical plate theory (CPT) 

of Kirchhoff (1850) is well known. However, it is inaccurate for multilayered composite plates due 

to neglect of transverse shear and normal strain effects in the laminate. Mindlin (1951) developed 

the first order shear deformation theory (FSDT) for elastic plate subjected transverse bending. 

Since FSDT assumes a constant shear strain across the thickness of plate, it requires problem 

dependent shear correction factor to appropriately take into account the strain energy of shear 

deformation. Thermal stresses obtained using classical and first order shear deformation theories 

are reviewed by Noor and Burton (1992). It has been shown that the classical and first order shear 

deformation theories are inadequate for predicting the accurate thermal stresses of laminated 

composite plates. Therefore, various higher order theories have been developed to address the 

accurate thermal behaviour of laminated composite plates. Comprehensive reviews and 

comparisons of the accuracy and efficiency of various plate theories are given by Noor and Burton 

(1989, 1990), Reddy (1993), Carrera (2000), Ghugal and Shimpi (2002), and Sayyad and Ghugal 

(2015). 

   Reddy (1984) presented higher order shear deformation theory for flexural analysis of 

laminated composite plates and Khdeir and Reddy (1991) extended it for thermoelastic flexure of 

cross-ply laminated plates. Zenkour (2004) studied the static thermo-elasti response of cross-ply 

laminated plates using a unified shear deformation plate theory without transverse normal effect. 

Kapania and Mohan (1996) presented the flat shell element for thermal analysis of orthotropic 

laminated composite plates and shells. Jane and Hong (2000) studied the effect of thermal and 

mechanical loads on orthotropic plate by using generalized differential quadrature method and 

explained the effect of thermal expansion force on bending. Cho et al. (1989) presented the 

thermal stress analysis of laminate using layerwise higher-order theory including transverse shear 

and normal deformation effects. 

   Yokoo and Matsunaga (1974) and Matsunaga (1992) developed the 2-D theories for elastic 

shell and plate from 3-D elasticity theory by expanding the displacement field of theory of into 

power series in thickness coordinate considering the effects of both transverse shear and normal 

deformations. Matsunaga (2002, 2003) developed the global higher order deformation theories for 

stress analysis of laminated and sandwich plates under isothermal condition and circular arches 

subjected to thermal and mechanical loads. Matsunaga (2004, 2005, 2006, 2007a, 2007b) 

presented global higher order theory for the thermal buckling, buckling and vibration analysis of 

crossply, angle-ply laminated composite and sandwich plates and cross-ply laminated shallow 

shells. In these theories, the inplane displacement field consists of ninth order polynomial in global 

thickness coordinate z, whereas the transverse displacement consists of an eighth-order in 

thickness coordinate. Using 2-D global higher order theory, displacements and stresses in simply 

supported multilayered composite and sandwich plates subjected to thermal loadings are obtained 
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accurately compared with the exact solutions with samall number of unknowns.  

    Altay and Doekmeci (2003) reported the usefulness of one- and two-dimensional refined 

theories of electrostatic structural elements (rods, plates and shells) subjected to coupled 

mechanical, electrical and thermal effects. Discrepancies with respect to the existence of solutions, 

convergence, error estimation, and the range of applicability are reported. 

 Carrera (2000, 2005), Carrera and Ciufrreda (2004), Carrera et al. (2013) developed layerwise 

and equivalent single layer models by using Reissner’s mixed variational theorem for evaluating 

thermal response of orthotropic laminated simply supported plates subjected to constant and linear 

temperature loadings. Carrara (2005) confirmed the effects of transverse shear and normal strains 

in thin and thick plates theories while considering temperature profiles that are most important in 

any refinements of classical and refined plate theories. Carrera et al. (2013) presented several 

hierarchical two-dimensional models, obtained via Carrera’s Unified Formulation (CUF), for the 

thermal stress analysis of multilayered plates and shells. The governing equations are derived 

using both the principle of virtual displacements and Reissner’s mixed variational theorem. Closed 

form solutions, obtained via the Navier method, are presented for multilayered plates and shells 

with the assumed and calculated thermal profiles. Kant and Shiyekar (2013) assessed the thermal 

response of composite laminates using transverse shear and normal deformation theory with 

twelve unknowns and showed the excellent performance of theory compared with exact thermo-

elasticity solution. Fares et al. (2000) used refined FSDT to evaluate thermal bending of cross ply 

laminated plates subjected to single sinusoidal linear thermal load. The in-plane displacement field 

uses sinusoidal function in terms of thickness co-ordinate to include the shear deformation effect. 

