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Abstract.  A modified fuzzy mechanical control of large-scale multiple time delayed dynamic systems in states is 
considered in this paper. To do this, at the first level, a two-step strategy is proposed to divide a large system into 
several interconnected subsystems. As a modified fuzzy control command, the next was received as feedback theory 
based on the energetic function and the LMI optimal stability criteria which allow researchers to solve this problem 
and have the whole system in asymptotically stability. Modeling the Fisher equation and the temperature gauge for 
high-speed aircraft and spacecraft shows that the calculation method is efficient. 
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1. Introduction 
 

Mathematics seems to be a guide, appearing by the physicist at the right time, bringing light to 

the gloomy world of physics. However, the mutual influence of mathematics and physics is far 

more complicated than the story told. In most recorded history, physics and mathematics are not 

even separate subjects. The mathematics of ancient Greece, Egypt, and Babylon believed that we 

live in a world where distance, time, and gravity all operate in a certain way. The mathematical and 

statistical models for many physical, nature and technical systems are generally large or contain 

dynamic interaction phenomena and the cost for testing these models of control purposes are often 

too high. Therefore, it is natural to find a technique that can reduce the calculation costs. The large 

systems methodology provides this technique by manipulating the structure of the system in some 

way. Therefore, research on modeling, math, analysis, collection, optimization and control of 

large-scale systems has generated great interest. Recently, many of these methods have been 

proposed to verify the stability of the literature and the stability of large systems (Yang and Chang 

1996, Bedirhanoglu 2014, Eswaran and Reddy 2016 and references included). 
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In a computer network, because different communication subnets and network architectures 

adopt different transfer control methods, the transfer delay in the communication subnet is 

determined by the network status. The delay time caused by the electrical signal response is fixed. 

The smaller the response time, the smaller the delay, the larger the bandwidth, and the higher the 

transmission rate. Therefore, the larger the channel bandwidth, the smaller the delay. Delay time is 

the time it takes to get a packet from a specific point. Delay time is generally the sum of response 

delay and transmission delay. Delays usually occur in other technological systems. Computer 

control systems, for example, experience delays because computers take a long time to perform 

digital tasks. Also, there are remote operations, radar, power grid, transportation, metal delay and 

so on. The outputs of these systems do not respond to the input data until a certain amount of time 

has passed. The introduction of a delay factor usually causes instability and often complicates the 

analysis. Therefore, the analysis of the delay stability of the system on research (Mori 1985 and 

Trine Aldeen 1995) have published and executed by demonstrations. 

In recent years, there has much been on the topic of a growing interest in system controls. 

There are already many successful applications. Despite that of its success, it is clear that a great of 

basic problems remain to be solved and the main problem with control systems is system design to 

ensure stability. Recently, there have been many studies on the stability (see Sugeno 1992, Wang et 

al. 1996, Tanaka et al. 1996, Feng et al. 1997 and references). However, studies in the literature 

have yet to solve the stability and non-stable problem of large systems with multiple delays.  

Consequently, this study has a stability criterion based directly on the Lyapunov method to 

provide asymptotic stability to large systems with multiple delays. In accordance with this 

criterion and decentralized control schemes, fuzzy control groups are incorporated, stabilizing 

large-scale systems in multiple delays consisting of multiple interconnected subsystems. 

Furthermore, these subsystems are represented by a fuzzy Takagi-Sugeno model in multiple 

delays. In these models, each rule is represented by a linear system model, so linear feedback 

control can be used as feedback stability. Therefore, the kind of control design is based on the 

fuzzy model that uses a parallel distributed compensation (PDC) scheme. The ideas are those all 

linear local linear models control feedback share the same premises. The resulting controller is 

typically nonlinear with blend of each linear fuzzy rule. 

In summary, we briefly introduce Takagi Sugeno’s fuzzy model with some delays and describe 

the system. The stability criterion is then derived and considered based on the Lyapunov method, 

ensuring asymptotic stability of systems with multiple delays. Finally, the results explain and draw 

conclusions for the numerical simulation examples they are referred to. 
 

 

2. System description 
 

The following we review a nonlinear parabolic PDE (Razavi and Sarkar 2018): 

 

(1) 

where based on 
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, . 

