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Abstract.  Thermal buckling of functionally graded sandwich cylindrical shells is presented in this study. Material 
properties and thermal expansion coefficient of FGM layers are assumed to vary continuously through the thickness 
according to a sigmoid function and simple power-law distribution in terms of the volume fractions of the 
constituents. Equilibrium and stability equations of FGM sandwich cylindrical shells with simply supported 
boundary conditions are derived according to the Donnell theory. The influences of cylindrical shell geometry and 
the gradient index on the critical buckling temperature of several kinds of FGM sandwich cylindrical shells are 
investigated. The thermal loads are assumed to be uniform, linear and nonlinear distribution across the thickness 
direction. An exact simple form of nonlinear temperature rise through its thickness taking into account the thermal 
conductivity and the inhomogeneity parameter is presented. 
 

Keywords:  FGM sandwich cylindrical shells; thermal buckling; nonlinear temperature rise; Donnell 
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1. Introduction 
 

Functionally Graded Materials (FGM) are a novel class of composite materials. Whereas 

traditional composites are homogeneous in composition, FGMs possess a gradual spatial 

compositional variation of the composite material in terms of volume fraction and microstructure 

(Miyamoto et al. 1999). These new materials were proposed to reduce the local stress 

concentrations induced by abrupt transitions in material properties across the interface between 

discrete materials (Finot et al. 1996). FGMs were first suggested for thermal barrier coatings in 

aerospace structural applications and fusion reactors. They are now developed for general use in 

various fields of engineering. Typically, FGMs are made of a ceramic and a metal for the purpose 

of thermal protection against large temperature gradients. The ceramic material has excellent 

characteristics in heat resistance due to its low thermal conductivity. On the other hand, the ductile 

metal constituent prevents fracture due to its greater toughness. Functionally graded structures can 

be seen in nature. For example, the bone, human skin and the bamboo tree are all different forms 

of FGM. 

Circular FGM cylindrical shell is a common structure in many engineering fields like nuclear 
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reactor, gun barrel, aerospace component, and heat supply pipeline. Due to the importance and 

wide engineering applications of composites, a number of investigations dealing with thermal 

buckling of circular cylindrical shell had been published in the scientific literature. Thangaratnam 

et al (1990) used the finite element method (FEM) to examine the linear buckling analysis of 

laminated composite conical and cylindrical shells subjected to thermal loadings. Based on the 

first-order shell theory Shahsiah and Eslami (2003a, b) analyzed the thermal buckling of a 

functionally graded cylindrical shell by using the Sanders kinematic relations, and the Donnell 

stability equations. Three types of thermal loading as uniform temperature rise, linear and 

nonlinear temperature rise through-the-thickness were considered. The effect of imperfections on 

thermal buckling of functionally graded cylindrical shells for two different models of initial 

imperfections has been given by Mirzavand and Eslami (2005, 2006). They have also analyzed 

thermal buckling of simply supported FGM cylindrical shells that are integrated with surface-

bonded piezoelectric actuators using the third-order shear deformation shell theory and different 

types of thermal loads (Mirzavand and Eslami 2007). Wu et al. (2005) proposed closed form 

solutions for the critical buckling temperature differences of shells by using the classical shell 

theory. Kadoli and Ganesan (2006) analyzed of temperature-dependent clamped-clamped FGM 

cylinders using the FSDT. Based on the first-order shear deformation shell theory, Sheng and 

Wang (2008) studied thermal vibration, buckling and dynamic instability of FGM cylindrical 

shells embedded in an elastic medium, subjected to mechanical and thermal loads. The influence 

of geometrical imperfections on thermal instability of FG cylindrical shells using Donnell stability 

equations and Wan-Donnell model for axisymmetric imperfection is analyzed by Hoang and 

Nguyen (2008). On the basis of first order shear deformation theory (FSDT), Sheng and Wang 

(2008) studied dynamic stability, vibration and buckling of FGM cylinders under thermal and 

static axial loading. Najafizadeh et al. (2009) studied the influence of axial compression loads on 

static of FGM cylindrical shells stiffened by stringers and rings. The same authors (Sheng and 

Wang 2010) examined the buckling of FGM cylindrical shells by taking into account the 

piezoelectric and thermal loads effect. The effect of pure bending loading on the buckling response 

of FGM cylinders is investigated by Huang et al. (2011). Bagherizadeh et al. (2012) carried out 

thermal buckling behavior of cylindrical shells made of FGM in contact with the Pasternak elastic 

foundation subjected to uniform temperature rise based on the third-order shear deformations shell 

theory. A theoretical analysis on buckling and vibration characteristic of FGM magneto-electro-

thermo-elastic circular cylindrical shell are carried out by Zhang and Li (2013). By using the 

higher order shear deformation theory (HSDT), Lang and Xuewu (2013) investigated the effect of 

external loads, temperature, surface electric voltage and magnetic voltage, on the buckling 

behavior of FGM magneto-electro-thermo-elastic cylinders. The effect of the thickness variability 

and bidirectional material heterogeneity on the thermal buckling of cylindrical shells is 

investigated by Shariyat and Asgari (2013) by employing the third order shear deformation theory 

(TSDT), von Karman-type kinematic nonlinearity, and a nonlinear finite element method. Dung 

and Nga (2013) employed an analytical approach to analyze the effect of mechanical compressive 

loads and external pressures on the buckling and post-buckling behavior of an eccentrically 

stiffened FGM cylindrical shell. Based on the Donnell theory of shells combined with the von 

Kármán type of geometrical nonlinearity, thermal buckling of FGM cylindrical shells in two-

parameter elastic foundation with regard to temperature dependency of the constituents has been 

given by Sabzikar et al. (2014). Based on the FSDT, Sofiyev (2014) studied static and dynamic of 

four types of sandwich cylindrical shells covered by different coatings subjected to the hydrostatic 

pressure. Zhang et al. (2015) used classical shell theory to examined buckling responses of 
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elastoplastic FGM cylindrical shells subjected to axial compression and external pressure. Asadi et 

al. (2015) investigated the thermal instability of geometrically imperfect sandwich cylindrical 

shells made of a shape memory alloy (SMA)-fiber-reinforced composite and functionally graded 

face sheets based on the TSDT, von Karman geometrical nonlinearity and initial imperfection. 