The displacements and stresses for isotropic, orthotropic, two-layer antisymmetric, and three layer 

symmetric square laminated plates subjected to single sinusoidal and uniformly distributed linear 

thermal loads and combined uniformly distributed thermo-mechanical loads are obtained by 

trigonometric shear deformation theory. The transverse displacements of orthotropic and 

antisymmetric two layer cross-ply laminated plates subjected to non-linear thermal load in 

combination with transverse mechanical load are presented using trigonometric shear deformation 

theory for various aspect ratios by Ghugal and Kulkarni (2012). Flexural analysis of nonlinear 

thermal and mechanical loadfor symmetric and antisymmetric laminated composite plate are 

studied by Ghugal and Kulkarni (2012). 

Nguyen et al. (2016) presented a unified formulation of all higher order shear deformation 

theories with various polynomial and non-polynomial functions for the analysis of multilayer 

composite plates considering the transverse normal deformation and developed the new quasi-3D 

theory which is based on the new transverse shear functions of fifth and seventh order in thickness 

to involve the normal deformation in the displacement field.   

Vekua (1985) has used Legendre’s polynomials in terms of thickness coordinate for the 

expansion of the equations of elasticity and reduction of the 3-D problem to 2-D one and 

developed the bar, plate, and shell theories. Zhavoronok (2013) presented a new formulation of the 

Vekua-type nth order linear theory of thick elastic shells using Lagrange formalism and 

biorthogonal expansion technique with brief review of construction of general beam, plate, and 

shell theories. Zozulya (2013, 2015) developed a higher order theory for bars, plates, and thick 

shells for linear elastic and thermoelastic analyses based on the method developed by Vekua 

(1985). Ghugal and Kulkarni (2011, 2013) presented the trigonometric shear deformation theory 

(TSDT) without considering the transverse normal effect across the plate thickness i.e., ɛz=0 for 

isotropic, orthotropic and laminated plates. Bhaskar et al. (1996) presented exact elasticity 

solutions for thermal bending of simply supported composite laminates with which accuracy of 
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classical and other refined laminate theories can be verified.  

  Arefi and Amabili (2021) studied the electro-magnetic load effects on the bending and 

buckling response of doubly curved nanoshell considering thickness stretching effect in total 

transverse deflection. Arefi and Zenkour (2016) presented thermo-magneto-electro-elastic analysis 

of a functionally graded nanobeams using sinusoidal shear and normal deformation theory. Arefi et 

al. (2020) studied the effect of thickness stretching on bending response of doubly curved 

nanoshells using higher order shear deformation theory. Dehsaraji et al. (2021) presented the 

thickness stretching effect which is based on shear and normal deformation theory for functionally 

graded cylindrical piezoelectric nano/micro shell. Arefi and Arani (2020) presented the analytical 

solution for simply supported FG nanoplate with piezoelectric effect which is based on four-

variable refined plate theory. Arefi and Zenkour (2018) studied free vibration analysis of a three-

layered microbeam by using higher order shear deformation theory. Dehsaraji et al. (2020) 

presented vibration analysis of functionally graded nanoshell by using higher-order shear and 

normal deformation theory to account thickness stretching effect. Dehsaraji et al. (2021) studied 

the buckling response of functionally graded piezoelectric (FGP) cylindrical nanoshell using 

higher-order shear and normal deformation theory. These studies showed the importance of 

thickness stretching on the static and dynamic responses of laminated beams, plates and shells 

under various loading effects. 

This paper presents the thermoelastic stress analysis of laminated composite plates including 

transverse shear and normal deformation effects under linear and non linear thermal loads across 

the thickness of plate by using trigonometric shear and normal deformation theory. The results 

obtained by present theory are compared with exact theory for linear thermal load presented by 

Bhaskar et al. (1996). It shows good agreement with exact as well as other refined theories. The 

novelty of the present study is that it includes the effects of the thickness stretching and the 

nonlinear thermal profile on the thermoelastic bending response of orthotropic and corssply 

laminated plates. 
 

 

2. Formulation of the problem 
 

Consider a square cross-ply laminated plate of length a, width b, and total thickness h 

composed of perfectly bonded orthotropic layers as shown Fig. 1. The material of each layer is 

assumed to have one plane of material property symmetry parallel to x-y plane. The coordinate 

system is such that the mid-plane of the plate coincides with x-y plane, and z axis is normal to the  
 

 

 
Fig. 1 Plate geometry and coordinate system 
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middle plane. The upper surface of the plate at z=-h/2 is subjected to a thermal load T(x,y,z). The 

region of the plate in right handed Cartesian coordinate system is  

 (1) 

Assumptions made in trigonometric shear deformation theory (TSDT) 

1. The displacements u, v and w in x, y and z directions respectively are small in comparison 

with the plate thickness and therefore strains are very small. As a result, normal strains ɛx, ɛy and 

shear strains γxy, γxz, γyz can be expressed in terms of displacements u, v, and w using strain-

displacement relations. 

2. The transverse displacement w in z direction is assumed to be a function of x, y and z.  

3. The body forces are ignored in the analysis. 

4. The plate is subjected to linear and nonlinear thermal loads across the thickness of the plate 

in combination with transverse mechanical load. 

