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Abstract.  Flutter is a dangerous phenomenon encountered in flexible structures subjected to aerodynamic forces. 
This includes aircraft, helicopter blades, engine rotors, buildings and bridges. Flutter occurs as a result of interactions 
between aerodynamic, stiffness, and inertia forces on a structure. The conventional method for designing a rotor 
blade to be free from flutter instability throughout the helicopter’s flight regime is to design the blade so that the 
aerodynamic center (AC), elastic axis (EA) and center of gravity (CG) are coincident and located at the quarter-
chord. While this assures freedom from flutter, it adds constraints on rotor blade design which are not usually 
followed in fixed wing design. Periodic Structures have been in the focus of research for their useful characteristics 
and ability to attenuate vibration in frequency bands called “stop-bands”. A periodic structure consists of cells which 
differ in material or geometry. As vibration waves travel along the structure and face the cell boundaries, some waves 
pass and some are reflected back, which may cause destructive interference with the succeeding waves. In this work, 
we analyze the flutter characteristics of helicopter blades with a periodic change in their sandwich material using a 
finite element structural model. Results shows great improvements in the flutter rotation speed of the rotating blade 
obtained by using periodic design and increasing the number of periodic cells. 
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1. Introduction 
 

Carrera Unified Formulation (CUF) is used to perform flutter analyses of fixed and rotary 

wings. The finite element method is used to solve the governing equations that are derived, in a 

weak form, using the generalized Hamilton’s Principle. These equations are written in terms of 

CUF “fundamental nuclei”, which do not vary with the theory order (N) Filippi and Carrera 

(2015).  An aeroelastic analysis of bearingless rotors is investigated using large deflection beam 

theory in hover and forward flight.   The sectional elastic constants of a composite flex beam, 

including the warping deformations, are determined from a refined cross-sectional finite element 

method Lim and Lee (2009). A new finite element model based on the coupled displacement field 

and the tapering functions of the beam is formulated for transverse vibrations of rotating 

                                           

Corresponding author, Ph.D., E-mail: htbadran@hotmail.com, htbadran@gmail.com 
aAssociate Professor, E-mail: mohammad.tawfik@gmail.com 
b Professor, E-mail : hnegm_cu@hotmail.com 



 

 

 

 

 

 

Hossam T. Badran, Mohammad Tawfik and Hani M. Negm 

Timoshenko beams of equal strength Yardimoglu (2010).  Kee and Shin (2015) investigate the 

dynamic characteristics of rotating composite blades. An eighteen-node solid-shell finite element 

was used to model the blade structures. The equations of motion for the finite element model were 

derived by using Hamilton’s principle, and the resulting nonlinear equilibrium equations were 

solved by applying Newton-Raphson method combined with load control. A rotating beam finite 

element in which the interpolating shape functions are obtained by satisfying the governing static 

homogenous differential equation of Euler– Bernoulli rotating beams is developed by Babu Gunda 

and Ganguli (2008). 

Loewy's 2-D unsteady aerodynamic theory Loewy (1957), as amended by Jones and Rao 

(1970) and Hammond (1969), provides a useful tool for examining blade flutter in hover. 

Additionally, Loewy showed how shed layers of vorticity affect Theodorsen’s lift deficiency 

function Theodorsen (1935), and influence the unsteady aerodynamic lift and moment equations.  

The present work will follow the analysis of Shipman and Wood, using Theodorsen’s lift 

deficiency function. Carleton University’s Rotorcraft Research Group is working on the 

development of an active rotor control system that incorporates a mechanism for helicopter blade 

pitch dynamic stiffness modulation at the root, the Active Pitch Link. Flutter oscillations of a 

typical section were controlled out over a range of airflow speeds (Nitzsche et al. 2015).  (Badran 

et al. 2019) analyze the flutter characteristics of helicopter blades with a periodic change in their 

sandwich material using a finite element structural model. Results shows great improvements in 

the flutter forward speed of the rotating blade obtained by using periodic design and increasing the 

number of periodic cells. (Dayhoum et al. 2020) provide an improvement for rotating wings in 

forward flight by adding experimental elastic torsion as an input to the local angle of attack. 
 

 

2. Periodic structures 

A periodic structure consists fundamentally of a number of identical substructure components 

that are joined together to form a continuous structure. Recall what happens to Light wave as it 

travels through a boundary between two different media; part of the light wave refracts inside the 

water and the another part reflects back into air. The mechanical waves behave in a similar way 

and the reflected part of wave interferes with the incident wave, Mead (1996). 

 There are two main types of discontinuities: (1) Geometric discontinuity and (2) Material 

discontinuity. Fig. 1 shows the basic idea of periodic structures and two different types of 

discontinuities. The transfer matrix approach, in general, is based on developing a relation between 

the two ends of a structural element. The real power of the transfer matrix approach comes when 

the structure can be divided into a set of substructures with a set of elements and nodes that are 

connected to another set on some fictitious boundary inside the structure, Mead and Parthan 

(1979). 