Post-buckling response of FGM cylinders with spiral stiffeners using the classical plate theory 

(CPT) resting on elastic foundation is investigated by Shaterzadeh and Foroutan (2016). The static 

response of temperature-dependent and temperature-independent curved cylindrical, spherical, 

elliptical and hyperbolic shell panels is examined by Kar et al. (2016) on the basis of using finite 

element steps. Thang et al. (2016) examined buckling of sigmoid FGM cylindrical panels by 

considering the influences of variable thickness and imperfection. They have also analyzed FGM 

cylinders reinforced by stringers subjected to thermal and torsional loads (Thang et al. 2016). Sun 

et al. (2016) employed a new analytical method for buckling of FGM and carbon nanotubes 

(CNTs) cylindrical nano-shells under to compressive and thermal loads. Mehralian et al. (2016) 

examined buckling of FGM piezoelectric cylindrical nano-shell using a novel modified couple 

stress theory. Nasirmanesh and Mohammadi (2016) utilized the finite element method to studied 

buckling response of cracked FGM cylindrical shells under different loading conditions. Wan and 

Li (2017) used the classical Donnell shell theory to analyze thermal buckling of simply supported 

and clamped FGM cylindrical shell. Ni et al. (2017) employed Hamiltonian-based approach to 

study the vibration of functionally graded orthotropic circular cylindrical shell embedded in an 

elastic medium. Han et al. (2017) developed numerical approach for buckling behavior the 

cylindrical shell with FGM coating under thermal loads. Using the Reissner's shell theory, Ni et al. 

(2018) investigated thermal buckling of FGM orthotropic cylindrical shells with temperature-

dependent material properties. Zhou et al. (2019a) studied nonlinear static response of functionally 

graded porous graphene platelet reinforced composite cylindrical shells using Donnell’s theory 

and the HSDT. They have also investigated the effect of combined loads on the stability of 

functionally graded multilayer hybrid composite cylindrical shells by employing a novel two-steps 

micromechanical model for hybrid composites (Zhou et al. 2019b). Trabelsi et al. (2019) analyzed 

the response of thermal buckling of functionally graded plates and cylindrical shells by utilizing 

modified FSDT-based four nodes finite shell element. 

With the developments in manufacturing methods, the FGMs are taken into account in the 

sandwich structure industries. In general, the sudden change in the material properties of sandwich 

structure from one layer to another can result in stress concentrations which often lead to 

delamination. To overcome this problem, The FG sandwich structure is proposed because of the 

gradual variation of material properties at the interfaces between the face layers and the core.  

Generally, material properties of FGM sandwich layers are varying continuously through-the-

thickness according to power-law FGM (P-FGM). The FGM sandwich structure can alleviate the 

large interfacial shear stress concentration at the interfaces between the face sheets and the core. 

The use of sigmoid FGM sandwiches (S-FGM) can reduce these stresses more. 

In the present article, thermal buckling of simply supported P-FGM and S-FGM sandwich 

cylindrical shells is studied. A simple form of nonlinear temperature rise through its thickness 

taking into account the thermal conductivity and the inhomogeneity parameter is presented. The 

material properties such as the coefficient of thermal expansion and Young’s modulus are varied 

continuously through the thickness according to a sigmoid and power-law function. The 

equilibrium equations of functionally graded cylindrical shell are derived according to the 

Donnell’s theory. 
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2. Functionally graded sandwich cylindrical shells 
 

Consider a functionally graded sandwich cylindrical shell made of three layers of arbitrary 

thickness h, mid-surface radius R and length L as shown in Fig. 1. We use cylindrical coordinates 

with the origin located at the mid-surface of the cylinder, and coordinates x, θ, and z in the axial, 

the circumferential, and the thickness directions, respectively. The inner and outer faces of the 

cylindrical shell are at 𝑧 =  ± ℎ /2. The thicknesses positions of the inner, the two interfaces, 

and the outer layers are denoted by ℎ0 = −ℎ/2, ℎ1, ℎ2, ℎ3 = ℎ/2, respectively (Fig. 2). The 

face layers are graded from metal to ceramic while the core layer is made of ceramic. Two Types 

of sandwich cylindrical shells are used: a sandwich cylindrical shell with simple power-law 

functionally graded face layers (P-FGM) and a sandwich cylindrical shell with sigmoid 

functionally graded face layers (S-FGM). 

 

2.1 Sandwich cylindrical shell with power-law functionally graded face layers 
 
The sandwich cylindrical shell is composed of three layers, two functionally graded face layers 

based on power-law function (P-FGM) and homogeneous core layer. The inner and the outer 

layers are graded from metal to ceramic, while the core layer is made of ceramic. The volume 

fraction of the P-FGM sandwich cylindrical shell varies through-the-thickness as follows (Zenkour 

and Sobhy 2010) 

𝑉(1)(𝑧) = (
𝑧 − ℎ0
ℎ1 − ℎ0

)
𝑘

,     ℎ0 ≤ 𝑧 ≤ ℎ1 

𝑉(2)(𝑧) = 1,     ℎ1 ≤ 𝑧 ≤ ℎ2                          

𝑉(3)(𝑧) = (
𝑧 − ℎ3
ℎ2 − ℎ3

)
𝑘

,     ℎ2 ≤ 𝑧 ≤ ℎ3 

(1) 

where k denotes volume fraction index, which takes values greater than or equal to zero. 