5. All layers are perfectly bonded with each other. 

6. The functions ϕ, ψ and ξ are the rotations and are functions of x and y only.  

 

2.1 The displacement field 
 

The displacement field of the present trigonometric shear and normal deformation theory at a 

point located at (x,y, z) in the plate is given by 

 

 

 

(2) 

Here u, v and w are the unknown displacements of any point in the x-, y- and z- directions, 

respectively. u0, v0, w are the unknown displacements of a point on the middle plane in the x-, y- 

and z-directions, respectively; and (ϕ, ψ, ξ) are the rotations about y, x and z axes in x-z, y-z and x-y 

planes due to bending. The generalized displacements (u0, v0, w, ϕ, ψ, ξ) are functions of the (x, y) 

coordinates and   sin
h z

f z
h




  and   cos

z
g z

h


  are the transverse shear and normal 

deformation functions in thickness coordinate z.    

 

2.2 Strain-displacement relationships 
 
The normal and shear strains are obtained within the framework of linear theory of elasticity. 

The strains associated with the displacement field (2) are as follows, 
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(3) 

 

2.3 Thermoelastic stress-strain relationships 
 

The stress-strain-temperature relationship in x, y, z coordinate system for the kth layer can be 

written as 

, ,  and  

(4) 

where lamina reduced stiffnesses for kth layer are as follows, 

,   , ,    

, ,   , ,  

(5) 

where    12 21 23 32 31 13 21 32 13 1 2 31 2 E E E              , Ei = elastic moduli, Gij = shear 

moduli, μij = Poisson’s ratios, and αx, αy, αz = coefficients of thermal variation in x, y and z 

directions, respectively.   

 

2.4 Temperature field 
 

The variation of constant, linear and non-linear thermal loads across the thickness of plate at a 

point located at (x, y, z) in the plate, consistent with the displacement field, is given by, 
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respectively, across the plate thickness coordinate z, and  ,T x y represents the temperature 

distributions over the reference surface   of the plate.  
 

2.5 Governing equations and boundary conditions 
 

Using the expressions for stresses, strains, and principle of virtual work, variationally 

consistent governing differential equations and boundary conditions for the plate under 

consideration are obtained. The principle of virtual work applied to the considered plate leads to, 

 

(6) 

where the symbol δ denotes variation of displacement gradients in strains. The axial stress 

resultants (N), moment resultants (stress couples Mb), additional stress couples associated with 

shear deformation effects (Ms) and transverse shear stress resultants (Q) are introduced as follows: 
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Employing the Green’s theorem in this equation successively and collecting the coefficients of 

0 0, , , , ,u v w       and using the fundamental lemma of the calculus of variations we can obtain 

the governing equations in terms of force and moment resultants of laminated plate as follows: 
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The solution scheme 

Here we concern with the closed-form solutions of simply supported square plates. The 

assumed analytical solution is in the form of double trigonometric series, which satisfies the 

governing equations and boundary conditions exactly. This type of solution was suggested by 

Navier for the bending problem of simply supported rectangular plate.  

Following are the boundary conditions used for simply supported laminated composite plates 

along the edges x = 0 and x = a:  

, , , , , ,  

Along the edges y = 0 and x = b:  

, , , , , ,  

The following is the solution form for      0 0, , , , , ,u x y v x y w x y      , , , , ,x y x y x y   that 

satisfies the boundary conditions of simply supported plate exactly, 

 

(18) 

where , , ,mn mn mnu v w , ,mn mn mn    are the unknown coefficients of respective Fourier series and m, 

n are the positive integers, and m a  and n b  . The thermal and transverse 

mechanical loads are expanded in double Fourier sine series as 

 

(19) 

where 0 1 2, , ,mn mn mnT T T mnq  are the unknown coefficients of respective Fourier series. Substitution 

of Eqs. (18) and (19) into governing Eqs. (12)-(17), when expressed in terms of displacement 

variables, yields following set of algebraic equations in matrix form, 

 
(20) 

where [K] is the symmetric stiffness matrix of size 6×6,   , , , , ,
T

mn mn mn mn mn mnu v w      and {F} 

is the generalized force vector. The elements of stiffness matrix [K]  for laminated plate are as 

follows:  

, , , (21) 
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, , , 

, ,  

, , , 

,  

, ,  

, ,  

 

(21) 

and the elements of generalized force vector{F} are defined as: 

   

 

1 0 11 12 13 1 11 12 13

2 11 12 13

mn x y z mn x y z

mn x y z
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      

  
 

 

 

 

 

 

(22) 

where αx, αy and αz are temperature coefficients in x, y and z directions respectively. The laminates 

stiffness coefficients  ,, ...., , 1,2,...6ij ijA B i j  etc. appeared in Eqs. (21) and (22) are defined in 

terms of reduced stiffness coefficients Qij for the kth layer as follows, 

, , ,  
(23) 
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, ,                 

, ,  

 

(23) 

From the solution of Eq. (20) unknown coefficients {Δ}can be readily obtained with which one 

can then calculate all the thermal displacements and stresses within the plate. 

