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Abstract.  The present study investigates axial vibration of a FG nanobeam using nonlocal elasticity theory under 
clamped-clamped and clamped-free boundary conditions. Power law, exponential law and sigmoid law are applied 
as grading laws to examine the effect of the material distribution on axial vibration of the FG nanobeam. A parametric 
study was done to examine the effect of length scale on the dynamic behavior of the structure and the results are 
presented. It was observed that consideration of the nonlocal length scale is essential when analyzing the free 
vibration of a FG nanobeam. The results of the present study can be used as benchmarks in future studies of FG 
nanostructures. 
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1. Introduction 
 

Nanostructures have been a focus of study for researchers in recent decades. Most recently, 

functionally graded (FG) materials that exhibit smooth variation in material properties have been 

examined for use in FG nanostructures (Reddy 2011, Reddy and Kim 2012, Mochida and Ilanko 

2016, Petrolo et al. 2016, Ebrahimi and Farazmandnia 2018, Ebrahimi and Fardshad 2018, 

Ebrahimi and Heidar 2018, Sayyad and Ghugal 2018). A survey of the literature suggests that the 

properties of materials on the nano-scale are size dependent and the influence of small variations 

in length scale must be considered to improve modeling of the mechanical behavior of 

nanomaterials. Non-local continuum theories that consider the material length scale may provide 

detailed and accurate predictions of the behavior of nanostructures (Reddy 2007, 2010). Reddy 

(Reddy 2007, 2010) has presented non-local versions of various beam and plate theories, and 

derived numerical solutions of bending, vibration, and buckling of nanostructures. Reddy and El-

Borgito (Reddy and El-Borgi 2014) formulated the governing equations of the Euler-Bernoulli and 

Timoshenko beams based on Eringen’s nonlocal differential constitutive model and modified von 
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Karman nonlinear strains. According to this aforementioned discussion, a number of studies have 

been presented in order to use the nonlocal elasticity theory in constitutive law of nanomaterials as 

Refs. (Bastanfar et al. 2019, Hamidi et al. 2019, Hosseini et al. 2019, Hamidi et al. 2020, Hosseini 

et al. 2020, Khosravi et al. 2020a, b, c, d). 

Rahmani and Pedram (Rahmani and Pedram 2014) applied Navier’s method to study 

analytically the vibration behavior of graded nonlocal Timoshenko nanobeams. Aydogdu modeled 

a nonlocal elastic rod by considering small-scale effects on the axial vibration of nanostructures 

(Aydogdu 2009). In another study, Aydogdu examined axial vibration of single-walled carbon 

nanotubes embedded in elastic medium using nonlocal elasticity theory (Aydogdu 2012). Eltaher 

et al. studied the transverse vibration of Euler-Bernoulli FG nanobeams using the finite element 

method (Eltaher et al. 2012). Simsek et al. presented an analytical solution for bending and 

buckling of FG nanobeams using nonlocal Timoshenko beam theory. They derived governing 

equations and boundary conditions using the principle of minimum potential energy and developed 

a Navier-type solution for simple-support boundary conditions (Şimşek and Yurtcu 2013). Eltaher 

et al. used static and stability analysis of FG nanobeams to examine the size-dependency of FG 

nanobeam behavior (Eltaher et al. 2013). Nazemnezhad et al. investigated the transverse vibration 

of FG nanoscale beams using von Karman type nonlinearity (Nazemnezhad and Hosseini-Hashemi 

2014). Nazemnezhad and Hosseini-Hashemi analyzed nonlinear free vibration of simply-supported 

FG nanobeams with surface effects. They investigated the effects of surface elasticity, tension and 

density on the nonlinear free vibration of FG nanobeams using Euler-Bernoulli beam theory 

(Hosseini-Hashemi and Nazemnezhad 2013). Rahmani and Pedram analyzed the effect of size on 

vibration of FG nanobeams. They modeled FG nanobeams using nonlocal Timoshenko beam 

theory and varied the material properties of the FG nanobeams along the thickness of the beam 

using power law (Rahmani and Pedram 2014). They showed that the power law index had an 

important influence on the vibration response of FG nanobeams and that dynamic behavior can be 

increased by selecting appropriate values for the power law index. 