Using the method of static condensation, the internal nodes/degrees of freedom of the 

substructure can be eliminated, thus reducing the size of the global matrices of the structure. When 

the set of equations of the substructure can be manipulated to collect the forces and displacements 

of one end of the substructure on one side of the equation, and relate them to those on the other 

end with a matrix relation, this matrix relation is called the transfer matrix of the structure. The 

transfer matrix of a substructure, other than being of reduced order, is then multiplied by that of 

the neighboring structure, in contrast with the superposition method that is used in conventional 

numerical techniques. Thus, the matrix system that describes the dynamics of the structure  
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(a) Material discontinuities (b) Geometry discontinuities 

Fig. 1 Type of discontinuities 

 

 

becomes of significantly smaller size. The transfer matrix method becomes of even more 

appealing features when the substructures can be selected in a manner that they are all identical, 

thus, calculating the transfer matrix for one substructure is sufficient to describe the dynamics of 

the whole structure easily. An efficient numerical approach is proposed to study free and forced 

vibration of complex one-dimensional (1D) periodic structures (Zhou et al. 2015) . 

 

 

3. Mathematical modelling 
 

A sandwiched rotating blade consists of 3 layers; a ceramic with rigid foam sandwiched 

between two aluminum layers. All layers are supposed to be perfectly bonded, under in plane-

stress state, and having the same transverse displacement. The deformation of the face sheets 

obeys Euler-Bernoulli theory, while that of the core obeys Timoshenko theory. We will define all 

the mechanical quantities such as displacements, strains and energies in terms of the transverse 

displacements (𝑤) and longitudinal displacements of the top and bottom layers (𝑢𝑡) and (𝑢𝑏) , 

respectively as shown in (Badran et al. 2017). The longitudinal displacements of the layers are 

linear, the top and bottom layers resist axial and bending loads only, and the core layer resists 

shear load in addition to axial and bending loads. All layers resist torsion and centrifugal loads. 

 

 

4. Development of equations of motion 
 

The dynamic equations of motion in this investigation are developed using Hamilton’s 

principle, Reddy (2002): 

𝛿𝛱 = ∫ (𝛿𝑇 − 𝛿𝑈 + 𝛿𝑊)

𝑡2

𝑡1

𝑑𝑡 = 0 (1) 

By introducing and taking the first variation for strain energy, kinetic energy and external work, 

then integrating by parts with respect to time (𝑡1 and 𝑡2 are arbitrary) we get the weak form of 

Hamilton’s principle, which is used for deriving the finite element equations of the system. Since 

all layers bear axial, bending, torsion loads, and the core bears, in addition shear loads, then the 

total strain energy of the proposed model can be cast in this form: 

𝑈𝑖 =
1

2
𝐸𝑖𝐴𝑖 ∫ (𝑢𝑖

′)2𝐿

0
𝑑𝑥 +

1

2
𝐸𝑖𝐼𝑖 ∫ (𝑤′′)2𝐿

0
𝑑𝑥 +

1

2
𝐺𝑖𝐽𝑖 ∫ (𝜑′)2𝐿

0
𝑑𝑥  (2) 
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𝑈𝑐 =
1

2
𝐸𝑐𝐴𝑐 ∫ (𝑢𝑐

′ )2𝐿

0
𝑑𝑥 +

1

2
𝐸𝑐𝐼𝑐 ∫ (𝜃′)2𝐿

0
𝑑𝑥 +

1

2
𝐾𝑠 𝐺𝑐𝐴𝑐 ∫ (𝛾𝑥𝑧)2𝑑𝑥 

𝐿

0
+

1

2
𝐺𝑐𝐽𝑐 ∫ (𝜑′)2𝐿

0
𝑑𝑥  (3) 

The bending and torsion strain energy due to rotation is given by, 

𝑈𝑅 =
1

2
( 𝜌𝑗𝐴𝑗) ∫ 𝑓𝑐(𝑥)(𝑤′)2𝐿

0
𝑑𝑥 +

1

2
(𝜌𝑗𝐼𝑜

𝑗
) ∫ 𝑓𝑐(𝑥)(𝜑′)2𝐿

0
𝑑𝑥  (4) 

The total kinetic energy for the proposed model can be cast in this form: 

𝑇𝑖 =  
1

2
𝜌𝑖 ∫ [𝐴𝑖(𝑢𝑖̇ )

2+𝐼𝑖(𝑤′̇ )
2

+ 𝐴𝑖(𝑤̇)2] 𝑑𝑥
𝐿

0
  (5) 

𝑇𝑐
𝑝

=  
1

2
𝜌𝑐 ∫ [𝐴𝑐(𝑢𝑐̇)2+𝐼𝑐(𝜃𝑐̇)

2
+ 𝐴𝑐(𝑤̇)2] 𝑑𝑥

𝐿

0
  (6) 

The external work applies on the proposed model is, 

𝑊𝑡 =  ∫  {𝑞}𝑇{𝑓𝑏}
𝑉

 𝑑𝑉 + ∫  {𝑞}𝑇{𝑓𝑠}
𝐴

 𝑑𝐴 + {𝑞}𝑇{𝑓𝑝}  (7) 

where: {𝑓𝑏}, {𝑓𝑠} and {𝑓𝑝} and {𝑞} are the external body, surface , point forces, and nodal 

displacements respectively. 