 

2.1 Sandwich cylindrical shell with sigmoid functionally graded face layers 
 
In this type of sandwich cylinders, the face layers are made of sigmoid functionally graded 

material (S-FGM). The volume fraction of the S-FGM sandwich shell varies through-the-thickness 

as follows (Daikh and Zenkour 2019 a, b) 

𝑉1
(1)(𝑧) =

1

2
(
𝑧 − ℎ0
ℎ𝑚 − ℎ0

)
𝑘

,     ℎ0 ≤ 𝑧 ≤ ℎ𝑚 

𝑉2
(1)(𝑧) = 1 −

1

2
(
𝑧 − ℎ1
ℎ𝑚 − ℎ1

)
𝑘

,     ℎ𝑚 ≤ 𝑧 ≤ ℎ1 

𝑉(2)(𝑧) = 1,     ℎ1 ≤ 𝑧 ≤ ℎ2                     

𝑉1
(3)(𝑧) = 1 −

1

2
(
𝑧 − ℎ2
ℎ𝑛 − ℎ2

)
𝑘

,     ℎ2 ≤ 𝑧 ≤ ℎ𝑛 

𝑉2
(3)(𝑧) =

1

2
(
𝑧 − ℎ3
ℎ𝑛 − ℎ3

)
𝑘

,     ℎ𝑛 ≤ 𝑧 ≤ ℎ3 

(2) 
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Fig. 1 Configuration and coordinate system of cylindrical shell 

 

   

   

Fig. 2 Variation of volume fraction through-the-thickness of FGM sandwich cylindrical shell 

 

 

where ℎ𝑚 = (ℎ1 + ℎ2) 2⁄   and ℎ𝑛 = (ℎ2 + ℎ3) 2⁄  denotes the middle surface positions of the 

inner layer and the outer layer, respectively. 
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By using the rule of mixture, the material properties of each layer n (n=1, 2, 3), like the 

modulus of elasticity E, the coefficient of thermal conductivity K and the coefficient of thermal 

expansion α, can be expressed as 

𝑃(𝑛)(𝑧) = 𝑉(𝑛)(𝑧). 𝑃𝑚 + [1 − 𝑉
(𝑛)(𝑧)]. 𝑃𝑐 (3) 

where Pm and Pc are the corresponding properties of the metal and ceramic, respectively. 

 

 

3. Mathematical formulation 
 

Consider a sandwich cylindrical shell of mean radius R and thickness h with length L (Fig. 1). 

The normal and shear strains at distance z from the shell middle surface based on the Donnell shell 

theory are (Brush and Almroth 1975) 

𝜀𝑥 = 𝜀𝑥
0 + 𝑧𝜅𝑥, 𝜀𝜃 = 𝜀𝜃

0 + 𝑧𝜅𝜃, 𝛾𝑥𝜃 = 𝛾𝑥𝜃
0 + 𝑧 (4) 

where 

𝜀𝑥
0 =

𝜕𝑢

𝜕𝑥
+

1

2

𝜕𝑤2

𝜕𝑥
, 𝜀𝜃

0 =
1

𝑅
(
𝜕𝑣

𝜕𝜃
+𝑤) +

1

2𝑅2
(𝑣 −

𝜕𝑤

𝜕𝜃
)
2

, 

𝛾𝑥𝜃
0 =

𝜕𝑣

𝜕𝑥
+

1

𝑅

𝜕𝑢

𝜕𝜃
+

1

𝑅

𝜕𝑤

𝜕𝑥
(
𝜕𝑤

𝜕𝜃
− 𝑣), 

𝜅𝑥 = −
𝜕2𝑤

𝜕𝑥2
,  𝜅𝜃 = −

1

𝑅2

𝜕2𝑤

𝜕𝜃2
,  𝜅𝑥𝜃 = −

1

𝑅

𝜕2𝑤

𝜕𝑥𝜕𝜃
 

(5) 

where u, v, and w denote the axial, circumferential, and lateral displacements of the cylindrical 

shell, respectively. The constitutive relations of the sandwich cylindrical shell can be written as 

{

𝜎𝑥
𝜃𝜃
𝜏𝑥𝜃

}

𝑛

= [
𝑄11 𝑄12 0

𝑄21
0

𝑄22
0

0
𝑄66

]

𝑛

{
𝜀𝑥 − 𝛼(z)

𝑛T

𝜀𝜃 − 𝛼(z)
𝑛T

𝛾𝑥𝜃

} (6) 

where 

𝑄11
(𝑛) = 𝑄22

(𝑛) =
𝐸(𝑛)(𝑧)

1−𝜐2
, 𝑄12

(𝑛) = 𝜐𝑄11
(𝑛)

, 𝑄66
(𝑛) =

𝐸(𝑛)(𝑧)

2(1+𝜐)
 (7) 

and T (x, y, z) is the temperature rise through the thickness. 

The force and moment resultants may be presented as 

{

𝑁𝑥
𝑁𝜃
𝑁𝑥𝜃

} = ∑ ∫ {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝜃

}

(𝑛)

d𝑧
ℎ𝑛
ℎ𝑛−1

3
𝑛=1 , {

𝑀𝑥

𝑀𝜃

𝑀𝑥𝜃

} = ∑ ∫ {

𝜎𝑥
𝜎𝜃
𝜏𝑥𝜃

}

(𝑛)

𝑧d𝑧
ℎ𝑛
ℎ𝑛−1

3
𝑛=1  (8) 

The stress resultants of a sandwich cylindrical shell are related to the strains by the relations 

{
 
 

 
 
𝑁𝑥
𝑁𝜃
𝑁𝑥𝜃
𝑀𝑥

𝑀𝜃

𝑀𝑥𝜃}
 
 

 
 

=

[
 
 
 
 
 