Khosravi and Hosseini (2020) employed the nonlocal elasticity theory and viscoelastic mass 

nanosensor to study the torsional behaviour of the model; the finite difference method was 

established to prove the accuracy of obtained results. Khosravi et al. (2020) established the 

nonlocal model along with the Rayleigh-Ritz theory to investigate the small scale torsional 

behaviour of the single-walled carbon nanotubes for free case and for the state in which model is 

subjected to the linear and harmonic torques. Khosravi et al. (2020) conducted torsional vibration 

of a single-walled carbon nanotube embedded in an elastic medium to evaluate the effect of the 

medium, excitation frequency, time constant, geometry and type of loads on the responses; also, 

the resonance behaviour was evaluated. Hosseini and Khosravi (2020) established the nonlocal 

theory to assess the free and forced torsional vibration of single-walled carbon nanotubes under 

both type of loadings. 

Several studies have examined the transverse vibration of FG nanostructures (Asgharifard 

Sharabiani and Haeri Yazdi 2013, Şimşek 2014, Rahmani et al. 2016, 2017), but no studies have 

been found on axial vibration of FG nanobeams. The present study examines the influence of 

nonlocal parameters on axial vibration of FG nanobeams and an analytical solution for clamped-

clamped and clamped-free boundary conditions is proposed. A parametric study was employed to 

investigate the effect of the power law index and nonlocal parameters on the dynamic behavior of 

a nanostructure. 
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Fig. 1 Schematic illustration of FG nanobeam 

 
 

2. Formulation 
 

2.1 Materials properties 
 

The nanobeam considered in this study was assumed to have length L, width b and thickness h 

(Fig. 1). The FG nanobeam was studied under clamped-clamped and clamped-free boundary 

conditions. 

The material properties of the FG nanobeam, e.g., Young modulus (E) and mass density (ρ) 

changed across the thickness of the nanobeam as shown in Tables 1, 2 and 3 and was assumed to 

follow the rule of mixtures (Chi and Chung 2006) modified to achieve to a symmetric distribution 

(Mahi et al. 2010). 

In these tables E1 is the material property at the upper and lower surfaces, and E2 is the material 

property in the middle of the FG nanobeam. In this relation, n is a non-negative number that 

demonstrates the variation profile through the thickness of the nanobeam. Tables 1 to 3 show that 

the upper and lower surfaces of the FG nanobeam (z=+h/2, -h/2) are purely metallic and the 

middle of the nanobeam (z=0) is purely ceramic. 

 

2.2 Kinematic equations 
 
The displacement components can be expressed in the following relation: 

 
(1) 

 
(2) 

where v0 and u0 are the transverse and the axial displacements of each point located on the mid-

plane, and t is time variable. Based on EBT (Euler-Bernoulli beam theory), nonzero strain is 

defined as: 

 
(3) 

where k0 is the strain related to bending and εxx
0 is extensional strain. 

 

2.3 Equations of motion 
 

Hamilton’s principle (Tauchert 1974) is defined as: 

   0 0,, , , xu x z t u x t zv 

   0, , ,v x z t v x t

    0 0

0, 0,, ,xx x xx xxu x t zv x t zk    
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Table 1 Power law 

 
 

 

 

 

 

 

 

 

 
Table 2 Exponential law 

 
 

 

 

  

 

  

 
Table 3 Sigmoid law 

 

  

 

 

 

 

   

 

    

 
Table 4 Material properties of FGM  

Properties Steel Alumina (Al2O3) 

E 210 (GPa) 390 (GPa) 

 

7800 (
𝑘𝑔

𝑚3)  3960 (
𝑘𝑔

𝑚3) 

 

 

 

(4) 

where δT is the virtual kinetic energy , δU is the virtual strain energy and δV is the virtual potential 

of external load. 
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(6) 

 
(7) 

The force resultant can be represented as: 

 

(8) 

The moment resultant and mass moment of inertia can be represented as: 

 

(9) 

 

(10) 

where 𝑁̅ is the applied axial force (compressive), f(x,t) is the axial distributed force, and q(x, t) is 

the transverse distributed force. Substituting Eqs. (5), (6) and (7) into Eq. (4), produces the Euler-

Lagrange equation: 

 
(11) 

 
(12) 

Based on the distribution of the material, I1 and I2 are parameters that equal zero. Thus: 