 

4.1 Introducing centrifugal force 𝑓𝑐(𝑥) 
 

As shown in Fig. 2, the centrifugal force induced by rotation at station (x) within the 𝑖𝑡ℎ   

element, measured from its left end can be expressed as mentioned in (Badran et al. 2019): 

𝑓𝑐(𝑥) = Ω2∫ 𝜌 𝐴(𝜁)(𝑅 +  𝜁) 𝑑𝜁
𝐿

𝑥
  (8) 

𝑓𝑐(𝑥) = Ω2 [∫ 𝜌 𝐴(𝜁)(𝑅 +  𝜁) 𝑑𝜁
𝑥2

𝑖

𝑥
+ ∑ ∫ 𝜌 𝐴(𝜁)(𝑅 +  𝜁) 𝑑𝜁

𝑥2
𝑗

𝑥1
𝑗

𝑛
𝑗=𝑖+1 ]  (9) 

 
 

 

Fig. 2 Centrifugal force due to rotation 
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After making some mathematical manipulations, the centrifugal force can be cast in the form: 

𝑓𝑐(𝑥) = 𝑓∘(𝑥) + 𝑓1(𝑥) (10) 

where:  

𝑓∘(𝑥) = −Ω2[𝜌𝑖  𝐴𝑖(𝑅𝑥 + 0 ⋅ 5 𝑥2)], 

𝑓1(𝑥) = Ω2 [ 𝜌𝑖  𝐴𝑖(𝑅𝑥2
𝑖 + 0 ⋅ 5𝑥2

𝑖 2
) + ∑  𝜌𝑗 𝐴𝑗 ((𝑅𝑥2

𝑗
+ 0 ⋅ 5𝑥2

𝑗2
) − (𝑅𝑥1

𝑗
+ 0 ⋅ 5𝑥1

𝑗2
))𝑛

𝑗=𝑖+1  ]   

The same procedure introduced above can be applied to the blade subjected to torsion by  

replacing the term (𝜌 𝐴) by mass moment of inertia about elastic axis (𝜌 𝐼0) in Eq. (10).  

Where, 𝜌𝑗  𝐴𝑗 is average mass per unit length for the 𝑗𝑡ℎ element, 𝜌𝑖 𝐴𝑖 is average mass per unit 

 length for the 𝑖𝑡ℎ element, and R is hub radius  

 

4.2 Variational formulation of system energy 
 

By taking the first variation of the first integral of an element total strain energy with ceramic  

core we get: 

𝛿𝑈𝑡𝑜
𝑝

=   ∫ 𝛿(𝑢𝑡
′ )𝐵1(𝑢𝑡

′ ) +  𝛿(𝑢𝑏
′ )𝐵2(𝑢𝑏

′ )
𝐿

0

+ 𝛿(𝑤′′)𝐵3 (𝑤′′) + 𝛿(ut
′)(𝐵4)(𝑢𝑏

′ )

+                       𝛿(ub
′ )𝐵4(𝑢𝑡

′ ) + 𝛿(𝑢𝑡
′ )𝐵5 (𝑤′′) + 𝛿(𝑤′′)𝐵5(𝑢𝑡

′ )
+ 𝛿(ub

′ )𝐵6 (𝑤′′) +                       𝛿(𝑤′′)𝐵6(ub
′ )  + 𝛿(𝑢𝑡)𝐵7 𝛿(𝑢𝑡)

+ 𝛿(𝑢𝑏)𝐵7 (𝑢𝑏) + 𝛿(𝑤′)𝐵8 (𝑤′) −                       𝛿(𝑢𝑡)𝐵9 (𝑢𝑏)
− 𝛿(𝑢𝑏)𝐵9 (𝑢𝑡) − 𝛿(𝑢𝑏)𝐵10 (𝑤′) −  𝛿(𝑤′)𝐵10  (𝑢𝑏)  
+                       𝛿(𝑢𝑡)𝐵10 (𝑤′) + 𝛿(𝑤′)𝐵10 (𝑢𝑡) 

(11) 

By taking the first variation of the first integral of an element total strain energy with foam core 

we get: 