 

 

3. Illustrative examples 
 

To assess the performance of present theory, four examples of simply supported laminated 

square plate subjected to single sinusoidal linear and nonlinear thermal loads through the thickness 

of plate are considered herein to evaluate the thermal response in the form of displacements and 

stresses. The linear and nonlinear sinusoidal thermal loads are given by    1, , ,T x y z zT x y , and 

   2 ,f z T x y  respectively, with m = n = 1 and T1mn= T2mn =
0T , where 

0T  is the temperature 

intensity and 0 0T q   in Eq. (19). The material properties used are as follows: 

Material I:  
1 2

12 12 13 2 23 2 21 12

2 1
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y z

x x

E E
G G E G E

E E
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  

 
       

 

Material II: 
1 2

12 12 13 2 23 2 21 12

2 1

25, 0.25, 1125, 0.5 , 0.2 ,
y z

x x

E E
G G E G E

E E

 
  

 
       

 

Example 1: A simply supported square orthotropic plate subjected to single sinusoidal 

nonlinear thermal load through the thickness of plate. Material I is used in this problem.  

Example 2: A simply supported two layer antisymmetric (00/900) square laminated plate 

subjected to single sinusoidal nonlinear thermal load across the thickness of plate. Material I is 

used.  

Example 3: A simply supported square three layer symmetric (00/900/00) cross ply laminated 

plate subjected to single sinusoidal nonlinear thermal load across the thickness of plate. Material I 

is used. 

Example 4: A simply supported square three layer symmetric (00/900/00) cross ply laminated 

plate subjected to single sinusoidal linear thermal load    yxzTzyxT ,,, 1  across the thickness 

of plate. Material II is used in this problem. 

Following normalized forms are used to present the rsults of displacements and stresses. 
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(24) 

The transverse shear stresses are evaluated from 3D stress equilibrium equations of theory of 

elasticity neglecting the body forces. These equations are as follows: 

 

0
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x y z
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(25) 

 

 

4. Numerical results and discussion 
 

The numerical results for thermoelastic bending analysis of simply supported orthotropic, two 

layer antisymmetric and three layer symmetric cross-ply laminated plates subjected to nonlinear 

sinusoidal thermal loads are discussed in this section. The results of present theory are compared 

with those of TSDT of Ghugal and Kulkarni (2013), HSDT of Reddy (1984), FSDT of Mindlin 

(1951), CPT of Kirchhoff (1850) in which the effect of thickness stretching is neglected. The 

results of three layer symmetric cross-ply laminated plates subjected to linear sinusoidal thermal 

load are also presented and compared with the exact theory for linear thermal load presented by 

Bhaskar et al. (1996) to validate the accuracy of present shear and normal deformation theory. The 

results are presented in numerical and graphical forms in Tables 1 through 4 and in Figs. 1 through 

13 for various aspect ratios followed by examplewise discussion emphasizing the effects of 

thickness stretching and nonlinear thermal profile. 

Inplane displacements ( ) for orthotropic plate are presented in Table 1 for aspect ratios 4 

and 

 
Table 1 Normalized displacements and stresses for square orthotropic plate subjected to single sinusoidal 

nonlinear thermal load (Example 1) 

Theory S u  v  w  x
 y

 xy
 

EE

xz
 

EE

yz
 

Present 

4 

0.3092 0.3722 1.7860 1.5182 1.3892 1.0240 0.0186 0.1227 

TSDT 0.2844 0.3434 1.8919 1.5424 1.3607 0.9862 0.0066 0.1191 

HSDT 0.2585 0.3141 1.8504 1.6251 1.4518 0.9423 0.0453 0.1504 

FSDT 0.2814 0.3563 1.9279 1.3164 1.3224 1.0018 0.0143 0.1186 

CPT 0.2874 0.2874 1.8293 1.7270 1.5349 0.9027 0.0755 0.1798 

Present 

10 

0.2904 0.3020 1.8407 1.8610 1.5570 0.9340 0.0526 0.0678 

TSDT 0.2867 0.3004 1.8464 1.6898 1.4943 0.9223 0.0237 0.0663 

HSDT 0.2871 0.2874 1.8496 1.7120 1.5018 0.9189 0.0254 0.0674 

FSDT 0.2860 0.3032 1.8520 1.6323 1.4859 0.9256 0.0246 0.0663 

CPT 0.2874 0.2874 1.8293 1.7270 1.5349 0.9027 0.0302 0.0719 

vu ,
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(a) (b) 

Fig. 2 Variation of normalized inplane displacements ( u , v ) through the thickness of orthotropic plate 

subjected to single sinusoidal nonlinear thermal load for aspect ratio 4 and 10 

 

  
(a) (b) 

 
(c) 

