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Abstract.  As is shown in the paper, the Koltunov-Rzhanitsyn singular kernel of heredity (when constructing 
mathematical models of the dynamics problem of the hereditary theory of viscoelasticity) adequately describes real 
mechanical processes, best approximates experimental data for a long period of time. A mathematical model of the 
problem of the flutter of viscoelastic plates moving in a gas with a high supersonic velocity is given. Using the 
Bubnov-Galerkin method, discrete models of the problem of the flatter of viscoelastic plates flowed over by 
supersonic gas flow are obtained. A numerical method is developed to solve nonlinear integro-differential equations 
(IDE) for the problem of the hereditary theory of viscoelasticity with weakly singular kernels. A general 
computational algorithm and a system of application programs have been developed, which allow one to investigate 
the nonlinear dynamic problems of the hereditary theory of viscoelasticity with weakly singular kernels. On the basis 
of the proposed numerical method and algorithm, nonlinear problems of the flutter of viscoelastic plates flowed over 
in a gas flow at an arbitrary angle are investigated. In a wide range of changes in various parameters of the plate, the 
critical velocity of the flutter is determined. It is shown that the singularity parameter  affects not only the 
oscillations of viscoelastic systems, but the critical velocity of the flutter as well. 
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1. Introduction 
 

Mathematical and computer simulation of the flutter of viscoelastic elements and units of the 

aircraft structure is an actual scientific problem, the study of which is stimulated by the failure of 

aircraft structures, units of space and jet engines. 

Due to the complexity of the flutter phenomenon in aircraft units, some simplifying 

assumptions have been used in the studies. However, these assumptions, as a rule, turn out to be so 

restrictive that the mathematical model no longer reflects the real state with sufficient accuracy. 

Therefore, the results of theoretical and experimental studies are in poor agreement. 

One of the main difficulties in understanding the phenomenon of supersonic panel flutter is that 

the critical velocity of panel flutter depends on a large number of parameters. At present, the 
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difficulty of identifying many of these factors in an experimental study does not allow one to 

obtain a satisfactory agreement between experimental and theoretical results. There are reviews of 

the tasks studied; extensive bibliography is found in publications by Fung (1960), Eisley and 

Luessen (1963), Dowell and Ventres (1970). The development of the plate flutter problems taking 

into account the angle of flow is reflected in the studies of Tang and Dowell (2016), Koreanschi et 

al. (2016), Xie et al. (2013), Yaman (2016), Saeed and Salman (2017), Yang et al. (2012), Sefat 

and Fernandes (2012, 2013), Bichiou et al. (2016), Attar et al. (2003) and others. It turns out that 

the sensitivity of the flutter velocity to such factors as the angle of flow is incomplete 

insufficiently studied. So, this paper provides a theoretical study of the nonlinear flutter of 

viscoelastic plates flowed over at an arbitrary angle. Emphasis is placed on comparing the results 

with previously obtained known results.  
 

 

2. Statement and algorithm for solving the problem 
 

Consider the problem of oscillations of a flexible hereditary-deformable rectangular plate with 

sides a and b, moving in a gas with a high supersonic velocity (Fig. 1). Assuming that the stress 

and strain relation for a plate material is linearly hereditary, a simplified model of flexible plates is 

used; the force of aerodynamic effect is written according to the new linearized piston theory 

Il’yushin et al. (1994). The Berger equation is obtained to describe nonlinear oscillations of a thin 

isotropic plate in the following form: 
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 is the angle of flow; t is the time; τ is the time preceding the moment of observation. 
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Fig. 1 Flowing over the plate at an arbitrary angle 
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The solution of Eq. (2) is sought using the Bubnov-Galerkin method. Let nm(x,y)  be a 

complete sequence of coordinate functions satisfying the boundary conditions. Substituting in (2) a 

series 

 

(3) 

and conducting the known procedure of the Bubnov-Galerkin method, we get: 

 

 

k= ;  l= ;
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where 

,
 

,
 

.
 

