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Abstract.  Accurate inertia properties information is important to reach an optimized estimation of attitude and 
precise control of a rigid spacecraft. Unfortunately, the satellite is succumbing several influences that can affect the 
inertia properties, such as fuel consumption and sloshing. Thus, this work inspects the use of star tracker to estimate 
the attitude, angular velocity and moment of inertia for a rigid nadir pointing satellite by employing extended Kalman 
filter, without any prior information about the nominal inertia matrix. The proposed estimator is applied in nadir 
pointing mode and without any constant control torque to avoid the attitude tumbling during the estimation phase, 
which in turn leads to a catastrophic failure of the satellite mission. The simulation results are compared to three other 
approaches and validated by Monte Carlo method that elucidates the good performance of the suggested approach 
and demonstrates its efficiency in satellite inertia tensor and attitude estimation even in worst situations. 
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1. Introduction 
 

Accurate control of a satellite certainly requires a correct estimate of its mass property 

including inertia matrix, which changes over time under the influence of various factors such as 

fuel consumption, slosh, deployment of the appendages, and so on. 

The inertia property estimation is more efficient when performed in orbit, using the on-board 

sensors, and applying optimal estimation methods. However, the problem of mass property 

estimation is a challenging subject that attracted the attention of loads of researchers in recent 

years, and several methods have been proposed for different kinds of satellites. 

Several least squares based algorithms have been adopted for inertia tensor estimation. Kutlu et 

al. (2007) estimated the Moment of Inertia (MOI) values for LEO satellite using Least Square 

Estimation (LSE) using gyroscopes, magnetometer and sun sensor data. Palimaka and Burlton 
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(1992) focused his effort toward the estimation of on-orbit data with the application of a gyrostat 

model attitude dynamics integrator. As a result, weighted-least-squares (WLS) process has been 

applied regardless of the solutions of equations of motion and derivatives. Tanygin and Williams 

(1997) considered the problem of estimating the mass property of a spinning rigid body and 

adopted the parameter estimation method, which allows determining both the inertia matrix and 

the body centre of mass. The inertia was estimated using coasting manoeuvres.  A recursive least 

squares (RLS) procedure for use in orbit has been used by Bordany et al. (2000) to estimate the 

inertia property. Keim et al. (2006) formulated the problem of inertia estimation based on a 

constraint least squares (LS) minimization problem where the inertia matrix is explicitly 

constrained and incorporated as linear matrix inequalities. Chashmi and Malaek (2016) developed 

a new modular formulation to simultaneously determine inertia parameters of an autonomous 

space robot while it captures a target space object. This approach is based on RLS algorithm, and it 

is appropriate for simultaneous estimation processes. The simulation of extensive case studies 

reveals that time is significantly reduced. Lorenzetti et al. (2017) determined the products of 

inertia for small scale unmanned Aerial Vehicles (UAVs) using a mathematical approach based on 

LS error minimization and knowing the angle between the aircraft X-body axis and principal X-

axis. Therefore, this technique was applied to small UAV at NASA Armstrong Flight Research 

Centre. According to the author’s, the main limitation of this method is the need of the test rig 

which could be difficult to apply for some large or heavy vehicles. Zhai et al. (2017) proposed a 

new method to design and calculate the optimal excitation to improve the identification of 

spacecraft inertia parameters using the LS method. Simulation results show that this method has a 

good performance index and can enhance the identification of inertia property. Xu and Wang 

(2017) estimated the inertia parameters of a free-flying space object using an algorithm based on 

vision and the LS method. The author has used a bullet to excite the space object in order to 

enhance the amount of pertinent information. Simulation results illustrate that his algorithm is 

practical to estimate the moment of inertia (MOI) of free fly space object. 

