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Abstract.  In this paper, a numerical method is utilized to study the effect of a new vibration absorber on vibration 
response of the stiffened functionally graded (SFG) cylindrical shell under a couple of axial and transverse 
compressions. The material composition of the stiffeners and shell is continuously changed through the thickness. 
The vibration absorber consists of a mass-spring-damper system which is connected to the ground utilizing a linear 
local damper. To simplify, the spring element of the vibration absorber is called global potential. The von Kármán 
strain-displacement kinematic nonlinearity is employed in the constitutive laws of the shell and stiffeners. To consider 
the stiffeners in the model, the smeared stiffener technique is used. After obtaining the governing equations, the 
Galerkin method is applied to discretize the nonlinear dynamic equation of system. In order to find the nonlinear 
vibration responses, the fourth order Runge-Kutta method is utilized. The influence of the stiffeners, the dynamic 
absorber parameters on the vibration behavior of the SFG cylindrical shell is investigated. Also, the influences of 
material parameters of the system on the vibration response are examined. 
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1. Introduction 
 

The FG materials are utilized wildly in a various applications of engineering. These structures 

are utilized in the aerospace, fusion energy devices, engine combustion chambers, engine parts, 

and other engineering structures. In this regard, the stiffened FG cylindrical shells are utilized 

impressively in various engineering industries including bridges, submarines, satellites, aircraft, 

offshore, and ships structures. Another device that is wildly used in various branches of industries 

to vibration suppression is the vibration absorber. Absorbers are applicable devices for passively 

reducing the amplitude of vibrations. These absorbers have various types and strongly are used in 

the engineering applications with high efficiency. Also, these devices are used in various industries 

such as the aerospace industry, bridges, building project, etc. 

For the dynamic behavior of the plates and shells, the vibration behaviors of cylindrical shells 

with FG material under axial excitation were presented by Ng et al. (2001). Wang et al. (2016) 

addressed the linear and nonlinear free vibrations of an axially moving rectangular plate coupled 

with dense fluid having a free surface. The vibrations of FG rectangular plates with porosities and 
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moving in thermal environment were studied by Wang and Zu (2017a). Also, Wang and Zu 

(2017b) presented the nonlinear steady-state responses of longitudinally traveling FG plates 

immersed in liquid. Meng et al. (2016) investigated the non-axisymmetric dynamic buckling of 

cylindrical shells under the axial step load. They used the FSD theory, the Ritz, and Variable 

Separation methods. Wang et al. (2018) presented the free thermal vibration of FG cylindrical 

shells containing porosities. Sofiyev (2009, 2004) addressed the vibration behavior of FG 

truncated conical and cylindrical shells under the periodic and non-periodic impulsive loads, 

respectively. Wang (2018) studied the electro-mechanical vibration analysis of functionally graded 

piezoelectric porous plates in the translation state. Wang et al. (2019a) investigated the nonlinear 

dynamics of fluid-conveying FG sandwich nanoshells. The vibration response of cylindrical shell 

with FG material under a linear axial loading in thermal environments was presented by Huang 

and Han (2010). Wang et al. (2019b) analyzed the nonlinear vibration behavior of metal foam 

circular cylindrical shells reinforced with graphene platelets. Also, Wang et al. (2013) studied the 

nonlinear vibrations of a thin, elastic, laminated composite circular cylindrical shell, moving in 

axial direction and having an internal resonance. The nonlinear vibrations of rotating, laminated 

composite circular cylindrical shells subjected to radial harmonic excitation in the neighborhood of 

the lowest resonances are investigated by Wang (2014). The nonlinear vibrations of longitudinally 

moving FG plates containing porosities and contacting with liquid were studied by Wang and Yang 

(2017). 

Previous studies mentioned above illustrate that the influence of stiffeners on the vibration of 

cylindrical shells with FG material has not been addressed. But, some researchers have been 

studied the influence of stiffeners on dynamic behavior of SFG cylindrical shells. 

The dynamic and static behaviors of SFG plates, cylindrical, and shallow shells were 

investigated by Bich et al. (2011, 2013). The vibration behaviors of SFG cylindrical shells resting 

on an elastic medium under external excitation were presented by Van Dung and Nam (2014). Duc 

and Thang (2015) studied an analytical method to analyze the vibration behavior of imperfect SFG 

cylindrical shells resting on the elastic medium subjected to the damping and mechanical loads. 