Initial conditions for the system of Eq. (4) are: 

wnm(0)= nm, nm(0)= nm, (5) 

where nm, nm are the known constants.  
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The systems of nonlinear integro-differential equations (IDE) (4) are solved numerically with 

the method based on the use of quadrature formulas Badalov (1987a, b, 2007a, b, 2008), 

Khudayarov et al. (2019a, d). To do this, this system is written in integral form and, using rational 

transformations, the weakly singular features of the integral operator R* are eliminated. Assuming 

that t=ti,, ti=it, i=1,2,… (t=const) and replacing the integrals with some quadrature formulas to 

calculate wnm= wnm(t), the following recurrence relation is obtained: 

 

 

 

; 

(6) 

where Сj , Bs  are the numerical coefficients applied to quadrature trapezoidal formulas 

(Khudayarov et al. 2019b, Khudayarov 2019):    

  

 

 

Algorithm (6) is quite general and suits for flutter problems both for ideally elastic and for 

hereditary-deformable flexible plates under various boundary conditions. 

As an example, consider the problem of the flutter of hingedly supported rectangular plates in a 

supersonic gas flow, taking into account geometric nonlinearity. 

The solution of the simplified equation describing this process in a dimensionless form (2) at 

initial conditions: 

w(x,y,0)=aosinnxsinmy; =0, (7) 

and at boundary conditions 

w=wxx=0 at х=0 and х=1; 

w=wуу=0 at у=0 and у=1; 
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(9) 

The system of nonlinear IDE (4) in this case is simplified and takes the form 

 
(10) 

where   

kl=
2(k2+2l2);

  

  

   

Integrating system (10) twice with respect to t, it can be written in integral form; after rational 

transformation we eliminate singular features of the integral operator R*. Then, assuming that t=ti, 

ti=i∙∆t, i=1,2,… (∆t =const) and replacing the integrals by quadrature formulas of trapezoid to 

calculate wikl=wkl(ti), recurrence formulas for the Koltunov-Rzhanitsyn kernel are obtained 

 

 

(11) 

; 

The results of the calculations are presented in Tables 1, 2 and 3 and shown in graphs 2-7. Figs. 

2-7 show the results of calculations in the field of modeling of viscoelastic plates in supersonic 

flow. Calculations have shown that when solving these problems in the Bubnov-Galerkin method 

expansion it is sufficient to retain the first 5 harmonics (N = 5, M =1), since a further increase in 

the number of terms does not significantly affect the oscillation amplitude of a viscoelastic plate. 
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3. Solution of the test cases 
 

Verification of efficiency of the proposed numerical method and programs, based on the 

solution of test cases, is a necessary stage to confirm the reliability of research results obtained in 

solving specific problems. The problems for which an exact solution is known Badalov (1987a), 

Badalov et al. (2007a), Khudayarov et al. (2019b) have been considered as test cases. Table 1 

show a satisfactory agreement of approximate solutions with exact ones; this shows the reliability 

and high accuracy of calculation results. 

Consider a non-linear integro-differential equation of the form 

 

w(0)=1, , 

(12) 

where 

, 0<<1;
  . 

Eq. (12) has an exact solution w=exp(- t), which satisfies the initial conditions. 

According to (11), the approximate values wn=w(tn) (t=tn=nt, n=0, 1, 2, … ) are found from 

the relationships 

 

(13) 

 

 

Table 1 Comparison of exact and approximate solutions of the IDE 

t Solution  

0 Exact Approximate - 

1 1.000000 1.000000 0,710-4 

2 0.970445 0.970373 1,410-4 

3 0.941764 0.941622 2,810-4 

4 0.913931 0.913644 3,510-4 

5 0.886920 0.886569 4,310-4 

6 0.860707 0.860271 4,110-4 

7 0.835270 0.834855 310-4 

8 0.810584 0.810278 5,110-4 

9 0.786627 0.786113 2,510-4 

10 0.763379 0.763126 310-4 
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n=1,2,…,; where Сi, Bs – are the coefficients of the quadrature formula of trapezoids. 

Table 1 gives approximate results of calculations by formulas (13) within the interval from 0 to 

1 with t=0.01 step, and exact solutions. The following initial data have been used: 0=1.1;  

1=1.2; 2=1.3; 3=1.4; A=0.01; =0.03; =0.01. It follows from the table that the maximum error 

 of calculations performed by described method represents the value const·t2. The efficiency of 

this numerical method and programs is shown in other test cases as well. 

 

 

4. Numerical results and discussion 
 

4.1 The criterion of instability 
 

As a criterion determining the critical velocity Vcr, the condition proposed in Khudayarov et al. 