Being widely used in estimation problems, the Kalman filter (KF) is present in many works 

related to mass property, Bergmann et al. (1987) developed real time algorithms that estimate mass 

properties based upon stochastic estimation. Inverse inertia matrix and the center of mass, were 

estimated by a second-order filter from noisy measurements of the angular velocity, while KF was 

used to estimate the mass reciprocal. Its simulation results show that the mass properties were 

estimated with an error around 1%. Zhao et al. (2009) applied the KF to estimate, online, the mass 

property of mated spacecraft using an optimal approach based on excitation torques, measurements 

of attitude control and momentum management. Linares et al. (2012) inspected the problem of 

estimating the inertia property of a space object using photometric and astrometric data with an 

Unscented Kalman Filter (UKF). A new real time method for estimating the inertia property has 

been suggested by Yang et al. (2015). They used the extended Kalman filter (EKF) to reduce the 

gyro noise and RLS algorithm to estimate the inertia properties. Yoon et al. (2017) estimated the 

MOI and different parameters of attitude for a nanosatellite using the new Kalman filter 

formulation based on the differential form of the rigid-body rotational dynamics and different 

attitude parameters, excluding gyroscope information. The algorithm is endorsed by exploiting 

three different types of unmodelled disturbance torques. The simulation results of this method are 

especially practical for nanosatellite applications in which gyroscope measurements are imprecise. 

An estimation method by reformulating Euler equations of motion is suggested to obtain a 

regressor matrix. Then, the EKF and linear LS are used to reduce the gyros noise and estimate the 

inertia property (Kim et al. 2010, 2016). Reliable and accurate angular accelerations were 
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achieved when using a Savitzky-Golaylter filter based on an even number sampled data. Recently, 

Bellar has proposed an algorithm to estimate the moment of inertia and angular velocity based on 

EKF through gyroscope measurement and without using any nominal inertia matrix (Bellar and 

Mohammed 2019). 

Besides, Bergmann and Dzielski (1990) considered a rigid spacecraft and used only torque-

producing estimation in developing its algorithm for mass properties estimation, which prevents 

fuel usage, disturbances and contamination issues associated with the use of reaction control for 

identification of mass properties. Thienel et al. (2008) proposed an adaptively method to estimate 

the six inertia parameters of a rigid spacecraft as part of a passivity based on a nonlinear passivity 

adaptive control scheme. The method was validated by two sample simulations that demonstrate 

the estimation for both different sizes of spacecraft. 

The spacecraft inertia tensor has been estimated on orbit by Manchester using a recursive 

algorithm based on semi definite programming (SDP). The interesting point of this technique is the 

availability of fast numerical solvers for SDPs which makes it convenient for off-line analysis and 

real-time implementation (Manchester and Peck 2017). Ni et al. (2017) ameliorated the recursive 

predictor-based subspace identification to identify the MOI parameters of on-orbit spacecraft.  

The approach has been validated by comparing it with the classical subspace method based on the 

singular value decomposition. The simulation results show that his algorithm is better and can be 

exploited to determine the MOI parameters effectively. Muliadi et al. (2017) proposed the ARES 

method to determine UAV’s MOI simultaneously. This method is based on the UAV flight data to 

accommodate accuracy issues of modelling. The implementation of ARES method in the quadrotor 

flight data shows that ARES successfully measured the asymmetrical terms which is important for 

nonlinear control. 

With a similar motivation to the above-mentioned authors, we mainly contribute to existing 

knowledge on the estimation of inertia property by: 

• Introducing a star tracker, which provides higher attitude accuracy in comparison with the 

other sensors of attitude determination and control system.  

• Bypassing the application of a torque that may be harmful to the stability of our system, by 

coming up with a suitable approach to the nominal mode of our rigid spacecraft.  

• Improving the angular velocity estimation using the estimated inertia matrix rather than the 

nominal one.  

• Estimating the full attitude and inertia tensor, based on the star tracker data, with an EKF 

algorithm, randomly initialized. 
The proposed approach presents the advantage of full attitude estimation together with the 

moment of inertia from the star tracker data, with no need of a nominal inertia matrix that has an 
unfavourable effect on the angular velocity estimation.  Moreover, the method allows us to avoid 
the application of constant control torques that put the satellite in undesirable tumbling attitude and 
cause angular velocity divergence.  

This paper begins by modelling the satellite dynamics and kinematics. It will then go on to the 
control law using error quaternions. Then, the EKF algorithm and sensor measurements model will 
be formulated. After that, the simulation results illustrate the performance of the proposed 
approach where the Monte Carlo method is used to validate them. Finally, the conclusion gives a 
brief summary of the findings. 
 