𝛿𝑈𝑡𝑜
𝑓

=   ∫ 𝛿(𝑢𝑡
′ )𝐶1(𝑢𝑡

′ ) +  𝛿(𝑢𝑏
′ )𝐶2(𝑢𝑏

′ )
𝐿

0

+ 𝛿(𝑤′′)𝐶3 (𝑤′′) + 𝛿(ut
′)(𝐶4)(𝑢𝑏

′ ) +  𝛿(ub
′ )𝐶4(𝑢𝑡

′ )

+ 𝛿(𝑢𝑡
′ )𝐶5 (𝑤′′) + 𝛿(𝑤′′)𝐶5(𝑢𝑡

′ ) + 𝛿(ub
′ )𝐶6 (𝑤′′) +   𝛿(𝑤′′)𝐶6(ub

′ )  
+ 𝛿(𝑢𝑡)𝐶7 𝛿(𝑢𝑡) + 𝛿(𝑢𝑏)𝐶7 (𝑢𝑏) + 𝛿(𝑤′)𝐶8 (𝑤′) −  𝛿(𝑢𝑡)𝐶9 (𝑢𝑏)
− 𝛿(𝑢𝑏)𝐶9 (𝑢𝑡) − 𝛿(𝑢𝑏)𝐶10 (𝑤′) −    𝛿(𝑤′)𝐶10  (𝑢𝑏)  +  𝛿(𝑢𝑡)𝐶10 (𝑤′)
+ 𝛿(𝑤′)𝐶10 (𝑢𝑡) 

(12) 

where B's by C's, are defined in (Badran et al. 2017). 

By taking the first variation of the first integral of element strain energy due to rotation we get: 

𝛿𝑈𝑅 = ∫ 𝛿(𝑤′)𝑓𝑐(𝑥)
𝐿

0

(𝑤′)𝑑𝑥 (13) 

By taking the first variation of the first integral of element total kinetic energy with ceramic  

core we get: 
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 𝛿𝑇𝑡𝑜
𝑝

=  ∫  𝛿(𝑢𝑡̇)𝐷1(𝑢𝑡̇) + 𝛿(𝑢𝑏̇)𝐷2(𝑢𝑏̇) + 𝛿(𝑤′̇ )𝐷3(𝑤′̇ ) +  𝛿(𝑢𝑡̇)𝐷4(𝑢𝑏̇)
𝐿

0

+ 𝛿(𝑢𝑏̇)𝐷4(𝑢𝑡̇) + 𝛿(𝑢𝑡̇)𝐷5 (𝑤′̇ ) + 𝛿(𝑤′̇ )𝐷5 (𝑢𝑡̇) +  𝛿(𝑢𝑏̇)𝐷6 (𝑤′̇ )

+ 𝛿(𝑤′̇ )𝐷6(𝑢𝑏̇)  +  𝛿(𝑤̇)𝐷7 (𝑤̇)𝑑𝑥 

(14) 

By taking the first variation of the first integral of element total kinetic energy with foam 

core we get: 

 𝛿𝑇𝑡𝑜
𝑓

=  ∫ 𝛿(𝑢𝑡̇)𝐻1(𝑢𝑡̇) + 𝛿(𝑢𝑏̇)𝐻2(𝑢𝑏̇) + 𝛿(𝑤′̇ )𝐻3(𝑤′̇ ) +
𝐿

0

𝛿(𝑢𝑡̇)𝐻4(𝑢𝑏̇) + 𝛿(𝑢𝑏̇)𝐻4(𝑢𝑡̇) + 𝛿(𝑢𝑡̇)𝐻5 (𝑤′̇ ) + 𝛿(𝑤′̇ )𝐻5 (𝑢𝑡̇)   + 𝛿(𝑢𝑏̇)𝐷6 (𝑤′̇ ) +

𝛿(𝑤′̇ )𝐷6(𝑢𝑏̇)  +  𝛿(𝑤̇)𝐷7 (𝑤̇)𝑑𝑥  

(15) 

where D's and H's are defined in (Badran et al. 2017). 

By taking, the first variation of the total external work done on the element we get: 

 𝛿𝑊𝑡 =  ∫  {𝛿 𝑞}𝑇{𝑓𝑏}
𝑉

 𝑑𝑉 + ∫  {𝛿𝑞}𝑇{𝑓𝑠}
𝐴

 𝑑𝐴 + {𝛿𝑞}𝑇{𝑓𝑝} (16) 

Substituting Eqs. (11) - (16) in Eq. (1) we get the weak form of Hamilton’s principle which we 

use in the finite element analysis. 