Fig. 3 Variation of normalized inplane stresses (
x , y ) and inplane shear stresses ( xy ) through the 

thickness of orthotropic plate subjected to single sinusoidal nonlinear thermal load for aspect ratios 4 and 

10 
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(a) (b) 

Fig. 4 Variation of normalized transverse shear stresses ( xz , yz ) through the thickness of orthotropic 

plate subjected to single sinusoidal nonlinear thermal load for aspect ratios 4 and 10 

 

 

10. Inplane displacement ( u ) obtained by present theory are in good agreement with HSDT, 

FSDT and CPT for side to thickness ratios 4 and 10. Inplane displacement ( v ) obtained by 

present theory is comparable with HSDT, whereas FSDT overpridicts this displacement 

significantly compared to that of present theory and HSDT, whereas CPT under predicts the 

displacement ( v ) for aspect ratio 4. The difference in inplane displacements in this case is due to 

the different coefficients of thermal expansions in respective direction. Variation of inplane 

displacements is shown in Fig. 2 for aspect ratios 4 and 10. Transverse displacement ( w ) obtained 

for orthotropic plate by present theory for aspect ratio 4 is in good agreement with higher order 

shear deformation theory, wheareas FSDT over predicts the transverse displacement for aspect 

ratio 4. For aspect ratio 10, the results obtained by present theory, HSDT, FSDT and CPT are more 

or less identical. Inplane normal stress ( x ) obtained for orthotropic plate by present theory is 

comparable with HSDT, wheareas FSDT underpredicts the normal stress ( ) and CPT yields 

much higher value for aspect ratio 4. For aspect ratio 10, results obtained by present theory are 

comparable with each other. The through thickness variation of normal stress ( ) for orthotropic 

plate is shown in Fig. 3 indicating the severe effect of thickness stretching and non-linear thermal 

load for aspect ratios 4 and 10 with change in sign. Inplane normal stress ( ) obtained by 

present theory is comparable with HSDT and FSDT, wheareas CPT overpredicts the same for 

aspect ratios 4 and 10. This stress shows nonlinear variation through the thickness as shown in Fig. 

3. Inplane shear stresses obtained by present theory, HSDT. FSDT and CPT are more or less 

identical. This stress varies linearly through the thickness of orthotropic plate as shown in Fig. 3. 

Transverse shear stresses ( yzxz  , ) obtained by present theory for orthotropic plates are 

comparable with HSDT and FSDT, whereas CPT overpredicts these stresses for aspect ratio 4. The 

through the thickness variations of these stresses is shown in Fig. 4 for aspect ratios 4 and 10. The 

variations of these stresses are different from each other with change in sign due to the distinct 

transverse shear stiffnesses in xz and yz planes of the plate. 
 

x

x

x
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(a) (b) 

Fig. 5 Variation of normalized inplane displacements ( u , v ) through the thickness of two layer (00/900) 

laminated plate subjected to nonlinear single sinusoidal thermal load for aspect ratios 4 and 10 

 

  
(a) (b) 

 
(c) 

Fig. 6 Variation of normalized inplane stresses (
x , y ) and inplane shear stresses ( xy ) through 

the thickness of two layer (00/900) laminated plate subjected to nonlinear single sinusoidal 

thermal load for aspect ratios 4 and 10 
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Table 2 Normalized displacements and stresses for square two layer (00/900) laminated plate subjected to 

single sinusoidal nonlinear thermal load (Example 2) 

Theory S         
Present 

4 

0.2799 0.3057 1.8349 1.9856 2.3541 1.0808 0.1412 0.1412 

TSDT 0.2914 0.3321 1.9460 2.0811 2.0811 0.9794 0.1246 0.1246 

HSDT 0.2934 0.3329 2.0156 2.2418 2.2418 0.9839 0.1250 0.1268 

FSDT 0.2926 0.3325 1.9899 2.1765 2.1765 0.9820 0.1268 0.1262 

CPT 0.2926 0.3325 1.9899 2.1765 2.1765 0.9820 0.1262 0.1262 

Present 

10 

0.2862 0.2997 1.7488 1.8285 2.3807 1.0408 0.0586 0.0616 

TSDT 0.2924 0.3325 1.9827 2.1609 2.1609 0.9816 0.0504 0.0504 

HSDT 0.2930 0.3327 2.0007 2.2040 2.2040 0.9828 0.0503 0.0506 

FSDT 0.2926 0.3325 1.9899 2.1765 2.1765 0.9820 0.0505 0.0505 

CPT 0.2926 0.3325 1.9899 2.1765 2.1765 0.9820 0.0505 0.0505 

 

  
(a) (b) 

Fig. 7 Variation of normalized transverse shear stresses ( xz , yz ) through the thickness of two layer 

(00/900) laminated plate subjected to nonlinear single sinusoidal thermal load for aspect ratios 4 and 10 

 

 

Inplane displacements ( vu , ) for two layer antisymmetric crossply laminated plate are presented in 