𝐴11
𝐴21
0
𝐵11
𝐵21
0

𝐴12
𝐴22
0
𝐵12
𝐵22
0

0
0
𝐷11
0
0
𝐷22

𝐵11
𝐵12
0
𝐷11
𝐷12
0

𝐵12
𝐵22
0
𝐷12
𝐷22
0

0
0
𝐷22
0
0
𝐷66]

 
 
 
 
 

{
  
 

  
 
𝜀𝑥
0

𝜀𝜃
0

𝛾𝑥𝜃
0

𝑘𝑥
𝑘𝜃
𝑘𝑥𝜃}

  
 

  
 

−

{
  
 

  
 𝑁𝑇

𝑁𝑇
0

𝑀𝑇

𝑀𝑇

0 }
  
 

  
 

 (9) 

where 
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{𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗} = ∑ ∫ 𝑄𝑖𝑗
(𝑛){1, 𝑧, 𝑧2}𝑑𝑧

ℎ𝑛

ℎ𝑛−1

, (𝑖, 𝑗 = 1,2,6)

3

𝑛=1

 (10) 

and {𝑁𝑇}, {𝑀𝑇} are the thermal force 

{𝑁𝑇 , 𝑀𝑇} = ∑ ∫ {𝛽}(𝑛)𝑇{1, 𝑧}d𝑧

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (11) 

where 

{𝛽}(𝑛) = {
(𝑄11 + 𝑄12)𝛼
(𝑄12 + 𝑄22)𝛼

0

}

(𝑛)

 (12) 

 

 

4. Stability equations 
 

By using Donnell shell theory, the equilibrium equations for general thin cylindrical shell are 

obtained as 

𝜕𝑁𝑥

𝜕𝑥
+

1

𝑅

𝜕𝑁𝑥𝜃

𝜕𝜃
= 0  

1

𝑅

𝜕𝑁𝜃

𝜕𝜃
+

𝜕𝑁𝑥𝜃

𝜕𝑥
= 0     

𝜕2𝑀𝑥

𝜕𝑥2
+

2

𝑅

𝜕2𝑀𝑥𝜃

𝜕𝑥𝜕𝜃
+

1

𝑅2

𝜕2𝑀𝜃

𝜕𝜃2
−

1

𝑅
𝑁𝜃 + 𝑁𝑥

0 𝜕
2𝑤

𝜕𝑥2
+ 𝑁𝜃

0 𝜕
2𝑤

𝜕𝜃2
+

2

𝑅
𝑁𝑥𝜃
0 𝜕2𝑤

𝜕𝑥𝜕𝜃
= 0                       

(13) 

Assuming that the equilibrium state of the cylindrical shell under thermal loads may be 

designated by 𝑢0, 𝑣0, 𝑤0. The displacement components of a neighboring stable state differ by 

𝑢1, 𝑣1, 𝑤1 with respect to the equilibrium position. The displacements of a neighboring state are 

𝑢 = 𝑢0 + 𝑢1,    𝑣 = 𝑣0 + 𝑣1,    𝑤 = 𝑤0 +𝑤1 (14) 

where the terms with subscripts 0 refers to the state of equilibrium conditions and the terms with 

subscripts 1 refers to the state of stability. Note that whereas the equilibrium equations are 

nonlinear, the stability equations are linear. 

The linearized strains and curvatures in terms of the displacement component are 

𝜀𝑥
01 =

𝜕𝑢1

𝜕𝑥
,     𝜀𝜃

01 =
1

𝑅
(
𝜕𝑣1

𝜕𝜃
+ 𝑤1),      𝛾𝑥𝜃

0 1
=

𝜕𝑣1

𝜕𝑥
+

1

𝑅

𝜕𝑢1

𝜕𝜃
, 

𝜅𝑥
1 = −

𝜕2𝑤1

𝜕𝑥2
,    𝜅𝜃

1 = −
1

𝑅2

𝜕2𝑤1

𝜕𝜃2
,         𝜅𝑥𝜃

1 = −
1

𝑅

𝜕2𝑤1

𝜕𝑥𝜕𝜃
 

(15) 

The stress and moment resultants may be related to the equilibrium and neighboring states as 

𝑁𝑥 = 𝑁𝑥
0 + 𝑁𝑥

1,     𝑁𝜃 = 𝑁𝜃
0 + 𝑁𝜃

1,     𝑁𝑥𝜃 = 𝑁𝑥𝜃
0 +𝑁𝑥𝜃

1            

𝑀𝑥 = 𝑀𝑥
0 +𝑀𝑥

1,    𝑀𝜃 = 𝑀𝜃
0 +𝑀𝜃

1,    𝑀𝑥𝜃 = 𝑀𝑥𝜃
0 +𝑀𝑥𝜃

1  
(16) 

Eliminating the pre-buckling equilibrium expressions and ignoring the nonlinear terms of the 

incremental variables, we obtain the governing equations for buckling according to the Donnell 

theory as follows 

 

341



 

 

 

 

 

 

Ahmed Amine Daikh 

𝜕𝑁𝑥
1

𝜕𝑥
+
1

𝑅

𝜕𝑁𝑥𝜃
1

𝜕𝜃
= 0  

1

𝑅

𝜕𝑁𝜃
1

𝜕𝜃
+
𝜕𝑁𝑥𝜃

1

𝜕𝑥
= 0  

𝜕2𝑀𝑥
1

𝜕𝑥2
+
2

𝑅

𝜕2𝑀𝑥𝜃
1

𝜕𝑥𝜕𝜃
+
1

𝑅2
𝜕2𝑀𝜃

1

𝜕𝜃2
−
1

𝑅
𝑁𝜃
1 + 𝑁𝑥

0
𝜕2𝑤1

𝜕𝑥2
+ 𝑁𝜃

0
𝜕2𝑤1

𝜕𝜃2
+
2

𝑅
𝑁𝑥𝜃
0
𝜕2𝑤1

𝜕𝑥𝜕𝜃
= 0 

(17) 

where 

𝑁𝑥
0 = −𝑁𝑇, and 𝑁𝜃

0 = 𝑁𝑥𝜃
0 = 0 (18) 