 

 

5. Finite element formulation 
 

The weak form of Hamilton’ Principle stated in Eq. (1) will now be used to develop the finite 

element model of the suggested three-layer sandwich rotating blade with ceramic-foam core 

arranged side by side.  Lagrange linear shape functions are used for axial displacement field  𝑢𝑡 

, 𝑢𝑏 which are 𝐶° −type continuous, while Hermitian shape functions are used for transverse 

displacement  w , which are 𝐶1 − type. This means that the deflection  w and slope (∂w ∂x⁄ ) are 

continuous between two neighboring elements. The proposed model is a three-node finite beam 

element; each node has four mechanical degrees of freedom. The shape functions of the 

mechanical variables are similar to those in Badran (2018) .  

The element total stiffness matrix [𝐾] will be derived with the help of Eqs. (11)-(12) for the 

different element with ceramic and foam cores after replacing the axial and transverse 

displacements by the assigned shape functions.  

The stiffness matrix due to centrifugal acceleration can be derived using Eq. (13) as: 

[𝐾]𝑐.𝑓 = ∫ 𝑓𝑐(𝑥)𝛿𝑤
𝑒 𝑇[𝑁𝑤

′ ]𝑇[𝑁𝑤
′ ]𝛿𝑤

𝑒
𝑥2

𝑖

𝑥1
𝑖

 (17) 

where, [𝑁𝑤
′ ]  and 𝛿𝑤

𝑒   are the first derivative of transverse displacement and shape function 

respectively which are similar to those in Badran (2018) .  

The element total mass matrix [𝑀] will be derived with the help of Eqs. (14) - (15) for ceramic 

and foam cores after replacing the axial and transverse displacements by the assigned shape 

functions. [𝐾] , [𝐾]𝑐𝑓 and [𝑀] are given in  Badran (2018)  . Finally, the element nodal force 
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vector can be derived using Eq. (16).  

 By substituting the mass, stiffness and force vector in Eq. (1), the equation of motion of a 

finite element can be written as: 

[𝑀]{𝑞̈} + [[𝐾] + [𝐾]𝑐𝑓] {𝑞}   =  {𝐹} (18) 

where, Coriolis effect are ignored, because the flexural and axial motion are uncoupled Banerjee 

and Kennedy (2014). 

 

 

6. Periodic analysis 
 

Periodic structures can be modelled like any ordinary structure, however, studying the behavior 

of one cell is sufficient to determine the stop and pass bands of the complete structure independent 

of the number of cells. In the present work, the frequency domain is classified into pass-bands, i.e. 

frequencies for which excited surface waves get through the periodic piezoelectric device, and 

stop-bands, i.e. frequencies which cannot pass through. Therefore, the piezoelectric device can be 

used for frequency filtering. There are two approaches for the analysis of the periodic 

characteristics of a beam: the forward approach and the reverse approach, as introduced in Badran 

(2008). A code was developed and validated for a periodic sandwich beam with a ceramic PZT 

(ignoring the piezoelectricity effect) and foam core, in order to study the effect of core structural 

periodicity on attenuating the vibration of beams.   

 

 

7. Rotating blade flutter 
 

The equations of motion are derived using energy methods by applying Hamilton’s principle, 

which offers a convenient formulation for any number of discrete generalized or physical 

coordinates. 

The assembled equation of motion of rotating blade has the form: 

[M]{q̈} + [K]{q} = {F} (19) 

where, {q} is the coordinate vector containing both the twisting and bending degrees of freedom: 

{q}T =  {w1 θ1 φ1. … … . wN   θN φN}T 

For flutter analysis, a harmonic motion with oscillation frequency ω is assumed, so the 

governing equation becomes: 

(−ω2[M] + [K]){q̅} = {F̅} (20) 

where, q̅ is the amplitude of the deformation vector, F̅ is the amplitude of the load vector, [M] is 

the global mass matrix, and [𝐾] is the global stiffness matrix.  In Eq. (20) the right hand side is 

derived using an aerodynamic model, and the left hand side is derived using the structural model.  

The natural frequency (𝜔)  occurs in a free vibration case where the system acts independent of 

the external forces. 
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7.1 Structural model 
 

Double symmetry of the structure cross section leads to decoupling of the bending and torsional 

motions. The loss of cross sectional symmetry leads to a coupling effect between the bending and 

torsional motions due to an offset between the center of gravity and the shear center; a distance 

referred to as inertial eccentricity  (Tanaka and Bercin 1997). The resulting equations of motion 

are inertially coupled, but elastically uncoupled. 