 

2. Estimation and control design 
 

This section presents the theoretical part of attitude dynamics and kinematics, control Law and 
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estimator design. 

 

2.1 Attitude dynamics and kinematics 
 

The angular momentum of a three axis reaction wheels satellite, is given by (Wertz 2012, Bellar 

and Mohammed 2019)  

𝐽𝜔̇𝐵
𝐼 = −𝜔𝐵

𝐼 × (𝐽𝜔𝐵
𝐼 + ℎ) − ℎ̇ + 𝑇𝑑 (1) 

where 𝜔𝐵
𝐼 = [𝜔𝑥  𝜔𝑦 𝜔𝑧]

𝑇 is the angular velocity vector in the inertial frame; 

𝐽 = 𝑑𝑖𝑎𝑔[𝐼𝑥𝑥 𝐼𝑦𝑦 𝐼𝑧𝑧]  is the inertia matrix of satellite;  

𝑇𝑑 = [𝑇𝑑𝑥 𝑇𝑑𝑦 𝑇𝑑𝑧] is the external disturbance torque vector; 

ℎ = [ℎ𝑥  ℎ𝑦 ℎ𝑧] is the reaction wheels angular momentum vector; 

ℎ̇ = [ℎ̇𝑥  ℎ̇𝑦 ℎ̇𝑧] is the applied torque vector by 3-axis reaction wheels. 

To avoid the singularities and trigonometric functions, the Euler symmetric parameters 

(quaternions) are used to represent the satellite attitude. The following differential equation 

propagates the quaternion kinematic (Wertz 2012, Yang and Zhou 2017, Yadegari et al. 2018) 

𝑞̇ =
1

2
 𝛺 𝑞 (2) 

𝛺 =

[
 
 
 
 

0 𝜔𝑜𝑧 −𝜔𝑜𝑦 𝜔𝑜𝑥

−𝜔𝑜𝑧 0 𝜔𝑜𝑥 𝜔𝑜𝑦

𝜔𝑜𝑦 −𝜔𝑜𝑥 0 𝜔𝑜𝑧

−𝜔𝑜𝑥 −𝜔𝑜𝑦 −𝜔𝑜𝑧 0 ]
 
 
 
 

 (3) 

where 𝑞 = [𝑞1 𝑞2 𝑞3 𝑞4]
𝑇 is the attitude quaternion vector; 

𝜔𝐵
𝑜 = [𝜔𝑥  𝜔𝑦 𝜔𝑧]

𝑇  is the orbit-referenced angular body rate vector; 

The attitude transformation matrix of any vector from the reference orbital to body coordinate 

in terms of quaternions is expressed as follows (Wertz 2012, Adnane et al. 2018) 

𝐴 = [

𝑞1
2 − 𝑞2

2 − 𝑞3
2 + 𝑞4

2 2(𝑞1𝑞2 + 𝑞3𝑞4) 2(𝑞1𝑞3 − 𝑞2𝑞4)

2(𝑞1𝑞2 − 𝑞3𝑞4) −𝑞1
2 + 𝑞2

2 − 𝑞3
2 + 𝑞4

2 2(𝑞2𝑞3 − 𝑞1𝑞4)

2(𝑞1𝑞3 − 𝑞2𝑞4) 2(𝑞2𝑞3 − 𝑞1𝑞4) −𝑞1
2 − 𝑞2

2 + 𝑞3
2 + 𝑞4

2

] (4) 

The error quaternion represents the difference between the current and commanded quaternions 

as follows Sidi (1997) 

[

𝑞1𝑒

𝑞2𝑒

𝑞3𝑒

𝑞4𝑒

] = [

𝑞4𝑐 𝑞3𝑐 −𝑞2𝑐 −𝑞1𝑐

−𝑞3𝑐 𝑞4𝑐 𝑞1𝑐 −𝑞2𝑐

𝑞2𝑐 −𝑞1𝑐 𝑞4𝑐 −𝑞3𝑐

𝑞1𝑐 𝑞2𝑐 𝑞3𝑐 𝑞4𝑐

] (5) 

where 𝑞𝑖𝑒 is the error quaternion vector; 𝑞𝑖𝑐 is the commanded quaternion vector. 
 