 
(13) 

 

2.4 Nonlocal elasticity theory 
  

Despite the elastic continuum theory that the stress field at point X depends only on the strain at 

the same point, based on Eringen nonlocal theory stress field at point X not only depends on strain 

at that point but also depends to all other points of the body. Thus the nonlocal stress tensor at 

point X can be obtained as follows: 
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(14a) 

 (14b) 

T(X) represents the classical macroscopic stress tensor at point X, the kernel function 
'( ),K X X  denotes the nonlocal modulus, (X'−X) indicates the distance and τ is the material 

constant which depends on type of material. The macroscopic stress tensor at a point X in a 

Hookean solid is represented by T and is depends to the strain at the same point which is based on 

the generalized Hook’s law. C is the fourth-order elasticity tensor which represents the double-dot 

product. A simplified equation of differential form is utilized due to the complicated solution of the 

integral constitutive equation, which is as follows: 

 

 

(15) 

2(1 )L    and 2  indicates nonlocal differential and the Laplacian operator, respectively. τ is 

determined by 
0e l  where e0 is a constant which varies based on each material and α and l  

represents the internal and external characteristic length. The nonlocal parameter which is 

represented by μ varies in accordance with different materials. 

For Euler-Bernoulli nonlocal FG beam written as: 

 

(16) 

where σ and ε are the nonlocal stress and strain, respectively and E is the Young’s modulus. 

Integrating Eq. (16) into the FG beam cross-sectional area obtains an axial force-strain of:  

 
(17) 

 

(18) 

Eq. (17) results in: 

 
(19) 

Substituting Eq. (19) into Eq. (11) obtains the displacement equation for free axial vibration as: 
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(21) 

Eq. (21) is the consistent fundamental equation of the nonlocal FG nanobeam model for axial 

vibration. Assuming that nonlocal parameter μ is equal to zero produces the classic equation for a 

FG nanobeam model. Assuming the homogeneity of the material and nonlocal continuum, the 

equation obtained will be same that obtained by Ref. (Aydogdu 2009). 

By solving Eq. (21) considering harmonic vibration and using the separation of variables 

method, 𝑢0 can be defined as: 

 
(22) 

Substituting Eq. (22) into Eq. (21) obtains: 

 
(23) 

where β is defined as: 

 

(24) 

Non-dimensional parameter Ω2 is defined as: 

 

(25) 

Thus: 

 

(26) 

The solution for Eq. (23) takes the form: 

 
(27) 

Clamped-clamped and clamped free boundary conditions are assumed to determine the 

frequency parameter and mode shapes: 

Clamped-clamped
  

(28) 

Clamped-free
  

(29) 

The non-dimensional form of Eq. (28) can be applied for clamped-clamped boundary 

conditions in Eq. (27) as: 
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(31) 

To satisfy Eq. (31), β=kπ, k=1,2,… and k is the mode number. Using Eq. (25), the frequency 

parameter for clamped-clamped boundary conditions can be defined as: 

 

(32) 

Under clamped-free boundary conditions, the non-dimensional form of Eq. (29) can be 

substituted into Eq. (27) as follows: 

 
(33) 

 
(34) 

If , Eq. (34) satisfies and the frequency parameter for a clamped-

free nanobeam becomes: 

 

(35) 

Assuming μ=0 makes it arrive at the classic form of the frequency parameter. 

 

 

3. Results and discussion 
 

3.1 Physical properties 
 

The FG nanobeam is composed of steel and alumina and the properties vary throughout the 

thickness of the beam according to the three functions as described. The bottom and top surfaces 

of the beam are pure steel. The middle of the beam is pure alumina. Table 4 lists the pure 

properties of the steel and alumina (h=0.5 nm and b=1 nm). 

To demonstrate the effect of small length scale on the axial vibration of a FG nanobeam, the 

ratio of local frequency to nonlocal frequency was studied under clamped-clamped and clamped-

free boundary conditions for different modes, scale coefficients and lengths. Frequency is non-

dimensional in the following equation: 

 

(36) 

To compare the results of this study with the results of previous studies, n in the power law is 

assumed to equal zero. This allows comparison with the results of Ref. (Aydogdu 2009), who also  
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Fig. 2 Nondimensional frequency for clamped-clamped boundary condition 

 

 

Fig. 3 Nondimensional frequency for clamped-free boundary condition 

 

 

assumed clamped-clamped and clamped-free boundary conditions. The small scale parameter in 

the study was μ=1 nm. Figs. 2 and 3 are plotted for the first three frequencies. Figs. 2 and 3 indicate 

that the non-dimensional frequency decreased as the length increased. 