Few studies have been performed about the influences of absorbers on the vibration response of 

cylindrical shells. For instance, Huang and Fuller (1997) considered the influence of absorbers on 

the vibration response of the cylindrical shell. They used multiple dynamic absorbers to suppress 

the vibration response of the system. Design and implementation of a time-varying shunted 

electromagnetic tunable vibration absorber for broadband vibration control of cylindrical shell 

were investigated by Turco and Gardonio (2017). Huang and Chen (2000) studied the influence of 

absorbers on the suppression of vibration response of the thin elastic cylindrical shell. Pandy and 

Koss (1984) investigated the effectiveness of roller supports acting simultaneously as vibration 

absorbers on the reduction of broadband noise radiated from cylindrical shells. 

A literature review illustrates that few researches have been addressed the investigation of 

vibration response of stiffened functionally graded cylindrical shell equipped with a vibration 

absorber. In this work, the influence of new vibration absorber consists of linear spring that 

globally is connected to the FG cylindrical shell and a linear local damper that is connected to the 

ground. The effect of this absorber on the vibration response of the SFG cylindrical shell under a 

couple of axial and transverse compression is presented using the numerical approach. The 

material composition of shell and stiffeners is continuously changed through the thickness. The 

relations of strain-displacement are derived according to the von Kármán equations and classical 

shell theory. After obtaining the governing equations, the Galerkin method is utilized to discretize 

the nonlinear dynamic equation of system. In order to find the nonlinear vibration responses, the 

292



 

 

 

 

 

 

Effect of dynamic absorber on the nonlinear vibration of SFG cylindrical shell 

fourth order Runge-Kutta method is utilized. Results are represented to examine the influence of 

stiffeners, vibration absorber and material properties on the vibration behavior of cylindrical shells 

with FG material. 
 

 

2. Theoretical formulation 
 

2.1 FG material properties 
 

Configuration of the SFG cylindrical shell with a dynamic absorber is illustrated in Fig. 1. 

Coordinates 𝑦 = 𝑅𝜃 and x represent the circumferential and the axial direction of the cylindrical 

shell and z is the radial direction (Fig. 1). According to Fig. 1, the coordinate system (𝑥, 𝑦, and 𝑧) 

is attached to the left end of the middle surface of the system. The geometrical of shell ℎ, 𝐿 and 

𝑅 are the thickness, axial length, and radius, respectively. For stiffeners 𝑠𝑖, 𝑑𝑖 and ℎ𝑖 (𝑖 = 𝑟, 𝑠) 

are the spacing, width, and thickness, respectively. The subscripts 𝑟 and 𝑠 refer to ring and 

stringer stiffeners, respectively. The absorber with spring stiffness 𝑘, mass m, and damping 

coefficient 𝑐 is located in 𝑥 = 𝑑. The FG internal stiffeners and cylindrical shell are composed of 

metals and ceramics. It is considered that the inner shell surface is ceramic and the outer surface is 

metal, and for stiffeners, it is selected as reverse order. 

The volume fractions of the constituents regarding the power law are defined as (Ebrahimi and 

Heidari 2018, Shaterzadeh et al. 2019, Sayyad and Ghugal 2018, Shegokara and Lal 2016) 

 

 
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(1) 

where 𝑉𝑐 and 𝑉𝑚 refer to the ceramic and metal volume fractions. 𝑁 ≥ 0 is the material power 

law index of the FG shell. Peff (effective properties) is expressed as (Foroutan et al. 2018) 

     P P Peff m m c cz V z z V 
 

(2) 

Due to the mentioned law, the mass density and Young’s modulus of the shell and stiffeners are 

defined as follows (Hong 2014, Zenkour and Aljadani 2018) 
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(3a) 

 

(3b) 

where 𝐸𝑖 , 𝐸  are Young’s modulus and 𝜌𝑖 , 𝜌  are the mass density of functionally graded 

stiffeners and shell, respectively. Also, 𝑁𝑖 is the material power law index of the FG stiffeners. 
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Fig. 1 Configuration of SFG cylindrical shell 

 

 

2.2 Governing equations 
 

The equilibrium equations of cylindrical shells based on the classical shell theory are as follows 

(Van Dung and Nam 2014, Foroutan et al. 2019, 2020, Gonçalves and Del Prado 2005, Volmir 

1972) 

, ,

, ,

, , , , , , 1 ,

0

0

1
2 2

x x xy y

xy x y y

x xx xy xy y yy x xx xy xy y yy y tt

N N

N N

M M M N w N w N w N w
R



 

 

      
 

(4) 