Table 2 for aspect ratios 4 and 10. Inplane displacements obtained by present theory, HSDT, FSDT 

and CPT are more or less identical with each other for aspect ratios 4 and 10. Variation of inplane 

displacements is shown in Fig. 5 for aspect ratios 4 and 10. For aspect ratio 4, the variations of 

these displacements are nonlinear through the thickness showing the shift above the midsurface of 

the plate due to severe warping and unsymmetry in stacking sequence. Transverse displacements (

w ) obtained by present theory are in good agreement with HSDT and FSDT, whereas CPT 

underestimates the transverse displacement for aspect ratios 4 and 10. Inplane normal stress ( x ) 

obtained by present theory is comparable with HSDT, whereas FSDT underpredicts the normal 

stress ( ) and CPT yields much higher value for aspect ratio 4. For aspect ratio 10, results 

obtained by present theory are comparable with each other. The through thickness variation normal 

stress ( ) is shown in Fig. 6. The variation of this stress is nonlinear in bottom layer and changes  

u v w x y xy EE
xz

EE

yz

x

x
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Table 3 Normalized displacements and stresses for square three layer (00/900/00) laminated plate subjected to 

single sinusoidal nonlinear thermal load (Example 3)  

Theory S         
Present 

4 

0.2980 0.3411 1.8413 1.5672 1.4419 1.0913 0.0224 0.1518 

TSDT 0.2855 0.3269 1.9405 1.6163 1.4118 0.9620 0.0384 0.1212 

HSDT 0.2857 0.3139 1.8803 1.6150 1.4527 0.9417 0.0672 0.1317 

FSDT 0.2810 0.3388 1.9463 1.2646 1.3781 0.9734 0.0425 0.1157 

CPT 0.2873 0.2873 1.8292 1.7249 1.5350 0.9027 0.1111 0.1559 

Present 

10 

0.2906 0.3014 1.8550 1.8740 1.5640 0.9300 0.0386 0.0613 

TSDT 0.2869 0.2976 1.8599 1.7015 1.5030 0.9189 0.0369 0.0588 

HSDT 0.2873 0.2977 1.8654 1.7285 1.5025 0.9188 0.0381 0.0588 

FSDT 0.2857 0.3001 1.8583 1.6103 1.4960 0.9203 0.0376 0.0584 

CPT 0.2873 0.2873 1.8292 1.7249 1.5350 0.9027 0.0445 0.0623 

 

  
(a) (b) 

Fig. 8 Variation of normalized inplane displacements ( , ) through the thickness of three layer 

(00/900/00) laminated plate subjected to single sinusoidal nonlinear thermal load for aspect ratios 4 and 10 

 

 

its sign. Inplane normal stresses ( y ) obtained by present theory are comparable with HSDT, 

FSDT, and CPT for both aspect ratios 4 and 10. The through thickness variation ( ) for two 

layer laminated plate is shown in Fig. 6 for aspect ratios 4 and 10 depicting the nonlinear 

behaviour. Inplane shear stresses  xy obtained by present theory, HSDT, HSDT and CPT are 

more or less identical. This stress shows nonlinear behaviour across the thickness of plate at aspect 

ratio 4 as shown in Fig. 6. Transverse shear stresses ( ,xz yz  ) obtained by present theory for 

unsymmetric laminate are higher than those given by HSDT, FSDT, and CPT for the aspect ratio 4 

and for aspect ratio10, these stresses are closer to each other. Variations of transverse shear stresses 

through the thickness of unsymmetric laminate is shown in Fig. 7 for aspect ratios 4 and 10. The 

variations of these stresses are different from each other with change in sign. The reason for 

deviation in results of displacements and stresses obtained by present theory compared to other  
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(a) (b) 

 
(c) 

Fig. 9 Variation of normalized inplane stresses ( , ) and inplane shear stresses ( ) through the 

thickness of three layer (00/900/00) laminated plate subjected to single sinusoidal nonlinear thermal load 

for  aspect ratios 4 and 10 
 

  
(a) (b) 

Fig. 10 Variation of normalized transverse shear stresses ( , ) through the thickness of three layer 

(00/900/00) laminated plate subjected to non-linear single sinusoidal thermal load for aspect ratios 4 and 10 
 

 

refined theories is due to the neglect of thickness stretching effect in other theories while  

x y xy

xy yz

230



 

 

 

 

 

 

Thermoelastic bending analysis of laminated plates subjected to linear and nonlinear thermal loads 

Table 4 Normalized displacements and stresses for square three layer (00/900/00) laminated plate subjected to 

single sinusoidal linear thermal load (Example 4) 