The results of Ref. (Aydogdu 2009) are also shown for comparison in Figs. 2 and 3. When n=0, 

the results of the present study are consistent with the previous analytical results.  

Figs. 4(a), 4(b) and 4(c) show the clamped-clamped boundary conditions for power law. 

Clamped-free boundary conditions are shown in Figs. 4(d), 4(e) and 4(f). Parameter n is assumed 

for power law 0.1 in Figs. 4(a) and 4(d) and n = 1 was assumed in Figs. 4(b) and 4(e). In Figs. 4(c) 

and 4(f), n=10 was assumed. All parts of Fig. 4 incorporate the first three frequencies (k=1, 2, 3).  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 4 Nondimensional frequency versus length for three frequencies modes in which scale coefficient 

 

 

In these figures, it is evident that non-dimensional frequency increases as length increases. 

As shown, non-dimensional frequency for the clamped-clamped condition was greater than that 

for the clamped-free condition. As the non-dimensional frequency for a short length significantly 

increased, the rate of increase in the non-dimensional frequency slowed. 

Fig. 5 shows the exponential function. Figs. 5(a) and 5(b) show that as mode frequency 

increased, the non-dimensional frequency parameter increased. It can be seen in Table 2 that  
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(a) (b) 

Fig. 5 Nondimensional frequency versus length for two boundary conditions containing (a) clamped-

clamped and (b) clamped-free with the first three frequency modes for exponential law (nonlocal   

parameter 1 nm) 

 

  
(a) (b) 

  
(c) (d) 

Fig. 6 Nondimensional frequency versus length for clamped-clamped boundary condition (a) n=0, (b) 

n=0.1, (c) n=1 and (d) n=10 for clamped-free boundary condition (e) n=0, (f) n=0.1, (g) n=1 and (h) n=20 

based on sigmoid law 
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(e) (f) 

  
(g) (h) 

Fig. 6 Continued 

 

 

Fig. 7 Nondimensional frequency versus length with regard to different values for nonlocal parameter 

assumed for clamped-clamped FG nanobeam for power law 

 

 

exponential law was independent of n. 

Fig. 6 shows the sigmoid law under two boundary conditions. Parameter n is assumed to be  
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Exact solution for axial vibration of the power, exponential and sigmoid FG nonlocal nanobeam 

 

Fig. 8 Nondimensional frequency versus length with regard to different value for nonlocal parameter 

assumed for clamped-clamped FG nanobeam for exponential law 

 

 

Fig. 9 Nondimensional frequency versus length with regard to different value for nonlocal parameter 

assumed for clamped-clamped FG nanobeam for sigmoid law 

 

 

zero in sigmoid law, as shown in Figs. 6(a) and 6(e). Figs. 6(b), 6(c) and 6(d) show the clamped-

clamped boundary condition in which n is equal to 0.1, 1, and 10, respectively. Figs. 6(f), 6(g) and 

6(h) show the clamped-free boundary condition. The value of n is constant in Figs. 6(a), 6(b), 6(c) 

and 6(d). 

Figs. 6(a) to 6(d) show that the maximum non-dimensional frequency for the third mode was 

60 to 80. The maximum non-dimensional frequency for the third mode for the variation in non-

dimensional frequency in Figs. 6(e) to 6(h) was 40 to 46. This confirms that the variation of the 

ratio in the clamped-clamped condition was greater than for the clamped-free condition. 

Figs. 7, 8 and 9 assume clamped-clamped boundary conditions. Figs. 7 to 9 show the variation 

in non-dimensional frequency for the clamped-clamped boundary conditions for power, 

exponential and sigmoid law, respectively. In these figures, n = 4 and the first frequency mode was 

assumed. These figures contain five values for the small scale parameter (μ=0, 0.8,1,1.5,2).  