2.2 Control law 
 

A state control law uses error quaternions as attitude errors in three quaternion feedback control 

law. The closed loop Liapunov stability for 3-axis attitude manoeuvres has been demonstrated in 
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Wie et al. (1989). The control law is 

ℎ̇ = −𝐾𝑞𝑣𝑒𝑐 − 𝐷𝜔𝐵
𝐼  (6) 

where 𝑞𝑣𝑒𝑐 = [𝑞1𝑒 𝑞2𝑒 𝑞3𝑒]
𝑇  is the vector part of error quaternion; 

𝐾 = 𝑑𝑖𝑎𝑔[𝑘1 𝑘2 𝑘3]  is the positive angular control gains for each axis; 

𝐷 = 𝑑𝑖𝑎𝑔[𝑑1 𝑑2 𝑑3]  is the positive rate control gains for each axis; 

When the commanded and the current quaternions coincide, the error quaternion  𝑞𝑒 =
[0 0 0 1]𝑇. 

 

2.3 Estimator design  
 

In this section, the various steps of the design and the implementation of the proposed full state 

filter are performed. Explicit expressions of the system equation, transition matrix and observed 

equation are developed. Therefore, we present a more algorithm description omitting some 

theoretical considerations. It is worthy to mention that the basic theoretical concepts and the 

mathematical models of KF are described in detail in Yoon et al. (2017) and Zhai et al. (2017). 

The state vector (10 elements), to be estimated, includes the inertial angular rate (𝜔𝐵
𝐼 ), the 

attitude quaternion vector (𝑞), and the MOI ( 𝐽𝑚). The full state vector can be represented as 

𝑥 = [𝜔𝐵
𝐼  𝑞 𝐽𝑚]𝑇 = [𝜔𝑥  𝜔𝑦 𝜔𝑧 𝑞1 𝑞2 𝑞3 𝑞4 𝐼𝑥𝑥 𝐼𝑦𝑦 𝐼𝑧𝑧]

𝑇 (7) 

The dynamics and the kinematic model of the spacecraft can be expressed in vector form as 

follows 

[

𝜔̇𝐵
𝐼

𝑞̇

𝐽𝑚̇

] =

[
 
 
 
 
𝐽−1 [−𝜔𝐵

𝐼 × (𝐽𝜔𝐵
𝐼 + ℎ) − ℎ̇ + 𝑇𝑔𝑔]

1

2
 𝛺 𝑞

−
1

𝜏
 [𝐼3×3] 𝐽𝑚 ]

 
 
 
 

+ [

𝑢𝜔

04×1

03×1

] (8) 

where 𝐼 ,𝜏 , 𝑢𝜔 and 𝑇𝑔𝑔 are, respectively, the identity matrix, the time constant of the MOI, the 

white Gaussian noise with zero mean and gravity-gradient torque vector.  

The following equation gives the non-linear model and the state equation 

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓{𝑥(𝑡), 𝑡} + 𝑤(𝑡) (9) 

where 𝑤(𝑡) is the state noise vector with zero mean and covariance 𝑄(𝑡). 

The EKF algorithm is set as follows 

 

2.3.1 Propagation state 
To propagate the state equation (Eq. (9)), we use the backward difference as  

𝑥𝑘+1/𝑘 = 𝑥𝑘/𝑘 + 𝑥̂̇𝑘/𝑘  ∆𝑡 (10) 

where 𝛥𝑡 is the integration step size. 

The covariance propagation is 

𝑃𝑘+1/𝑘 = 𝛷𝑘+1/𝑘𝑃𝑘/𝑘𝛷𝑘+1/𝑘
𝑇 + 𝑄𝑘+1 (11) 
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where 𝑄 is the process noise covariance matrix and 𝛷 is the state transformation matrix given 

by 

𝛷𝑘+1/𝑘 ≈ 𝐼10×10 + 𝐹𝑘+1/𝑘𝑇𝑠 (12) 

𝐹𝑘+1/𝑘 =

[
 
 
 
 
 