In the present study, the vibration absorber is utilized to the vibration suppression of SFG 

cylindrical shell. Therefore, with regard to Eq. (4), the governing equation considering stiffened 

shell and absorber dynamic is derived as follows 
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(5) 

where subscript 𝑡 refers to the time, δk is Dirac delta and 𝜌1 is the mass density which can be 

obtained as 

1
1 1 1

c m m c s m c r

m c c

s s r r

A A
h

N N S N S

     
   

      
         

        
(6) 
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Effect of dynamic absorber on the nonlinear vibration of SFG cylindrical shell 

According to the first and second relations of Eq. (5), the resultant forces in terms of stress 

function (𝜑) are defined as follows 

, , ,, ,x yy y xx xy xyN N N       
 (7) 

Regarding the references (Van Dung and Nam 2014, Foroutan et al. 2019) and substituting Eq. 

(7) in the last two of Eq. (5), the governing equations of system can be obtained as 
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(9) 
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(10) 

where the coefficients 𝐴𝑖𝑗
∗  are defined in Appendix. 

 

2.2.1 Boundary conditions 
Suppose that a SFG cylindrical shell is simply supported and subjected to a couple of 

transverse and axial periodic compressions. Thus the boundary conditions are of the form 

 (11) 

The shells deflection regarding the boundary condition is considered as follows (Bich et al. 

2012, Volmir 1972, Sofiyev and Schnack 2004)  
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    and W(t) is time-dependent amplitude, 𝑛 is the number of full wave in 

the circumferential direction and 𝑚 is the half wave in the axial direction. 

Eq. (12) is substituted in Eq. (8) and the resulting equation is solved to find the unknown stress 

function (𝜑) as follows 
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(13) 

where 𝑃𝑦 and 𝑃𝑥 are the average circumferential and axial stresses, respectively. The coefficients 

𝜑𝑖(𝑖 = 1,2,3) are in the following form 
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where coefficients 𝐴, 𝐵 are defined in Appendix. 

295



 

 

 

 

 

 

Kamran Foroutan and Habib Ahmadi 

If Eqs. (9) and (10) are denoted by G1 and G2, respectively, the ordinary differential equation of 

system may be found in terms of W and s using Galerkin’s method in the following form 

2

0
1

0
sin sin 0n

L R

m x y dydx


      

2

0
2

0
sin sin 0n
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(15) 

After substitution of Eqs. (12) and (13) into Eq. (15), the following results may be obtained, 

after carrying out mentioned integrations and some simplification, Eq. (15) can be written as 

follows 
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where coefficients 𝐺, 𝐵∗and 𝐷 are presented in Appendix. 
 

2.3 Free vibration analysis 
 

For the linear and free vibration analysis of the FG stiffened shell, vibration absorbers, and 

periodic load in Eq. (16) are ignored, therefore, Eq. (15) reduces to 

1 0W aW   
(19) 

According to Eq. (19), natural frequencies of system are obtained as 

1n a 
 

(20) 

The natural frequency in Eq. (19) is used to validate the present formulations. Also, in order to 

find the critical natural frequency of the SFG cylindrical shell, the minimum value of natural 

frequencies should be obtained. The critical mode number can be obtained regarding this value for 

the SFG cylindrical shell. It should be noted that for calculating the nonlinear vibration response, 

the middle deflection of the shell is considered which is shown by Wmax in the presented figures. 
 

 

3. Numerical results 
 

3.1 Validation of this study 
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Effect of dynamic absorber on the nonlinear vibration of SFG cylindrical shell 

Table 1 Comparison of the natural frequencies of cylindrical shell 

m  n  Present Qin et al. (2017) Pellicano (2007) Wang et al. (2019c) 

    Errors (%)  Errors (%)  Errors (%) 

1 7 486.0 484.6 0.2 484.6 0.2 484.55 0.2 

1 8 490.3 489.6 0.1 489.6 0.1 489.55 0.1 

1 9 545.8 546.2 0.07 546.2 0.07 546.20 0.07 

1 6 555.8 553.3 0.4 553.3 0.4 553.33 0.4 

1 10 634.8 636.8 0.3 636.8 0.3 636.81 0.3 

1 5 728.5 722.1 0.8 722.1 0.8 722.13 0.8 

1 11 746.6 750.7 0.5 750.7 0.5 750.66 0.5 

1 12 875.5 882.2 0.7 882.2 0.7 882.23 0.7 

2 10 962.3 968.1 0.5 968.1 0.5 968.09 0.5 

2 11 976.6 983.4 0.6 983.4 0.6 983.34 0.6 

 

 

Fig. 2 Comparison of the natural frequencies of isotropic un-stiffened cylindrical shell (𝑚 = 1) 