To simplify the construction of the equation Eq. (1), we consider a nonlinear J as 

interconnected in subsystems Fj, j=1,2,…,J. The jth as isolated subsystems (without any 

interconnection) of F are represented by the technique of IF-THEN delay control model of Takagi-

Sugeno. The main feature of the Takagi-Sugeno fuzzy model with multiple delays is the 

expression of each of rule by means of a linear equation of state, and the model is as follows (Chen 

2014, Chen et al. 2019, 2020): 
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According to the above mentioned analysis, these jth Fj could be  
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The fuzzy control, according to a distributed control system using PDC technology, is used to 

stabilize a large number of synthetic design. The concept of the PDC scheme is to provide a way to 

handle each distribution rule for the relevant rules of the Takagi Sugenno model with multiple 

delays. Each rule in the model is described linear, so you can use linear control theory to develop 

controllers.  

The fuzzy controller of the jth subsystem of rule i is derived as follows. 

IF any of x1j(t) is Mi1j and…xgj(t) is Migj; THEN one 

uj(t)=-Kijxj(t), (5) 

in which i =1, 2,…, rj. Hence, these final outputs of the fuzzy controllers are  

 

(6) 

Combine Eqs. (6) and (4), the subsystem becomes 

.
 

(7) 

Theorem 1: These multiple time-delay fuzzy large-scale systems F are asymptotically 

regarded as stable condition, if the feedback gain (Kij) is chosen in satisfying at least one of the 

following conditions, j=1,2,…,J:  
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(11) 

,
   

(12) 

with  

, , , 

, ,  

and λM(.) is the maximum eigenvalues; λm(.) is minimal eigenvalues. 

Proof: See Appendix.  

Remark 1: Both conditions are met by default. The stability of systems F with delays can be 

verified using the equations in (8) and (9). Therefore, it is advisable to check for asymptotic 

stability under certain conditions. If this fails, another condition is required.  

An evolutionary bat algorithm (EBA) based on a complex system of bats in the wild is 

proposed. Unlike other cluster reconnaissance algorithms, the strength of EBA lies in the fact that 

only one of the parameter (called the environment) is determined. Therefore, it is necessary to use 

an algorithm to solve the problem (Yan et al. 1998, Tsai et al. 2015, Zandi et al. 2018). During the 

evolution, the choice of support determines the different phases of the study. In this study, we 

chose air because it is the original natural habitat in which bats live. The capabilities of the EBA 

could be summarized by four steps: 

Initialization: random assignment of artificial reagents, diffusion in the solution area. 

Movement: An artificial example is movement. Generate a random number and make sure it 

doesn’t exceed a fixed heart rate intensity. If positive, a random walking process is used to move 

the artificial specimen.
1t t

i i
x x D  , in which these xt

i indicate the coordinate in these i-th 

artificial agents in thees t-th iteration, then xt−1
i is the last iteration i-th artificial agents, and D 

moving distance as follows. 

 

where y=0.17, ΔT∈[-1,1] random number when the chosen mediums are air. 

,
  

where random β; xbest is almost best solution are found so long throughout all of the artificial 

agents; and xtR
i new coordinates in these artificial mean upon each walking movement. 

Then we use the custom fitness function to calculate the artificial treatment fit and update it 

using the best stored solution. 
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4. Example 
 

In this section, we will examine Fisher’s equations and temperature control of high-speed 

aircraft cooling coils to demonstrate about this effectiveness of these proposed method in design. 

Fisher’s equations have been used as the basis for various models of spatial gene spread of 

populations, chemical wave propagation, flame propagation, branched brown motion processes, 

and reactor theory. A full description of the Fisher equation is provided in (Zhang 2015, Zhou et al. 

2015). 

 

subject to the Dirichlet boundary conditions 

 

The purpose of this example is to create the fuzzy controller based on the system stabilization 

model (4.1). 
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, , , , ,
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where )](  )([)( 21111 txtxtxT  , )](  )([)( 22122 txtxtxT  , )](  )([)( 23133 txtxtxT  are in and the 

matrices Aij, Bij and τkj  are shown in Eqs. (17a)-(17c). 

The pairs (Aij, Bij), i=1,2; then j=1,2,3 are all locally controllable. Then we need to control (4.5) 

where three designed fuzzy controllers by these PDC schemes are described as the following. 