The forces and moments associated with the stability state are 

𝑁𝑥
1 = 𝐴11

𝜕𝑢1

𝜕𝑥
+ 𝐴12 (

𝑤1

𝑅
+
𝜕𝑣1

𝑅𝜕𝜃
) − 𝐵11

𝜕2𝑤1

𝜕𝑥2
− 𝐵12

𝜕2𝑤1

𝑅2𝜕𝜃2
 

𝑁𝜃
1 = 𝐴12

𝜕𝑢1

𝜕𝑥
+ 𝐴22 (

𝑤1

𝑅
+
𝜕𝑣1

𝑅𝜕𝜃
) − 𝐵22

𝜕2𝑤1

𝑅2𝜕𝜃2
− 𝐵12

𝜕2𝑤1

𝜕𝑥2
 

𝑁𝑥𝜃
1 = 𝐴66 (

𝜕𝑣1

𝜕𝑥
+

𝜕𝑢1

𝑅𝜕𝜃
) − 𝐵66

𝜕2𝑤1

𝑅𝜕𝑥𝜕𝜃
  

𝑀𝑥
1 = 𝐵

𝜕𝑢1

𝜕𝑥
+ 𝐵12 (

𝑤1

𝑅
+
𝜕𝑣1

𝑅𝜕𝜃
) − 𝐷11

𝜕2𝑤1

𝜕𝑥2
− 𝐷12

𝜕2𝑤1

𝑅2𝜕𝜃2
 

𝑀𝜃
1 = 𝐵12

𝜕𝑢1

𝜕𝑥
+ 𝐵22 (

𝑤1

𝑅
+
𝜕𝑣1

𝑅𝜕𝜃
) − 𝐷22

𝜕2𝑤1

𝑅2𝜕𝜃2
− 𝐷12

𝜕2𝑤1

𝜕𝑥2
 

𝑀𝑥𝜃
1 = 𝐵66 (

𝜕𝑣1

𝜕𝑥
+
𝜕𝑢1

𝑅𝜕𝜃
) − 𝐷66

𝜕2𝑤1

𝑅𝜕𝑥𝜕𝜃
 

(19) 

Substituting Eqs. (18) and (19) into Eqs. (17) gives the stability equations in terms of the 

displacement components as 

𝐴11
𝜕2𝑢1

𝜕𝑥2
+ 𝐴66

𝜕2𝑢1

𝑅2𝜕𝜃2
+ (𝐴12 + 𝐴66)

𝜕2𝑣1

𝑅𝜕𝑥𝜕𝜃
+ 𝐴12

𝜕𝑤1

𝑅𝜕𝑥
− 𝐵11

𝜕3𝑤1

𝜕𝑥3
− (𝐵12 + 𝐵66)

𝜕3𝑤1

𝑅2𝜕𝑥𝜕𝜃2
= 0  

(𝐴12 + 𝐴66)
𝜕2𝑢1

𝑅𝜕𝑥𝜕𝜃
+ 𝐴66

𝜕2𝑣1

𝜕𝑥2
+ 𝐴22

𝜕2𝑣1

𝑅2𝜕𝜃2
+ 𝐴22

𝜕𝑤1

𝑅2𝜕𝜃
− 𝐵22

𝜕3𝑤1

𝑅3𝜕𝜃3
− (𝐵12 + 𝐵66)

𝜕3𝑤1

𝑅𝜕𝑥2𝜕𝜃
= 0                                  

𝐵11
𝜕3𝑢1

𝜕𝑥3
+ (𝐵12 + 2𝐵66)

𝜕3𝑢1

𝑅2𝜕𝑥𝜕𝜃2
− 𝐴12

𝜕𝑢1

𝑅𝜕𝑥
+ (𝐵12 + 2𝐵66)

𝜕3𝑣1

𝑅𝜕𝑥2𝜕𝜃
+ 𝐵22

𝜕3𝑣1

𝑅3𝜕𝜃3
− 𝐴22

𝜕𝑣1

𝑅2𝜕𝜃

− 𝐷11
𝜕4𝑤1

𝜕𝑥4
− 𝐷22

𝜕4𝑤1

𝑅4𝜕𝜃4
+ 2𝐵12

𝜕2𝑤1

𝑅𝜕𝑥2
+ 2𝐵22

𝜕2𝑤1

𝑅3𝜕𝜃2
− 2(𝐷12 + 𝐷66)

𝜕4𝑤1

𝑅2𝜕𝑥2𝜕𝜃2

− 𝐴22
𝑤1

𝑅2
+𝑁𝑥

0
𝜕2𝑤1

𝜕𝑥2
= 0 

(20) 

Sandwich cylindrical shells are generally classified by referring to the type of support used in 

the absent of the body forces and lateral loads except the external temperature load.  The 

boundary conditions are given by  

𝜕𝑢1

𝜕𝑥
= 𝑣1 = 𝑤1 =

𝜕2𝑤1

𝜕𝑥2
= 0    at   𝑥 = 0, 𝐿 (21) 

The following approximate solution is seen to satisfy both the differential equation and the 

boundary conditions 
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𝑢1 = ∑ ∑ 𝑈𝑚𝑛
1 𝑐𝑜𝑠(𝜆𝑥) 𝑠𝑖𝑛(𝑛̅𝜃)∞

𝑛=1
∞
𝑚=1   

𝑣1 = ∑ ∑ 𝑉𝑚𝑛
1 𝑠𝑖𝑛(𝜆𝑥) 𝑐𝑜𝑠(𝑛̅𝜃)∞

𝑛=1
∞
𝑚=1                      

𝑤1 = ∑ ∑ 𝑊𝑚𝑛
1 𝑠𝑖𝑛(𝜆𝑥) 𝑠𝑖𝑛(𝑛̅𝜃)∞

𝑛=1
∞
𝑚=1   

(22) 

0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝜃 ≤ 2𝜋   

where 𝜆 = 𝑚𝜋 𝐿⁄ , 𝑚 and 𝑛̅ are the number of half-waves in x- and θ-directions, respectively 

and 𝑈𝑚𝑛
1 , 𝑋𝑚𝑛

1 , 𝑉𝑚𝑛
1 , 𝑌𝑚𝑛

1  and  𝑊𝑚𝑛
1  are arbitrary parameters. Substituting Eq. (22) into Eq. 