The coupled elastic potential energy (U) is given as: 

𝑈 =
1

2
 𝐸𝐼 ∫ (𝑤′′)2

𝐿

0

𝑑𝑦 +
1

2
 𝐺𝐽 ∫ (𝜑′)2

𝐿

0

𝑑𝑦 (21) 

The coupled kinetic energy (T)  is given as: 

𝑇 =
1

2
  ∫ (ℎ̇)

2

𝑐ℎ𝑜𝑟𝑑

 𝑑𝑚 (22) 

By referring to (Badran et al. 2017),      ℎ = −𝑤 − 𝑒𝑚 𝛼  

Substituting (h) in Eq. (22) it can be shown that, Guertin (2012) 

𝑇 =  
1

2
 (𝜇) ∫ (𝑤̇)

𝐿

0

2
𝑑𝑥 +

1

2
 (2 𝑆𝛼) ∫ (𝑤̇)(𝜃̇)

𝐿

0
𝑑𝑥 +

1

2
 (𝐼𝛼) ∫  (𝜃̇)

2𝐿

0
 𝑑𝑥    (23) 

By calculating the potential and kinetic energies of the structural model and applying 

Hamilton’s principle, then using finite elements having two-nodes and three degrees of freedom 

per node (torsion, transverse displacement and rotation), we get the system of equations 

representing an eigen value problem. Solving these equations, we get the natural frequencies and 

mode shapes due to bending and torsion. 

 

7.2 Aerodynamic model  
 

The Theodorsen 2-D thin airfoil theory will be used to evaluate the unsteady aerodynamic 

forces and moments per unit span 𝐿𝑖  and 𝑀𝑖 using thin aerofoil theory with a   Theodorsen’s lift 

deficiency function, (Bisplinghoff et al. 1996).  

These can be cast in a matrix form as follows: 

{
𝐿𝑖

𝑀𝑖

} = 𝜔2 [
𝐿1𝑖 𝐿2𝑖

𝑀1𝑖 𝑀2𝑖

] {
ℎ𝑖

𝛼𝑖

}  (24) 

where: 

𝐿1𝑖 =  𝜋𝜌𝑏𝑖
2[𝐿ℎ

 𝑖], 𝐿2𝑖 =  𝜋𝜌𝑏𝑖
3 [𝐿𝛼

𝑖 − 𝐿ℎ
 𝑖 (𝑎 +

1

2
)], 

𝑀1𝑖 = 𝜋𝜌𝑏𝑖
3 [𝑀ℎ

𝑖 −𝐿ℎ
 𝑖 (𝑎 +

1

2
)], 

𝑀1𝑖 =  𝜋𝜌𝑏𝑖
4 [ 𝑀𝛼

𝑖 − (𝐿𝛼
𝑖 + 𝑀ℎ

𝑖 ) (𝑎 +
1

2
) + 𝐿ℎ

 𝑖 (𝑎 +
1

2
)

2
], 

𝜌: air density , 𝑏𝑖 : semi-chord , ℎ: amplitude of the vertical displacement , 𝛼𝑖 : amplitude of 

the twisting angle, , 𝐿ℎ
 𝑖 , 𝐿𝛼

𝑖  ,  𝑀ℎ
𝑖  and  𝑀𝛼

𝑖   are aerodynamic lift and  moment coefficients,  
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Fig. 3 Rotating periodic blade in hovering 

 

 

𝑘𝑟 : reduced frequency and can be assumed as  𝑘𝑟 = 𝜔 𝑏𝑖 (Ω𝐿)⁄  for  hovering and 𝜔: operating 

mode frequency as shown in Fig.3. 

Also according to the chosen flight condition, the lift deficiency function will be determined, 

which depends on modelling the wake underneath the rotating blade. There are 3 different types of 

lift deficiency functions: (1) Theodorsen lift deficiency function originally developed for fixed-

wing aircraft where flow is subjected to small disturbances. (2) Loewy’s lift deficiency function 

assumed that the rotor blade sections will encounter the shed wake from previous blades in case of 

hovering. (3) Shipman and Wood’s lift deficiency function, which is analogous to Theodorsen, and 

Loewy’s, but was modified to account for the helicopter’s forward speed and the build-up and 

decay functions associated with the advancing blade. 

The external virtual work done by the aerodynamic forces per unit span at an aerodynamic 

node can be written as follows: 

𝐹𝑖 = Δ𝑦𝑖 [𝛿ℎ𝑖 𝛿𝛼𝑖] {
𝐿𝑖

𝑀𝑖

} (25) 

Using three-node beam elements, the elastic axis deformation can be interpolated from the 

deformation of the two end nodes by using first order polynomials for the torsional twist angle and 

third order polynomials for the transverse displacement as follows: 

𝑢𝑒 = {
ℎ𝑖

𝛼𝑖

} = [ℕ]{𝑞}𝑒 (26) 

where [ℕ], is the shape function vector, {𝑞}𝑒 is the end nodes deformation vector in the wing local 

axes. Substituting Eq. (26) into Eq. (24) and then into Eq. (25) we get: 

𝐹𝑖 =  𝜔2  {𝛿𝑞}𝑒
𝑇[ℕ]𝑇[ℒ𝑖] [ℕ]{𝑞}𝑒 (27) 
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where,  [ℒ𝑖] = 𝛥𝑦𝑖 [
𝐿1𝑖 𝐿2𝑖

𝑀1𝑖 𝑀2𝑖

]. 