 
 𝜕𝜔𝐵

𝐼̇

𝜕𝜔𝐵
𝐼

𝜕𝜔𝐵
𝐼̇

𝜕𝑞

𝜕𝜔𝐵
𝐼̇

𝜕𝐽𝑚
𝜕𝑞̇

𝜕𝜔𝐵
𝐼

𝜕𝑞̇

𝜕𝑞

𝜕𝑞̇

𝜕𝐽𝑚

𝜕𝐽𝑚̇

𝜕𝜔𝐵
𝐼

𝜕𝐽𝑚̇
𝜕𝑞

𝜕𝐽𝑚̇
𝜕𝐽𝑚 ]

 
 
 
 
 
 
 

 (13) 

𝐹𝑘+1/𝑘 =

[
 
 
 
 𝐹3×3

𝜔𝜔 03×4 𝐹3×3
𝜔𝐽𝑚

𝐹4×3
𝑞𝜔

𝐹4×4
𝑞𝑞

04×3

03×3 03×4 −
1

𝜏
 [𝐼3×3] ]

 
 
 
 

 (14) 

The process noise covariance matrix 𝑄 is defined as follows (Yoon et al. 2017, Zhai et al. 

2017) 

𝑄𝑘 = ∬ 𝛷(𝑡𝑘+1

𝑘+1

𝑘

, 𝑢)𝐸[𝑤(𝑢)𝑤𝑇(𝑣)]𝛷𝑇(𝑡𝑘+1, 𝑣)𝑑𝑢 𝑑𝑣 (15) 

where 𝑢 and 𝑣 are independent variables; for our application, it is assumed that only the angular 

velocity terms have process noise and the matrix 𝐸 of dimension (10 × 10) is 

𝐸[𝑤(𝑢)𝑤𝑇(𝑣)] = [

𝐸11 03×4 03×3

04×3 04×4 04×3

03×3 03×4 03×3

] (16) 

where 

𝐸11 = 𝑑𝑖𝑎𝑔[𝑠1𝛿(𝑢 − 𝑣)     𝑠2𝛿(𝑢 − 𝑣)      𝑠3𝛿(𝑢 − 𝑣) ] (17) 

𝛿 is the Dirac Delta function and 𝑠 is the spectral amplitude for angular velocity. 

In Eq. (15), the term 𝛷(∆𝑡, 𝑢)𝐸[𝑤(𝑢) 𝑤(𝑣)𝑇]𝛷(∆𝑡, 𝑣)𝑇 is computed as 

[

(𝐼3×3 + 𝐹3×3
𝜔𝜔𝑢)𝐸11(𝐼3×3 + 𝐹3×3

𝜔𝜔𝑣)𝑇 03×4 (𝐼3×3 + 𝐹3×3
𝜔𝐽𝑚𝑢)𝐸11(𝐼3×3 + 𝐹3×3

𝜔𝐽𝑚𝑣)𝑇

𝐹4×3
𝑞𝜔

𝑢 𝐸11(𝐼3×3 + 𝐹3×3
𝜔𝜔𝑣)𝑇 04×4 𝐹4×3

𝑞𝜔
𝑢 𝐸11(𝐼3×3 + 𝐹3×3

𝜔𝐽𝑚𝑣)𝑇

03×3 03×4 03×3 

] (18) 

 

2.3.2 Correction state 
Observation Matrix  

𝐻𝑘+1 = [
𝜕𝑧

𝜕𝜔𝐵
𝐼

𝜕𝑧

𝜕𝑞

𝜕𝑧

𝜕𝐽𝑚
] (19) 
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where 𝑧 is the quaternion measurement from the star tracker and the mathematical model of the 

sensor is 

𝑧 = 𝑞 + 𝜂 (20) 

where 𝜂 is the zero mean Gaussian white noise with covariance matrix 𝑅 of the true quaternion 

of the satellite (𝑞). The computed observation matrix is 

𝐻𝑘+1 = [04×3 𝐼4×4 04×3] (21) 

Kalman Gain Matrix 

 𝐾𝑘+1 = 𝑃𝑘+1/𝑘 𝐻𝑘+1
𝑇 ( 𝐻𝑘+1 𝑃𝑘+1/𝑘 𝐻𝑘+1

𝑇 +  𝑅𝑘+1)
−1

 (22) 