(20), one obtains 

[𝐶]{𝛬} = 0 (23) 

where {𝛬} denotes the columns 

{𝛬} = {𝑈1 , 𝑉1 ,𝑊1 , 𝑋1 , 𝑌1} (24) 

The elements 𝑐𝑖𝑗 of the matrix [C] are given by 

𝑐11 = 𝐴11𝜆
2 + 𝐴66 (

𝑛̅

𝑅
)
2

 𝑐12 = (𝐴12 + 𝐴66)𝜆
𝑛̅

𝑅
  𝑐13 = −

𝐴12

𝑅
𝜆 − 𝐵11𝜆

3 − (𝐵12 + 𝐵66)𝜆 (
𝑛̅

𝑅
)
2

                                       

𝑐21 = 𝑐12  𝑐22 = 𝐴66𝜆
2 + 𝐴22 (

𝑛̅

𝑅
)
2

 𝑐23 = −𝐴22
𝑛̅

𝑅2
− 𝐵22 (

𝑛̅

𝑅
)
3

− (𝐵12 + 𝐵66)𝜆
2 𝑛̅

𝑅
  

𝑐31 =
𝐴12

𝑅
𝜆 + 𝐵11𝜆

3 + (𝐵12 + 2𝐵66)𝜆 (
𝑛̅

𝑅
)
2

 𝑐32 = 𝐵22 (
𝑛̅

𝑅
)
3

+ 𝐴22
𝑛̅

𝑅2
+ (𝐵12 + 2𝐵66)𝜆

2 𝑛̅

𝑅
  

𝑐33 = −𝐷11𝜆
4 − 2

𝐵12
𝑅
𝜆2 − 𝐷22 (

𝑛̅

𝑅
)
4

− 2𝐵22
𝑛̅2

𝑅3
− 2(𝐷12 + 𝐷66)𝜆

2 (
𝑛̅

𝑅
)
2

−
𝐴22
𝑅2

− 𝑁𝑥
0𝜆2 

(25) 

 

 

5. Thermal buckling solution 
 

Consider functionally graded sandwich cylindrical shell in which the temperature of the inner 

and outer surfaces of the cylindrical shell are 𝑇𝑎 and 𝑇𝑏, respectively. In the following, the 

solution of the equation [𝐶] = 0 for different types of thermal loading conditions is presented. 
 

5.1 Uniform temperature rise 
 

The cylindrical shell initial temperature is assumed to be 𝑇𝑖. The temperature is uniformly rised 

to a final value 𝑇𝑓 in which the cylindrical shell buckles. The temperature change is 

∆𝑇 = 𝑇𝑓 − 𝑇𝑖  (26) 

The critical buckling temperature difference is obtained by solving the determinant |𝐶| = 0 

∆𝑇𝑐𝑟 =
η+𝜇

𝜆2𝛽̅1
  (27) 

where 

𝜂 = (𝑐11𝑐23𝑐32 − 𝑐12𝑐23𝑐31 − 𝑐13𝑐21𝑐32 + 𝑐13𝑐22𝑐31)/(𝑐11𝑐22 − 𝑐12𝑐21)  (28) 

𝜇 = 𝐷11𝜆4 + 2
𝐵12
𝑅
𝜆2 +𝐷22 (

𝑛̅

𝑅
)
4

+ 2𝐵22
𝑛̅2

𝑅3
+ 2(𝐷12 +𝐷66)𝜆

2 (
𝑛̅

𝑅
)
2

+
𝐴22
𝑅2

 (29) 
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𝛽̅1 = ∑ ∫
𝛼(𝑛)(𝑧)𝐸(𝑛)(𝑧)

1 − 𝜐
d𝑧

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (30) 

 

5.2 Linear temperature rise 
 

If the cylindrical shell thickness is thin enough, the temperature distribution is approximated 

linear through-the-thickness. Therefore, the temperature can be written as 

𝑇(𝑧) = Δ𝑇 (
𝑧

ℎ
+
1

2
) + 𝑇𝑚 , Δ𝑇 = 𝑇𝑝 − 𝑇𝑚 (31) 

The critical buckling temperature difference can be deduced as 

∆𝑇𝑐𝑟 =
η + 𝜇

𝜆2𝛽̅2
−
𝑇𝑎𝛽̅1

𝛽̅2
 (32) 

where 

𝛽̅2 = ∑ ∫
𝛼(𝑛)(𝑧)𝐸(𝑛)(𝑧)

1 − 𝜐
(
𝑧

ℎ
+
1

2
) d𝑧

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (33) 

 

5.3 Nonlinear temperature rise 
 

The temperature field assumed to be uniform in inner and outer surfaces but varying along the 

thickness direction due to heat conduction. The temperature distribution can be obtained by 

solving the steady-state heat transfer equation as: 

−
𝑑

𝑑𝑧
(𝐾(𝑧)