Theory S         
Present 

4 

20.40 68.03 43.45 1281.70 961.55 138.91 84.11 120.22 

HSDT 18.17 75.97 42.02 1189.39 871.19 148.11 88.62 136.27 

Exact 18.11 81.83 42.69 1183.00 856.10 157.00 84.81 128.70 

Present 

10 

17.37 29.49 17.57 1002.40 1088.20 73.62 60.59 68.31 

HSDT 16.53 30.18 16.89 1020.33 1019.00 73.48 61.71 66.72 

FSDT 14.55 27.62 12.83 860.50 1029.00 66.24 64.67 67.22 

CPT 15.99 15.99 10.18 964.60 1065.00 50.23 70.85 70.85 

Exact 16.61 31.95 17.39 1026.00 1014.00 76.29 60.54 66.01 

Present 

20 

17.02 20.33 12.56 965.09 1024.70 58.69 33.51 35.05 

HSDT 16.12 19.81 11.95 979.70 1052.00 56.54 34.17 34.86 

FSDT 15.60 19.10 10.89 936.70 1055.00 54.52 34.58 34.92 

CPT 15.99 15.99 10.18 964.60 1065.00 50.23 35.42 35.42 

Exact 16.17 20.34 12.12 982.00 1051.00 57.35 33.98 34.76 

Present 

50 

16.93 17.47 11.06 954.89 1033.20 54.06 13.81 14.13 

HSDT 16.00 16.60 10.46 967.10 1063.00 51.30 14.08 14.13 

FSDT 15.92 16.50 10.29 960.00 1063.00 50.93 14.10 14.13 

CPT 15.99 15.99 10.18 964.60 1065.00 50.23 14.17 14.17 

Exact 16.02 16.71 10.50 967.50 1063.00 51.41 14.07 14.13 

 

  
(a) (b) 

Fig. 11 Variation of normalized inplane displacements ( ) through the thickness of three layer  

(00/900/00) laminated plate subjected to single sinusoidal linear thermal load for aspect ratios 4 and 10 

 

subjecting the plates to nonlinear thermal load. 

Inplane displacements ( vu , ) for three layer laminated plate are presented in Table 3 for aspect 

ratios 4 and 10. Inplane displacements obtained by present theory are higher than those given by 

TSDT and HSDT without thickness stretching effect, FSDT and CPT for aspect ratios 4 and 10. It 

is observed that the inplane displacement in the fibre direction is less as compared to that in the 
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transverse direction. Variations of normalized inplane displacements through the thickness of three 

layer (00/900/00) laminated plate subjected to nonlinear single sinusoidal thermal load for aspect 

ratios 4 and 10 are shown in Fig. 8. The severe warping of laminate is not observed in this case 

since the stacking sequence of layers is symmetric. Transverse displacements ( w ) obtained by 

present theory is lower than that is given by TSDT, HSDT and FSDT, and it is higher than that is 

given by  CPT for aspect ratios 4 and 10.  

Inplane normal stress ( x ) obtained by present theory is comparable with TSDT and HSDT, 

whereas FSDT yields lower value and CPT yields much higher value for aspect ratio 4. For aspect 

ratio 10, the value of this stress is significantly higher than that is given by other refined theories 

disregarding thickness stretching effect. The increase in this bending stress with increase in aspect 

ratio is due to decrease in shear deformation and increase in thickness stretching effect. Similar 

trend is observed for inplane normal stress ( y ). The through thickness variations normal stresses (

x , y ) obtained by present theory is shown in Fig. 9 indicating severe nonlinearity in top and 

bottom layers. Inplane shear stresses obtained by present theory are higher than those obtained by 

TSDT, HSDT, FSDT, and CPT for both the aspect ratios.  

Transverse shear stresses ( yzxz  , ) or interlaminar stresses obtained by present theory for 

symmetric laminate deviate considerably compared to those of TSDT and HSDT disregarding the 

thickness stretching effect, and FSDT whereas CPT yields much higher values for aspect ratios 4 

and 10. The point of maximum shear stress xz is no longer at the neutral plane but is moved 

towards the extreme fibers. The maximum value of occurs at 3 8z h   from neutral plane 

in
00 layers and minimum value occurs at the neutral plane (z = 0), whereas the maximum value of 

yz
occurs at the neutral plane of the laminate passing through the 

090 layer. These stresses across 

the thickness of laminate are responsible for the delamination type failure at the interfaces and the 

cracking of matrix elsewhere. Variations of transverse shear stresses through the thickness of 

symmetric laminate are shown in Fig. 10 for aspect ratios 4 and 10. The variations of these stresses 

are different from each other with change in sign. These stresses vary according to cosine law 

across the thickness of laminated plate satisfying the zero shear stress conditions at the top and 

bottom surfaces of the plate and continuity conditions at the interfaces between the layers.  

Numerical results for displacements and stresses for square three layer (00/900/00/) laminated 

plate subjected to single sinusoidal linear thermal load are presented in Table 4 and in Figs.11 

through 13 and discussed with exact theory of Bhaskar et al. (1996) and HSDT of Kant and 

Shiyekar (2013) to verify the accuracy of present theory.  