(2016, 2019a, b, c), Verlan et al. (2004), Khudayarov (2008), Badalov et al. (2007a, b) is assumed. 

 Here the main task is to find the critical flutter speed Vcr. To do so, various criteria are used. 

As a criterion determining the critical flutter speed, we assume the condition that at this speed the 

amplitude of the oscillation varies according to a harmonic law. At a speed V> Vcr, an oscillatory 

motion occurs with intensively increasing amplitudes, which can lead to the destruction of the 

structure. In the case V< Vcr the flow rate is less than the critical one, the amplitude of the 

viscoelastic plates oscillations attenuates. 

 

4.2 The procedure for finding the critical speed 

 

To determine V=Vcr, consider the values V1 and V2 located on the interval (V0,Vn) so that 

V0<V1<V2<Vn. Comparing the law of variation of w at V=V1 and V=V2, the following conclusions 

can be drawn: 

a) if, at V<V1, the law of variation of the function w is close to a harmonic one, then Vcr,  cannot 

be in the interval (V0,V1); that is Vcr lies in the interval (V1, Vn); 

b) if, at V>V1, a rapid growth of the function w with time is observed, then Vkp lies in the 

interval (V0, V1). 

Processes a) and b), i.e., the processes of excluding the intervals that do not generate 

undesirable phenomena is repeated for (V0,V1) or (V1, Vn), etc. The search ends when the remaining 

sub-interval is reduced to a sufficiently small size. 
 

4.3 Discussion of the results 
 

Longitudinal flow. The influence of viscoelastic properties of plate material on the critical 

values of time and velocity of the flutter is studied. Calculation results presented in Table 2 show 

that if the exponential kernel (=1) is used 

 (14) 

the flutter velocity decreases by approximately 1%, and when the Koltunov-Rzhanitsyn kernel is 

used  

 (15) 
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Table 2 Dependencies of flutter velocity on parameters A and  

А    1  Vcr (m/s) 

0.0 

0.01 

0.1 

0.25 0.05 1 220 0 

1003 

853.4 

537.2 

0.1 

1 

0.5 

0.15 

0.05 1 220 0 

993.14 

697.34 

412.42 

 

 
Fig. 2 Dependence of the deflection of the ideal-elastic plate on time t at Vcr =1003 m/s 

 

 
Fig. 3 Dependence of the deflection of a viscoelastic plate on time t at Vcr =537.2 m/s 

 

 

the velocity decreases by 46.4%, relative to the critical velocity of the flutter of perfectly elastic 

plates, and the critical time is almost doubled (Figs. 2 and 3). Therefore, when using the 

exponential kernels, the flutter velocity of a viscoelastic plate practically coincides with the critical 

flutter velocity for ideal elastic plates. These conclusions and results fully agree with the  
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Table 3 Dependence of flutter velocity on the physico-mechanical and geometrical parameters of the plate 

A α β λ λ1 θ Vcr (m/s) 

0.0 

0.01 

0.05 

0.1 

0.25 0.05 1 220 π/6 

1211.76 

965.6 

721.48 

646.34 

0.1 
0.15 

0.5 
0.05 1 220 π/6 

483.14 

930.98 

0.1 0.25 
0.1 

0.01 
1 220 π/6 

649.4 

645.66 

0.1 0.25 0.05 

1.2 

1.4 

1.5 

220 π/6 

805.8 

1016.26 

1135.6 

0.1 0.25 0.05 1 

180 

200 

250 

π/6 

1164.5 

870.4 

442.34 

0.1 0.25 0.05 1 220 

π/9 

π/5 

π/4 

567.04 

685.78 

789.14 

 

 
Fig. 4 A=0.001 (1); A=0.02 (2); А=0.1 (3); =0.25 =0.05; =0; =1; 1=220 

 

 

conclusions and results given in Kiyko et al. (2005), where the critical velocity of the flutter is 

determined by a numerical-analytical method. 

Flow at an arbitrary angle. Consider a viscoelastic plate with sides a, b and thickness h, 

flowed over by a supersonic gas flow at an arbitrary angle. 