Figs. 7 to 9 indicate that, when the small scale parameter is neglected, the non-dimensional 

frequency was constant. As shown, as the small length scale increases, μ, the non-dimensional  
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Fig. 10 Nondimensional frequency versus length with regard to different value for nonlocal parameter 

assumed for clamped-free FG nanobeam for power law 

 

 

Fig. 11 Nondimensional frequency versus length with regard to different values for nonlocal parameter 

assumed for clamped-free FG nanobeam for exponential law 

 

 

Fig. 12 Nondimensional frequency versus length with regard to different value for nonlocal parameter 

assumed for clamped-free FG nanobeam for sigmoid law 
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Exact solution for axial vibration of the power, exponential and sigmoid FG nonlocal nanobeam 

 

Fig. 13 Nondimensional frequency versus mode number containing different n value for clamped-clamped 

case (power law) 

 

 

Fig. 14 Nondimensional frequency versus mode number containing different n value for clamped-free 

case (power law) 

 

 

parameter, decreases. 

A comparison of Figs. 7 to 9 based on the distribution of the FG nanobeam shows that non-

dimensional frequency for the power law is greater than that for exponential law and the non-

dimensional frequency for exponential law was greater than for sigmoid law.  

Figs. 10 to 12 show clamped-free boundary conditions (n = 4) in which the length was 

increased to 30 nm for the FG nanobeam and the non-dimensional frequency was 1.86, 1.28 and 

1.76, respectively. 

Figs. 13 and 14 show the non-dimensional frequency versus mode numbers for power law 

under the clamped-clamped and clamped-free boundary conditions, respectively. As shown, the 

mode number increased as the non-dimensional frequency increased. Figs. 13 and 14 indicate that 

the mode number increased as the difference in non-dimensional frequency for different values of 

n increased. 
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Fig. 15 Nondimensional frequency versus mode number for two boundary conditions demonstrated for 

exponential law 

 

 

Fig. 16 Nondimensional frequency versus length for clamped-clamped boundary condition for the 

selected values of the n in power law function (k=1 and μ=1 nm) 

 

 

Fig. 15 indicates the non-dimensional frequency with respect to the mode number for clamped-

clamped and clamped-free boundary conditions. As shown in the figure, the non-dimensional 

frequency increased as the mode numbers increased. The figure also demonstrates that, for the 

same mode, the non-dimensional frequency of the clamped-clamped condition was greater than 

that for the clamped-free condition. 

Figs 16 and 17 show the variation in non-dimensional frequency versus length for. n = (0, 0.1, 

1, 2, and 10) in the clamped-clamped and clamped-free boundary conditions, respectively. As seen, 

when L was greater than 10 nm, the non-dimensional frequency was constant. It should be noted 

that n was assumed to be constant here. 
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Fig. 17 Nondimensional frequency versus length for clamped-free boundary condition considering the 5 

values for n parameter in power law function (k=1 and μ=1 nm) 

 

 

Fig. 18 Nondimensional frequency versus length for clamped-clamped and clamped-free conditions for 

exponential law (k=1) 

 

 

Fig 18 shows the two boundary condition for exponential law, where L is less than 5 nm; the 

non-dimensional frequencies for the clamped-clamped and clamped-free boundary conditions were 

not identical. 

 

 

4. Conclusions 
 

An analytical solution and model for axial vibrations of a nanobeam were developed using non-

local elasticity. The underlying solution assumed two boundary conditions, different frequency 

modes, power law, exponential law, and sigmoid law were considered. The main conclusions are: 

• Increasing length increased the non-dimensional frequency. This increase becomes significant 

when the length is less than 10 nm.  
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• Increasing the nonlocal parameter decreased the non-dimensional frequency. 

• The non-dimensional frequency for power law was higher than that for exponential law and 

sigmoid law. 

• The frequency ratio for the clamped-clamped condition was greater that for the clamped-free 

condition. 

• When the frequency modes increased, the non-dimensional frequency increased; this increase 

was greater for the clamped-clamped condition than the clamped-free condition. 
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EC 

 

 

Nomenclature 
 
E Young modulus 

ρ mass density 

L length 

b width 

h thickness 

v0 Transverse displacements 

u0 axial displacements 

M moment resultant 

N force resultant 

f(x,t) axial distributed force 

q(x,t) transverse distributed force 
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