Inplane displacements ( vu , ) are presented in Table 4 for aspect ratios 4, 10, 20 and 50. The 

present theory yields values these displacements with reasonable accuracy for very thick laminate 

compared to those of exact theory and HSDT of Kant and Shiyekar (2013) with twelve unkown 

variables. For moderately thick plate (a/h = 10), the results of present theory are in close 

agreement with those of HSDT and exact theory, whereas FSDT and CPT underpredict these 

displacements. For aspect ratios 20 and 50, all the two dimensional theories predict excellent 

values of these displacements when compared with exact results due decrease in shear 

deformation. The through thickness variation of inplane displacements u and v  are shown in 

Fig. 11. The variation of inplane displacement u shows the severe warping effect on laminated  

xz
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(a) (b) 

 
(c) 

Fig. 12 Variation of normalized inplane stresses ( , ) and inplane shear stresses ( ) through the 

thickness of three layer (00/900/00) laminated plate subjected to single sinusoidal linear thermal load for 

aspect ratios 4 and 10 

 

 
 

(a) (b) 

Fig. 13 Variation of normalized transverse shear stresses ( , ) through the thickness of three layer 

(00/900/00) laminated plate subjected to single sinusoidal linear thermal load for aspect ratios 4 and 10 

x y xy
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plate due to shear and normal deformation effects subjected to linear sinusoidal thermal load for 

aspect ratio 4, whereas variation of displacement v is linear across thickness of plate.  

It is observed from the results that the transverse displacements ( w ) obtained by present 

theory, HSDT and exact theory are in excellent agreement with each other for all the aspect ratios 

due to inclusion of transverse normal strain effect in these theories. However, FSDT and CPT 

underpredict the values for aspect ratios 10 and 20. 

The present theory predicts higher values of inplane normal stresses  and y  for aspect 

ratio 4 as compared to the results of HSDT and exact theory. For aspect ratios 10, 20, and 50 

results of these stresses by present theory, HSDT, FSDT and CPT are in good agreement with 

those of exact theory. Present theory underpridicts the value of inplane shear stress for aspect ratio 

4 and predicts very good values for aspect ratios 10, 20, and 50 compared to the results of HSDT 

and exact theory. The through thickness variations of inplane stresses is shown in Fig. 12 for 

aspect ratios 4 and 10. The variations of  and xy across the thickness of laminated plate are 

nonlinear for thick plate (S = 4) due to significant shear and thickness stretching effects when 

subjected to linear sinusoidal thermal load, whereas that of is layerwise linear due to reversal 

of stacking sequence in that direction.  

Transverse shear stresses ( ,xz yz  ) obtained by present theory are in excellent agreement with 

those HSDT and exact theory for all the aspect ratios. FSDT and CPT overpredict the values of 

these stresses for aspect ratio 10 and yield excellent values for aspect ratios 20 and 50 as compared 

to the results of exact theory. The through the thickness variations of transverse shear stresses are 

shown in Fig. 13. The variation of transverse shear stress across the thickness of laminated plate 

satisfies the continuity condition at the interfaces between the layers and the stress free conditions 

on the top and bottom surfaces of the plate.  

It is observed from above discussion that the transverse normal deformation or thickness 

stretching effect has the significant on the improvement of thermoelastic response symmetric 

cross-ply laminated plates subjected to linear thermal load. 

 

 

5. Conclusions 
 

In this study, thermal stress analysis of orthotropic, antisymmetric and symmetric cross-ply 

laminated plates subjected to single sinusoidal linear and nonlinear thermal loads across the 

thickness of plate is presented based on trigonometric shear and normal deformation theory. The 

thickness stretching effect is included for more accurate analysis. The displacement field is built 

upon the classical plate theory using trigonometric functions in terms of thickness coordinate to 

include both the transverse shear and normal deformation effects. The principle virtual work is 

used to derive the governing equations and boundary conditions. Thermoelastic displacements and 

stresses for simply supported plates are obtained using Navier’s solution technique and compared 

with the results of other refined theories disregarding thickness stretching effect. Following 

conclusions are drawn from the results and discussion. 

1. The results of displacements and stresses obtained by present theory deviate considerably for 

thick orthotropic and antisymmetric cross-ply laminated plates as compared to those of other 

refined theories due to the neglect of thickness stretching effect in other theories while subjecting 

x

x

y
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the plates to nonlinear thermal load. 

2. The present theory is in excellent agreement with exact theory while predicting the thermal 

response of symmetric cross-ply laminated plate under linear thermal load and agrees well with 

other refined theories for symmetric crossply plates under nonlinear thermal load. 

3. The numerical results indicate that the effect of thickness stretching is more important in 

predicting more accurate transverse shear stresses or interlaminar stresses across the thickness of 

laminated plates.  

Therefore, it can be concluded that the effect of transverse normal deformation or thickness 

stretching effect is inevitable while performing the thermal stress analysis of laminated composite 

plates subjected to linear and nonlinear thermal loads. 
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