𝑑𝑇

𝑑𝑧
) = 0 (34) 

with the boundary conditions 𝑇 = 𝑇𝑎 at 𝑧 = −ℎ 2⁄   and 𝑇 = 𝑇𝑏 at 𝑧 = ℎ 2⁄ . The coefficient 

of thermal conductivity 𝐾(𝑧) is assumed to vary continuously through the thickness of the FGM 

layers according to a sigmoid function or simple power-law distribution in terms of the volume 

fractions of the constituent. The temperature distribution across the FGM sandwich cylindrical 

shell thickness is obtained as 

𝑇(𝑧) = 𝑇𝑎 + (𝑇𝑏 − 𝑇𝑎)Θ
(𝑛) (35) 

where for P-FGM sandwich cylindrical shells 

Θ(1) =
∫ (1 𝐾(1)(𝑧)⁄ )𝑑𝑧
𝑧

ℎ0

∑ ∫ (1 𝐾(𝑛)(𝑧)⁄ )𝑑𝑧
ℎ𝑛
ℎ𝑛−1

3
𝑛=1

, ℎ0 ≤ 𝑧 ≤ ℎ1 (36) 

Θ(2) =
∫ (1 𝐾(1)(𝑧)⁄ )𝑑𝑧
ℎ1
ℎ0

+ ∫ (1 𝐾(2)(𝑧)⁄ )𝑑𝑧
𝑧

ℎ1

∑ ∫ (1 𝐾(𝑛)(𝑧)⁄ )𝑑𝑧
ℎ𝑛
ℎ𝑛−1

3
𝑛=1

, ℎ1 ≤ 𝑧 ≤ ℎ2 (37) 
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Θ(3) =
∫ (1 𝐾(1)(𝑧)⁄ )𝑑𝑧
ℎ1
ℎ0

+∫ (1 𝐾(2)(𝑧)⁄ )𝑑𝑧
ℎ2
ℎ1

+∫ (1 𝐾(3)(𝑧)⁄ )𝑑𝑧
𝑧
ℎ2

∑ ∫ (1 𝐾(𝑛)(𝑧)⁄ )𝑑𝑧
ℎ𝑛
ℎ𝑛−1

3
𝑛=1

, ℎ2 ≤ 𝑧 ≤ ℎ3     (38) 

and for S-FGM sandwich cylindrical shells 

Θ1
(1) =

∫ (1 K1
(1)(𝑧)⁄ )𝑑𝑧

𝑧
ℎ0

∑ ∫ (1 𝐾(𝑛)(𝑧)⁄ )𝑑𝑧
ℎ𝑛
ℎ𝑛−1

3
𝑛=1

, ℎ0 ≤ 𝑧 ≤ ℎ𝑚    (39) 

Θ2
(1) =

∫ (1 K1
(1)(𝑧)⁄ )𝑑𝑧

ℎ𝑚
ℎ0

+∫ (1 K2
(1)(𝑧)⁄ )𝑑𝑧

𝑧
ℎ𝑚

∑ ∫ (1 𝐾(𝑛)(𝑧)⁄ )𝑑𝑧
ℎ𝑛
ℎ𝑛−1

3
𝑛=1

,      ℎ𝑚 ≤ 𝑧 ≤ ℎ1   (40) 

Θ(2) =
∫ (1 K1

(1)(𝑧)⁄ ) 𝑑𝑧
ℎ𝑚
ℎ0

+ ∫ (1 K2
(1)(𝑧)⁄ ) 𝑑𝑧

ℎ1
ℎ𝑚

+ ∫ (1 𝐾(2)(𝑧)⁄ )𝑑𝑧
𝑧

ℎ1

∑ ∫ (1 𝐾(𝑛)(𝑧)⁄ )𝑑𝑧
ℎ𝑛
ℎ𝑛−1

3
𝑛=1

, ℎ1 ≤ 𝑧 ≤ ℎ2 (41) 

𝛩1
(3)
=
∫ (1 𝐾1

(1)(𝑧)⁄ ) 𝑑𝑧
ℎ𝑚
ℎ0

+ ∫ (1 𝐾2
(1)(𝑧)⁄ ) 𝑑𝑧

ℎ1
ℎ𝑚

+ ∫ (1 𝐾(2)(𝑧)⁄ )𝑑𝑧
ℎ2
ℎ1

+ ∫ (1 𝐾1
(3)(𝑧)⁄ ) 𝑑𝑧

𝑧

ℎ2

∑ ∫ (1 𝐾(𝑛)(𝑧)⁄ )𝑑𝑧
ℎ𝑛
ℎ𝑛−1

3
𝑛=1

, ℎ2 ≤ 𝑧 ≤ ℎ𝑛 (42) 

𝛩2
(3)
=
∫ (1 𝐾1

(1)(𝑧)⁄ )𝑑𝑧
ℎ𝑚
ℎ0

+ ∫ (1 𝐾2
(1)(𝑧)⁄ )𝑑𝑧

ℎ1
ℎ𝑚

+ ∫ (1 𝐾(2)(𝑧)⁄ )𝑑𝑧
ℎ2
ℎ1

+ ∫ (1 𝐾1
(3)(𝑧)⁄ )𝑑𝑧

ℎ𝑛
ℎ2

+ ∫ (1 𝐾2
(3)(𝑧)⁄ )𝑑𝑧

ℎ𝑧
ℎ𝑛

∑ ∫ (1 𝐾(𝑛)(𝑧)⁄ )𝑑𝑧
ℎ𝑛
ℎ𝑛−1

3
𝑛=1

,   

ℎ𝑛 ≤ 𝑧 ≤ ℎ3 

(43) 

where  Θ(𝑛) denotes the nondimensional temperatures change. The critical buckling temperature 

change under nonlinear temperature rise can be obtain as 

∆𝑇𝑐𝑟 =
η + 𝜇

𝜆2𝛽̅3
−
𝑇𝑎𝛽̅1

𝛽̅3
 (44) 

where 

𝛽̅3 =∑ ∫
𝛼(𝑛)(𝑧)𝐸(𝑛)(𝑧)

1 − 𝜐
Θ(𝑛)d𝑧

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (45) 

 
 

6. Results and discussion 
 

Consider a simply supported FGM sandwich cylindrical shell made of a mixture of metal and 

ceramic. The combination of materials consists of Steel and Alumina. Young’s modulus, 

coefficient of thermal expansion, and thermal conductivity for Steel are 𝐸𝑚 = 70 Gpa, 𝛼𝑚 =
23 × 10−6 1/°C , 𝐾𝑚 = 204 W/mK , , and for Alumina are 𝐸𝑐 = 380 Gpa , 𝛼𝑐 = 7.4 ×
10−6 1/°C, 𝐾𝑐 = 10.4 W/mK. Poisson’s ratio is chosen as constant 𝜐𝑐 = 0.3 (Daikh et al. 