Table 3 shows the critical values of the flutter velocity depending on the physico-mechanical 

and geometrical nature of the plate, taking into account the angle . From Table 3 it is seen that the  
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Fig. 5 =0.1 (1); =0.4 (2); А=0.1; =0.05; =/6; =1; 1=220; V=510 m/s 

 

 
Fig. 6  =0 (1); =/6 (2); =/4; A=0.1; =0.25; =0.05; =1; 1=220; V=510 m/s 

 

 

value of the critical number Vcr for a plate at > 0 is obviously greater than the one for a plate at 

=0. 

For example, at =200, the critical number Vcr of the plate increases by 11.14% compared with  

the corresponding values of Vcr at =0; at =360 - by 27.66%, and at =450 - by 46.9%. Note that 

the influence of the parameter of an angle of flow , agrees perfectly with the results given in 

Kiyko et al. (2005). 
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Fig. 7 1=180 (1); 1=240 (2); А=0.1; =0.25; =0.05; =/6; =1; V=510 m/s 

 

 

Table 3 shows the effect of viscoelastic properties of plate material on the flutter velocity at 

0. For an elastic plate (A=0) at  = /6, the critical velocity Vcr is 1211.76, and for a viscoelastic  

plate (A=0.1) at  = /6, the critical velocity Vcr is 646.34. The difference is 46.4%. 

Computational experiments show that a slight increase in the singularity parameter  leads to a 

significant increase in the critical velocity of the flutter. 

The table below shows that the effect of the attenuation parameter  of the hereditary kernel on 

the flutter velocity of the plate is insignificant compared to the viscosity parameter A and the 

singularity parameter ; this once again confirms the well-known conclusion that the exponential 

kernel of relaxation is unable to fully describe the hereditary properties of the construction 

material. 

The effect of the viscoelastic properties of material on the plate behavior is investigated. Fig. 4 

shows the law of distribution of the pipeline deflection with account of viscoelastic properties of 

material and its development over time.  As we see, an account of viscoelastic material properties 

of the structure sharply decreases the amplitude of oscillations. Meanwhile, the effect of the 

viscoelastic properties of pipeline material on the amplitude of its oscillations at the beginning of 

the process (part of the curve w(t) in the range of  0t1.5) is manifested to a much lesser extent. 

Beginning from t >1.5, the viscoelastic properties of material significantly affect the oscillatory 

process of the pipeline. Analysis of the results shows that an increase in the value of the viscosity 

parameter A leads to a damping of the oscillatory process. 

The effect of the parameter  (Fig. 5) was investigated for the following values: 0.15 (curve 1); 

0.4 (curve 2). The flow velocity is 510 m/s. At the first values of the parameter , the amplitude of 

oscillations increases rapidly over time. Flow rate is higher than the critical one. At  = 0.4, 

oscillations damp. 

Fig. 6 shows the variation of the amplitude of oscillations of the plate at different values of the 

angle of flow . With an increase in the parameter , the amplitude and frequency of oscillations 
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decrease. 

Fig. 7 shows the curves of change in the dimensionless deflection depending on time t at 

various values of the parameter of relative thickness, 1= 180 (curve 1); 1= 240 (curve 2). With an 

increase in the parameter 1 (a decrease in thickness), the flutter velocity decreases. 

 

 

5. Conclusions 
 

As is shown in the paper, the Koltunov-Rzhanitsyn singular kernel of heredity (when 

constructing mathematical models of the dynamics problem of the hereditary theory of 

viscoelasticity) adequately describes real mechanical processes, best approximates experimental 

data for a long period of time. In a wide range of changes in various parameters of the plate, the 

critical velocity of the flutter is determined. It is shown that the singularity parameter  affects not 

only the oscillations of viscoelastic systems, but the critical velocity of the flutter as well. 

Consequently, an account of this effect when designing aircraft structures is important, since 

the less the singularity parameter of the structure material, the more intensive dissipative processes 

occur in these structures. When modeling the nonlinear problems of the flutter of viscoelastic 

plates, a number of new mechanical effects were obtained: 

• it was found that an account of the viscoelastic properties of the plate material leads to a 

decrease in the critical velocity of the flutter by 40-60%; and to an increase in the critical time by 

70-90%; 

• it was found that the angle of flow over the plate contributes to a noticeable increase in the 

velocity of the flutter. 

The developed models, algorithms and application programs can be used in the study of 

dynamic behavior, design and testing of structural elements of aircraft built from composite 

viscoelastic materials, and of other technical structures in various fields of aircraft and machine 

engineering. 
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