 

 

Fig. 3 Comparison of the natural frequencies of isotropic internal stiffened cylindrical shell (𝑚 = 1) 
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(a) 

  

(b) The first periods (c)The far periods 

Fig. 4  Comparison of the effect of absorber without damper and siffener on the vibration response of FG 

cylindrical shell 

 

 

Fig. 5 The mode shapes of the FG cylindrical shell 

 

 

For validating the present approach, in Table 1, the natural frequencies of simply supported 

cylindrical shell presented in this work are considered in comparison with the Pellicano (2007), 

Qin et al. (2017), and Wang et al. (2019c) results. Figs. 2 and 3 illustrate the results of the stiffened  
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Effect of dynamic absorber on the nonlinear vibration of SFG cylindrical shell 

 

Fig. 6 The effect of absorber with local damper on the vibration response of FG cylindrical shell 
 

 

and unstiffened cylindrical shell which are compared with the experimentally results of Sewall and 

Naumann (1968) and Sewall et al. (1964). Comparisons show that good conformance is obtained. 

 

3.1 Vibration responses of SFG cylindrical shell 
 

Here, the effect of vibration absorber on the vibration response of SFG cylindrical shells is 

illustrated. The influence of internal stiffeners, volume fraction, various locations of vibration 

absorbers, damping coefficient, and the periodic load on the vibration behaviors of SFG system are 

demonstrated. In this study, the number of stiffeners is considered to be thirty. The SFG cylindrical 

shell is considered to be made of alumina (Al2O3) and aluminum (Al) with the following material 

properties 

 

The Poisson’s ratio for ceramic and metal is considered to be equal (i.e., v=vm=vc=0.3). The 

geometrical characteristics of the stiffeners and shell with FG material are as follows 

Shell:  ℎ = 0.002 m,   𝐿 = 0.75 m,   𝑅 = 0.5 m 

Stiffener:  ℎ𝑠 = 0.01 m,   𝑑𝑠 = 0.0025 m 

The parameters of the dynamic vibration absorber at 𝑑 = 𝐿 2⁄   can be written as follows 

𝑘 = 5.3 × 106  
N

m
,   𝑐 = 30 

Ns

m
 ,   𝑀 = 0.5 kg   

The initial condition for shell deflection and vibration absorber variable are assumed to be 

equal to 0.001. In all solved examples, the number of full in the circumferential direction and half 

wave in the axial direction (𝑛, 𝑚), which are not addressed in the simulation results, are considered 

to be equal to 5 and 1, respectively. It should be noted that the critical mode number is 𝑛 = 5.  

The effect of vibration absorber without damper and the stiffeners on the vibration behavior of  

299



 

 

 

 

 

 

Kamran Foroutan and Habib Ahmadi 

  

(a) 𝑘 = 2 × 106 N/m  (b) 𝑘 = 3 × 106 N/m 

  

(c) 𝑘 = 5 × 106 N/m (d) 𝑘 = 7 × 106 N/m 

Fig. 7 The effect of different spring stiffness on the vibration responses of FG cylindrical shell 

 

  

(a) 𝑐 = 0.3 Ns/m  (b) 𝑐 = 3 Ns/m 

  

(c) 𝑐 = 30 Ns/m (d) 𝑐 = 300 Ns/m 

Fig. 8 The effect of various damping coefficients on the vibration responses of FG cylindrical shell 
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(a) 𝑑 = 0.05 m  (b) 𝑑 = 0.15 m 

  

(c) 𝑑 = 0.3 m (d) 𝑑 = 0.45 m 

  
(e) 𝑑 = 0.6 m (f) 𝑑 = 0.7 m 

Fig. 9 The effect of vibration absorbers on the different places of FG cylindrical shell 

 

 

the FG cylindrical shell are illustrated in Fig. 4(a). Also, the vibration response in the first and far 

periods is shown in Figs. 4(b) and 4(c), respectively. According to Fig. 4, the vibration absorber is 

better performance than the stiffeners on decreasing the maximum deflection of system. In Fig. 5, 

the mode shapes of cylindrical shell with FG material are also illustrated. 

The effect of vibration absorber with a local damper on the vibration response of the SFG  
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(a) Metal (b) FGM (c) Ceramic 

Fig. 10 The effect of material composition of FG cylindrical shell on the vibration responses 
 

  

 

 

(a) 𝑚 = 1 (b) 𝑚 = 2 

Fig. 11  The effect of different half waves (𝑚) on the vibration responses (𝑛 = 5) 
 

 

cylindrical shell is illustrated in Fig. 6. It is observed that the effect of the vibration absorber with a 

local damper on decreasing the maximum deflection of stiffened FG cylindrical shell is much 

higher than the absorber without damper. 