Update state  

𝑥𝑘+1/𝑘+1 = 𝑥𝑘+1/𝑘 + 𝐾𝑘+1(𝑧 − 𝐻𝑥𝑘+1/𝑘) (23) 

Update covariance 

𝑃𝑘+1/𝑘+1 = [ 𝐼10×10 −  𝐾𝑘+1 𝐻𝑘+1]𝑃𝑘+1/𝑘 (24) 

 

 

3. Results and discussion 
 

Aiming to show the advantages of our proposed approach, the simulation is performed in the 

following order: 

• Establish an Orbit /Attitude propagator, which models the rigid microsatellite dynamics and 

kinematics over a period of 600 s based on the satellite parameters as summarized in Table 1. This 

propagator may include gravity gradient and aerodynamic drag as external perturbing torques. 

• Apply a proportional derivative (PD) controller on a reaction wheels triad in a standard 

configuration. The controller is adopted for its simplicity, global stability and board applicability 

(Salem and Aly 2015). Knowing that the use of other controllers such as proportional–integral–

derivative, sliding mode and H-infinity can also achieve three-axis attitude stabilization. The 

reaction wheel is characterized by a momentum of inertia equal to 8 × 10−4 𝑘𝑔.𝑚2 and a 

maximum speed of ±5000 𝑟𝑝𝑚, which give a maximum angular momentum of 0.42 𝑁𝑚𝑠 and 

a maximum wheel torque of 5 × 10−3𝑁𝑚. 

• Design and implementation of an EKF algorithm to estimate the 10 elements of the state 

vector (angular velocity, quaternion and inertia tensor) based on the data provided by the star 

tracker. The estimator is randomly initialized and there is no need to use nominal inertia. 

Furthermore, the estimation is applied in nadir pointing mode.  

• Table 2 summarizes the EKF parameters. 

• Perform a static simulation through Monte-Carlo algorithm iterated 10000 times, within 

which the true inertia matrix change randomly over ±(0 ÷  25)% interval for each axis. The 

error between the estimated and the true inertia tensors is calculated at each iteration.  

The estimated and the true angular velocities in three axes, as well as the error, are shown in 

Figs 1-2, respectively. The root mean square (RMS) error of the angular velocity estimation is 

about 2.8 × 10−5𝑑𝑒𝑔/𝑠. Fig. 3 illustrates the real and estimated quaternion and quaternion 

estimation error, with an RMS approximately equal to 11.7 × 10−6. Fig. 4 shows the estimated  
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Table 1 Propagator parameters 

Parameters Value 

Orbital  parameters 

Inclination (𝑑𝑒𝑔) 

Initial 𝜔 (𝑑𝑒𝑔/𝑠) 

Altitude (𝑘𝑚) 

98 

[0 – 0.06 0]𝑇 

700 

Initial quaternion attitude  [0.02571 − 0.02662 0.01813 0.9992]𝑇 

Reference quaternion attitude  [0 0 0 1]𝑇 

Sample time (𝑠)  0.1 

True inertia tensor  (𝑘𝑔.𝑚2)  [20.3 17.3 15.2]𝑇 

 
Table 2 Estimator parameters 

Parameters Value 

Initial 𝜔 (𝑑𝑒𝑔/𝑠) [0 – 0.06 0]𝑇 

Initial quaternion attitude [0 0 0 1] 𝑇  

Initial inertia tensor  (𝑘𝑔.𝑚2) [25 20 13] 𝑇 

Measurement noise covariance matrix of star tracker 

𝑅 (𝜎) 
3.2 × 10−5 

Time constant 𝜏 106 

 
Table 3 Performance comparison of algorithms 

 
LSE#1 Kutlu et al. 

(2007) 

EKF#1 Kim et al. 