Fuzzy controller j=1:  

Rule No. 1: If x11(t) is about 4; Rule No. 2: If x11(t) is about -4 

Then one of  

; or 
 (18) 

Choosing these closed-loop eigenvalues (-27.8, -8) for an A11−B11K11 and these closed-loop 

eigenvalues at (-17, -28) are A11−B11K11, we would get K11=[-0.8848 -13.946] and then K21=[-

27.153 -14.4128]. 

Fuzzy controller j=2: 
Rule No. 1: If x12(t) is considered about 0; Rule No. 2: If x12(t) is considered about 4 

Then we get  

 and we get , (19) 

In another way, we choose these closed-loop eigenvalues (-27.5, -8.5) in A12−B12K12 and these 

closed-loop eigenvalues (-16.5, -29) in A22−B22K22, we have K12=[2.1493 -13.9627] and K22=[-

20.7884  -14.0162]. 

Fuzzy controller j=3:  

Rule No. 1: If x13(t) is about 3; Rule No. 2: If x13(t) is about -3 

Then the  

;
 
and Then

 . (20) 

Choosing one of the closed-loop eigenvalues saying (-28, -10) for A13−B13K13 and one of these 

closed-loop eigenvalues (-20, -23) for A23−B23K23, then some get K13=[-1.7114 -12.1111] and  

K23=[-21.2908 -11.152]. 

The choice and dominance of an appropriate matrix to satisfy Theorem 1 will be key issues to 

address. In this article, we will use EBA to find the right solution. The solution obtained in this 

case can be divided into two categories: possible and impossible. That said, developing an 

adaptive function with binary arithmetic is an easier way to meet the needs of this application. In 

this article, we use the Lyapunov function method to construct a fitness function according to 

stability criteria derived from the LMI state. The logical AND operation is used in the fit function 

to validate a solution and generate a binary classification result for the solution found. The formula 

for the training function is: 

 

in which F is one of these fitness values and   is regarded as follows 

 

)()( 1111 txKtu  )()( 1211 txKtu 

),()( 2122 txKtu  )()( 2222 txKtu 

)()( 3133 txKtu  )()( 3233 txKtu 



 


                       otherwise.,0

.0 and 0 if,1 TPP
F

)()( KBAPPKBA ii

T

ii 
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Fig. 1 The states of the nonlinear systems 

 

 
Fig. 2 The states of the nonlinear systems 

 

 
Fig. 3 The states of the nonlinear systems 

 

 

If the elements of the array must always be symmetric, EBA is modified using the array. Also, 

the matrix and boundary conditions are used in the initialization process. Using the LMI 

optimization algorithm when the matrix is affected by the constraints of the same region, a 

workable solution is provided in Eq. (21). 
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,  . 
(21) 

Combining Eqs. (13)-(15), (21), (18)-(20) and (10)-(12) yields  

, , , 

= , , ,

, , , ,

 , , , ,

 , ,  

(22) 

From Eq. (9), we have 

, , 

 

(23) 

and the eigenvalues of them are given below: 

 (24) 

 (25) 

. 
(26) 

These math matrices in Λj (j=1,2,3) are considered with positive definite, which means 

Theorem 1 then let these fuzzy controllers (4.6-4.8) asymptotically in stabilization of the system 

(4.5). Simulation in results are all illustrated in the Figs. 1-3 with random initial conditions. 

 

 

5. Conclusions 
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delays, based on the direct Lyapunov method. Based on this criterion and distributed control 

scheme, the controllers are synthesized by the PDC to stabilize these large-scale systems with 

multiple delays. Finally, the numerical simulations confirmed the effectiveness of the method.  
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Appendix: Proof of Theorem 1 
 

(I): Let these Lyapunov function in these multiple time-delay fuzzy large-scale systems F are 

defined as  
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jkjk PP , jNk ,2, ,1  . We therefore evaluate these time 

derivatives of V in the trajectories of Eq. (3.3), so we have 
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Substituting Eqs. (A3)-(A6) into Eq. (A2) yields 
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(A7) 

According to these Eq. (8), we therefore get 0V  as well as the proof in condition (I) is then 

satisfied. 

(II): Based in Eq. (A7), we then get 
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derivatives are negative if one of these matrices Λj (j=1,2..,J) is positive digit, which accomplish 

one of the proof in condition (II). 
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