The elemental unsteady aerodynamic matrix [𝐴] can be obtained by summing all the external 

virtual work done at all the aerodynamic nodes at the middle of the structural element (Badran et 

al. 2017)  : 

So, the equation of the dynamic system after assembling all matrices can be written as: 

(−𝜔2[[𝑀] + [𝐴]] + [𝐾]){𝑞̅} = 0 (28) 

The flutter analysis can be performed using the familiar 𝑉 − 𝑔 method (Bisplinghoff et al. 

1996). The structural damping coefficient (𝑔) is introduced in the equations of motion, 

representing the amount of damping that must be added to the structure to attain neutral stability at 

the given velocity.  Negative values of structural damping (𝑔) indicate that the structure is stable, 

while positive values indicate instability.  Flutter occurs when the structural damping coefficient 
(𝑔) equals the actual damping of the structure, which is nearly zero, Hollowell and Dugundji 

(1984). Substituting in Eq. (28), the following eigenvalue problem is obtained: 

([𝐾]−1( [𝑀] + [𝐴]) − (
1 + 𝑔𝑖

𝜔2
) [𝐼]) {𝑞̅} = 0 (29) 

The above equation can be solved as: 

( [𝐾]−1 [[𝑀] + [𝐴]]) {𝑞̅} = ((
1 + 𝑔𝑖

𝜔2
) [𝐼]) {𝑞̅} (30) 

( [𝐾]−1 [[𝑀] + [𝐴]]) {𝑞̅} = (𝑍[𝐼]){𝑞̅} (31) 

The above equation can be solved for the complex eigenvalues (Z) for several values of the 

reduced frequency by equating both the imaginary and real parts on both sides then we can 

calculate the flutter frequency (𝜔𝑓), damping  (𝑔) and flutter rotation speed  (Ω𝑓) as follows: 

𝜔𝑓 = √1 𝑍(𝑅𝑒)⁄  ,  𝜂 = 𝑍(𝐼𝑚) 𝑍(𝑅𝑒)⁄  ,    Ω𝑓 =  𝜔𝑓 𝑏 𝑘𝑟⁄  (32) 

The values of (𝑔) and (𝜔) are plotted vs.(Ω𝑓), and the 𝜔 value at 𝑔 = 0 represents the flutter 

frequency (𝜔𝑓)  

A MATLAB code was developed for the periodic rotating blade. The finite element model 

consists of two models:  a structural model, which is a geometric model of the blade, and an 

aerodynamic model, which calculates the unsteady aerodynamic loads acting on the rotating blade. 

The UH-60’s blade is modelled as a uniform beam, incorporating the average geometric and 

inertial characteristics of the blade. However, for the demonstration analysis the UH-60 blade will 

be modified to make it “flutter susceptible” by moving the chord-wise position of the blade c.g aft 

while keeping its elastic axis at the quarter chord. Physically, the method of solution in this work 

is equivalent to locking the blade at the 90-degree azimuth position and solving the flutter 

problems, similar to the fixed wing case with Theodorsen lift deficiency values. Allowing radial 

velocity, and thus, the reduced frequency, to vary with the span as in the case of the tangential 

velocity of a rotor blade in hovering.  

A good agreement exists between the two sets of results giving confidence that the uniform 
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beam model is adequate as a first order approximation of a real blade (Badran et al. 2019). 

 

 

8. The proposed periodic rotating blade model 
 

We will choose the dimensions of the rotor under investigation so as to have the same aspect 

ratio of the UH-60 Black Hawk helicopter main rotor  as follows Badran (2018)   : Rotor radius = 

6  𝑚 , Chord = 0 ⋅ 39 𝑚 , blade thickness = 10%  chord , blade aspect ratio = 14 ⋅ 79. The 

properties of Aluminum are: Density 𝜌 = 2770 𝐾𝑔/𝑚3, Modulus of Elasticity 𝐸 =  71 ×
 109 𝑁/𝑚2 and Modulus of rigidity   𝐺 =  27 ⋅ 3 × 109 𝑁/𝑚2. The material properties of 

Ceramic PZT are: 𝜌 = 7750 Kg/𝑚3, 𝐸  = 70 ∙ 8 109 N/𝑚2 and  = 23 × 109 N/𝑚2. The material 

properites for Foam are: 𝜌 = 75 Kg/𝑚3, 𝐸 =  73 ×  106 N/𝑚2 and  𝐺 = 26 × 106 𝑁/𝑚2.  The 

rotation speed  𝛺  = 20 rad/𝑠. 

Now we study the effect of periodic design on the flutter hovering rotating speed of a helicopter 

rotor made of aluminum of three layers, top, core and bottom. In order to make a fair comparison 

between the solid and periodic core models we use the same outer dimensions, total mass, and 

flight conditions. 

 

8.1 The flutter speed of solid core rotating blade 
 
It is that the flutter rotation speed of the solid core rotor is 26.6  rad/s, which is 1.32 times the 

reference rotation speed  𝛺° as shown in Fig. 4. 