(2016) 

EKF#2 Bellar and 

Mohammed (2019) 
Proposed algorithm 

Sensors 

Gyroscope 

Magnetometer 

Sun sensor 

Gyroscope Gyroscope Star Tracker 

True inertia 

[𝐼𝑥𝑥  𝐼𝑦𝑦  𝐼𝑧𝑧] 
[20 17 15] [14.2 17.3 20.3] [14.2 17.3 20.3] [20.3 17.3 15.2] 

Inertia estimation 

error (%) 
[1.62 1.99 1.57] [0.12 0.07 0.07] [0.06 0.02 0.008] [0.04 0.09 0.06] 

Applied torque 

(𝑁𝑚) 
 [1 1 − 2] × 10−3 [1 1 − 2] × 10−3 

PD (nadir pointing 

mode) 

Quaternion 

estimation error 
0.02   11.7 × 10−6 

Angular velocity 

estimation error 

(𝑑𝑒𝑔/𝑠) 

0.2 5 × 10−3 3.6 × 10−3 2.8 × 10−5 

Validation test   Monte Carlo Monte Carlo 

 

 

and the true inertia tensors. The convergence time of the estimated inertia tensor is about 150 

second. 

Table 3 presents comparison between the proposed algorithm and three other methods 

implemented in Kutlu et al. (2007), Kim et al. (2016) and Bellar and Mohammed (2019). This 

comparison takes into account the quaternion, angular velocity and inertia tensor estimation error 

and the applied toque by reaction wheels. For simplification, these estimators are named LSE#1,  
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Fig. 1 Real and estimated angular velocity 

 

 

EKF#1 and EKF#2, respectively. 

As can be clearly seen from Table 3, the LSE#1 has an inertia estimation error about 2%.  
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Fig. 2 Angular velocity estimation error 

 

 

This filter produces a poorest accuracy compared with the adopted method in this work despite the 

use of three sensors (gyroscope, magnetometer and sun sensor). Otherwise, the results obtained 

with EKF#1 and EKF#2 give acceptable moment of inertia estimation with an error of 0.12%  
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Fig. 3 Real and estimated quaternion and quaternion estimation error 

 

 
Fig. 4 Real and estimated moment of inertia 
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Fig. 4 Continued 

 

 

and 0.06%, respectively. The both methods and the proposed method proved to meet the 

requirement satellite inertia tensor estimation with little difference in the accuracy obtained. 

However, a nominal inertia matrix is included in the EKF#1 algorithm, which has an unfavourable 

effect on the angular velocity estimation (Bellar and Mohammed 2019). In addition, the proposed 

algorithm estimates the full attitude of the satellite (quaternion and angular velocities) and without 

any application of constant magnitude control torques, applied in EKF#1 and EKF#2. This torque 

creates a tumbling attitude for the satellite and causes angular velocity divergence (see Fig. 5), 

which induces an unwanted behaviour and can lead to catastrophe in orbit. Therefore, this 

confirms the significant advantages of our proposed method, by ensuring better inertia estimation 

accuracy (around 0.09%) in nadir pointing mode. 

The estimator capability is highlighted in Fig. 6, capturing the algorithm accuracy through a 

display of a histogram of MOI percent error for a Monte Carlo run 10000 times. In fact, the 

estimator converges for all over Monte Carlo runs and never diverges; moreover, the estimation 

error does not exceed 0.12% of the real inertia tensor, which confirms the performance of the 

filter within the interval of interest. 
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Fig. 5 Constant control torque effect on the attitude and angular velocity 

 

 

Fig. 6 Histogram of inertia tensor error (%) for 10000 Monte-Carlo runs 
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Fig. 6 Continued 
 

 

4. Conclusions 
 

This paper presented an estimation algorithm of attitude and inertia tensor. The proposed 

method consisted of an extended Kalman filter design based on star tracker data to obtain the 

quaternion, the angular velocity and the inertia parameters for a rigid nadir pointing microsatellite. 

The estimation approach drives its advantages from the fact that there is no use of nominal inertia 

and no application of constant control torque, which, at a time, reduce the impact of the inertia 

tensor error on the attitude estimation and avoid undesirable tumbling attitude. The simulation 

results, validated through Monte Carlo analysis, showed the efficiency of the proposed algorithm 

as well as the conformity and the accuracy of the attitude and the inertia tensor estimation.  

Future works aim to develop a new hybrid navigation filter, which simultaneously estimates 

full attitude, inertia tensor and orbital parameters of the satellite. 
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