The effect of the different spring stiffness on the vibration of the SFG cylindrical shell is 

illustrated in Fig. 7. According to this figure, the effect of spring stiffness increases the maximum 

deflection of stiffened FG cylindrical shell when the spring stiffness is far 𝑘 = 5 × 106 N/m. So, 

the spring stiffness about 𝑘 = 5 × 106 N/m is the best case and it can be decreased the 

maximum deflection of the system. 

In Fig. 8 the vibration response with the various damping coefficients is shown. According to 

this figure, the maximum deflection of the SFG cylindrical shell decreases when the linear 

damping coefficient increases. 
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(a) 𝑛 = 4 (b) 𝑛 = 5 (c) 𝑛 = 6 

Fig. 12 The effect of different full wave (𝑛) on the vibration responses (𝑚 = 1) 

 

  
(a) Without vibration absorber (b) With vibration absorber 

Fig. 13 Maximum deflection-velocity relation of FG cylindrical shell 

 

 

In Fig. 9, the influence of vibration absorbers on the different positions of the SFG system is 

considered. According to this figure, the best position of vibration absorber is close to the center of 

the shell. So, the maximum deflection can be significantly decreased by considering a vibration 

absorber in the middle of the shell. 

According to Fig. 10, the effect of vibration absorber on decreasing the maximum deflection 

for the metal shell is higher than the ceramic shell. According to these figures, metallic shell and 

FG shell have the highest and the lowest maximum deflection of the vibration response, 

respectively. Also, the maximum deflection of the FG shell is smaller than the ceramic and 

metallic shell. 
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In Figs. 11 and 12 the effect of half and full waves on the vibration response of the SFG system 

is considered. Regarding these figures, when 𝑚 = 1 and 𝑛 = 5, the maximum deflection can be 

significantly decreased. Also, the mode shapes of the FG cylindrical shell is shown in these 

figures. 

The phase plane of forced vibration without and with vibration absorber is illustrated in Fig. 13, 

respectively. According to this figure, for the stiffened FG cylindrical shell without the vibration 

absorber, the relation of maximum deflection versus velocity has a closed curve while by 

considering the vibration absorber on the stiffened FG cylindrical shell, at first, the curve of 

maximum deflection versus velocity has disorder but when the time passes, it approaches to a 

limited cycle. Comparison of Fig. 13(a) and 13(b) illustrates that maximum deflection of stiffened 

FG cylindrical shell with vibration absorber has significantly decreased. For example, due to Figs. 

13(a) and 13(b), the maximum deflection of stiffened FG cylindrical shell in steady state situation 

is decreased from 0.001 m to 0.0002 m. 

 

 

4. Conclusions 
 

A numerical method was utilized to study the influence of the new vibration absorber on the 

vibration behavior of SFG cylindrical shells under a couple of axial and transverse compression. 

The material composition stiffeners and shell is continuously changed through the thickness. The 

dynamic mass-spring-damper absorber is connected to the ground utilizing a linear local damper. 

The spring element of the vibration absorber is called global potential, which is connected to the 

FG cylindrical shell. The relations of strain-displacement are used according to the von Kármán 

equations and the classical shell theory. To consider the stiffeners in the model, the technique of 

smeared stiffener is utilized. After obtaining the governing equations, the Galerkin method is 

utilized to discretize the nonlinear dynamic equation of system. Also, In order to find the nonlinear 

vibration responses, the fourth order Runge-Kutta method is utilized. The influence of material 

properties, geometrical characteristics on the vibration response of system was investigated. Some 

of the main conclusions may be summarized as 

• The vibration absorber is better performance than the stiffeners on decreasing the maximum 

deflection of cylindrical shell with FG material. 

• The effect of the vibration absorber with a local damper on decreasing the maximum 

deflection of stiffened FG cylindrical shell is much higher than the absorber without damper. 

• The spring stiffness about 𝑘 = 5 × 106 N/m, is the best case and it can be decreased the 

maximum deflection of SFG cylindrical shell. 

• The maximum deflection of the FG shell is smaller than the ceramic and metallic shell. 

• The maximum deflection of the SFG cylindrical shell decreases when the linear damping 

coefficient (𝑐) increases. 

• The maximum deflection can be significantly decreased by considering a vibration absorber in 

the middle of the shell. 
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