2020). It is assumed that the temperature Ta in the inner surface equal to 25°C. Several kinds of 

FGM sandwich cylindrical shells are presented: 
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Fig. 3 Nondimensional temperature change across the thickness of FGM sandwich cylindrical shell 

 

 

The (1–1–1) FGM sandwich cylindrical shell: The shell is made of three equal-thickness 

layers. In this case, we have: 

ℎ1 = −
ℎ

6
, ℎ2 =

ℎ

6
  (46) 

The (2–2–1) FGM sandwich cylindrical shell: In this case, the core thickness is twice the 

upper face while it is the same as the lower one. Thus, 

ℎ1 = −
ℎ

10
, ℎ2 =

3ℎ

10
  (47) 

The (1–1–2) FGM sandwich cylindrical shell: The outer layer thickness equals the sum of the 

two inner layers thickness. In this case, we have: 

ℎ1 = −
ℎ

4
,   ℎ2 = 0 (48) 
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Fig. 4 Critical buckling temperature difference ΔTcr versus the index k (R=L, h=0.01) 

 

   
Fig. 5 Critical buckling temperature difference ΔTcr versus the thickness-to-radius ratio h/R (R=L, k=2) 

 

 

In order to study the nonlinear temperature distribution along the thickness of FGM sandwich 

cylindrical shells based on the Eqs. (37)-(39) for P-FGM sandwiches and Eqs. (40-44) for S-FGM 

sandwiches, the nondimensional temperature distribution along the thickness for different values 

of index k of sandwich shells is presented in Fig. 3. It is seen that, regardless of the sandwich 

types, the temperature change along the thickness of the homogeneous core is linear, whereas for 

the FGM face layers it is nonlinear. Because of the low thermal conductivity of ceramic core, the 

temperature through its thickness decreases rapidly. 

The inhomogeneity parameter k has considerable effect on the critical buckling temperature 

difference of FGM sandwich cylindrical shells as shown in Fig. 4. For the P-FGM sandwich 

cylindrical shells, it can be observed that with the increase of the parameter k, the critical buckling 

temperature ΔTcr decreases wherever the thermal loads is, whereas ΔTcr increases for S-FGM 

sandwich shells. The volume fraction with index k=1 mean that the distribution of material  
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Fig. 6 Critical buckling temperature difference ΔTcr versus the length-to-radius ratio L/R (h=0.01, k=2) 
 

 

properties is linear through-the-thickness of P-FGM and S-FGM layers, this can explain the same 

results of critical buckling temperature difference in the sandwiches with same schemes wherever 

the composition of layer is. 

Fig. 5 depicts the effect of shell thickness on the critical buckling temperature difference for 

various FGM sandwich cylindrical shells. As seen, increasing the thickness-to-radius ratio h/R 

increases the critical buckling temperature difference. This observation stands for all types FGM 

sandwiches. Note that the critical buckling temperatures of P-FGM and S-FGM sandwich 

cylindrical shells with 2-2-1 scheme are noticeably greater than values obtained on other FGM 

sandwiches. 

Fig. 6 shows the variation of critical buckling temperature versus geometric parameter L/R. 

Critical bucking temperature is almost constant for different values of L/R. From Figs. 5-7, it can 

be seen that the critical temperatures ΔTcr under uniform temperature rise is smaller than that of 

the cylindrical shells under linear temperature rise and the latter is smaller than that of the 

cylindrical shells under nonlinear temperature rise. 

 

 

7. Conclusions 
 

In this paper, thermal buckling analysis of functionally graded sandwich cylindrical shells has 

been analyzed. Different schemes of FGM sandwich shells are presented. Material properties of 

FGM layers are assumed to vary continuously through-the-thickness according to sigmoid 

function and power-law distribution in terms of the volume fractions of the constituents. The 

equilibrium and stability equations of FGM sandwich cylindrical shells have been derived based 

on Donnell theory. Three different thermal loading cases as uniform temperature rise, linear and 

nonlinear temperature rise through-the-thickness of the cylindrical shell were considered. An exact 

solution for the critical buckling temperature of FGM sandwich cylindrical shells under nonlinear 

temperature rise across the thickness is presented. The characteristics of thermal buckling for FGM 

sandwich cylindrical shells are significantly influenced by volume fraction distributions, system 
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geometric parameters, and the FGM sandwich Types. The following conclusions are reached: 

- The critical buckling temperature difference decreases with increasing of the volume fraction 

index k for P-FGM sandwiches and increase for S-FGM sandwiches. 

- The critical buckling temperature difference increases linearly with the increasing of the 

thickness-to-radius ratio h/R for all types and schemes of FGM sandwiches wherever the thermal 

load type is. 

- The critical buckling temperature difference is almost constant for different values of L/R. 

The critical temperatures ΔTcr of cylindrical shells under uniform temperature rise is smaller 

than that of the cylindrical shells under linear temperature rise and the latter is smaller than that of 

the cylindrical shells under nonlinear temperature rise. 
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