 

 

 
Fig. 4 Flutter rotation speed of the rotating solid blade 
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Fig. 5 Flutter rotation speed of the rotating periodic core blade in hovering (one cell) 

 
Table 1 Variation of flutter frequency and flutter rotating speed with the number of cells  

Rotor blade 
Flutter frequency 

(rad/s) 

Flutter rotational speed 

(rad/s) 

Non-dimensional 

rotational speed (Ω Ω°⁄ ) 

Solid 41.57 26.44 1.32 

Periodic (1 cell) 55.73 28.53 1.42 

Periodic (2 cell) 229.49 149.41 7.47 

Periodic (3 cell) 480.60 191.00 9.55 

Periodic (4 cell) 816.20 286.72 14.33 

Periodic (5 cell) 1267.50 356.02 17.80 

Periodic (6 cell) 1271.30 345.89 17.29 

 
 
8.2 Flutter speed of blade with periodic core 
  
The proposed periodic core is a sandwich-rotating blade with three layers: the top and bottom 

layers are made of aluminum, and the core is periodic PZT Ceramic-Foam side by side. We choose 

the main geometry of the periodic model to be similar to that of the solid model, with the same 

total thickness and length. In this case the mass is 243.9 Kg for the solid rotor. So we will change 

the thickness of the layers to have a thickness ratio (hp/ht) of 0.5 and the lengths of the cells to 

have a cell length ratio (Lp/Lt) of 0.54. These values reduce the mass of the proposed periodic 

core model to that of the solid model. 

Fig. 5 shows the flutter rotation speed of the proposed periodic core rotating blade at the same 
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altitude using one cell pair. The flutter angular speed of the sandwich periodic rotor is found to 

increase to 28.5 rad/s., which represent an improvement of 7%. This improvement can be 

explained by the existence of stop bands created by periodic design, which postpone the flutter 

frequency to a higher value. 

Other calculations have been made to investigate the effect of increasing the number of cell 

pairs on the flutter forward speed of the rotor blade, keeping its outer dimensions, total mass, 

rotation speed and flight altitude unchanged. 

Table 1 compares the frequency response of the solid rotor blade with that of the periodic 

blades having 3 and 6 cells pairs. 

Table 1 gives the values of the flutter frequency and flutter rotor angular speed of the rotor 

blade for different numbers of cell pairs. It is seen from the results that great improvements in the 

flutter forward speed can be obtained by increasing the number of cell pairs in the periodic design 

of the rotor blade. The reason for large jumps in the flutter rotating speeds obtained for 2, 3 and 5 

cells can be explained by the combined effect of the stop bands which shift the flutter frequencies 

to higher values, and the fact that higher modes of vibration become the ones which turn unstable. 

The improvement is found to diminish quickly after using 5 cells. Naturally, we should have used 

subsonic and supersonic aerodynamic theories when the blade tip speed increase to higher values. 

However, the obtained results using incompressible flow remain indicative of the flutter speed 

improvement by the use of periodic design. 
 

 

9. Conclusions 
 

Aeroelastic performance of helicopter rotor blade structures is of extreme importance. A 

helicopter rotor blade must not experience flutter instability at all possible rotor speeds in 

hovering. Periodic design of structures has proved to be useful in improving the dynamic 

performance in the absence of flow. A periodic structure is composed of repeated groups of cells 

of different material or geometry. This causes destructive interference between the waves 

travelling back and forth along the structure, and hence reduces its vibration level. 

In this paper a periodic rotor blade design is suggested as a rotating beam composed of a core 

sandwiched between two aluminium face layers. The beam is divided into cells in which the core 

is made of piezo ceramic or foam patches in an alternate order. The flutter rotation speed is 

calculated for such a periodic sandwich rotor using 3-node beam finite elements with shear, 

bending and torsional degree of freedom at each node in the structural analysis, and Theodorsen’s 

2-D thin aerofoil theory with a lift deficiency function for the unsteady aerodynamic analysis, 

assuming incompressible flow conditions. The blade flutter rotation speed is calculated using the 

V-g method for a different number of pairs of periodic cells, and compared with that of the non-

periodic solid blade, keeping the outer dimensions, total mass (243.94 kg) and flight altitude (1000 

m) unchanged. 

Results of the calculations show that good improvements in the flutter rotation speed of the 

rotating blade can be obtained by using periodic design and increasing the number of periodic 

cells. This can be explained by the existence of the frequency stop bands created by the periodic 

design, which shift the flutter frequencies to higher values. 

 Also large jumps in the flutter rotation speed are observed at certain numbers of cells pairs. 

This is caused by the fact that higher modes of blade vibration become the ones which turn 

unstable. Finally, the improvement is found to diminish after using a certain number of cells. 
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