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Abstract.  This paper proposes a bending analysis for a functionally graded piezoelectric (FGP) plate through 
utilizing a two-variable shear deformation plate theory under simply-supported edge conditions. The number of 
unknown functions used in this theory is only four. The electric potential distribution is assumed to be a combination 
of a cosine function along the cartesian coordinate. Applying the analytical solutions of FGP plate by using Navier’s 
approach and the principle of virtual work, the equilibrium equations are derived. The paper also discusses 
thoroughly the impact of applied electric voltage, plate’s aspect ratio, thickness ratio and inhomogeneity parameter. 
Results are compared with the analytical solution obtained by classical plate theory, first-order-shear deformation 
theory, higher-order shear deformation plate theories and quasi-three-dimensional sinusoidal shear deformation plate 
theory. 
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1. Introduction 
 

The functionally graded materials (FGMs) are defined as a class of composites which possess 

constant variation of the properties of material from a given surface to another eradicating the 

stress concentration in laminated composites. Typically, FGMs are consist of a blend of metal and 

ceramic. Although such materials are usually isotropic, they are nonhomogeneous. The reason why 

FGMs are especially interesting is because some types of FGM structures can be created which 

can be able to adapt to various conditions of operation. The rising rates of the applications of FGM 

make it necessary to have accurate models with responses that can be accurately predicted. 

Using a Fourier-based approach, Chi and Chung (2006) employed the classical plate theory 

(CPT) to obtain an elastic analysis for an FG plate which was applied to transverse loads. Jha et al. 

(2013) provided a critical review of more recent studies on the static stability analysis and 

vibration of FG rectangular plates. The usual refined theory considered in the treatment of the 

dynamic bending response of flat orthotropic plates is the simple first-order shear deformation 

theory (FSDT). The theory was designed for statics by Reissner (1944), (1945) yet extended to 

dynamics by Mindlin (1951). The in-plane displacements in this theory are prolonged to the first 
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term in the thickness coordinate. However, the rotations of normal to the mid-surface are 

considered independent of the transverse deflection. Any vibrational principle for FSDT can be 

employed to derive a reliable set of differential equations that govern the plate motion. Because 

the shear deformation has substantial impacts on the FG rectangular plates responses, shear 

deformation theories (e.g., FSDT and higher-order shear deformation plate theories (HSDTs)) 

should be used in the FG rectangular plate analysis. The FSDT accounts for the transverse shear 

deformation effects by linear variation for the in-plane displacements through the thickness of the 

plate and needs a shear correction factor while the HSDTs account for the transverse shear 

deformation effects by higher-order theory variations for in-plane displacements or both in-plane 

and transverse displacements. For instance, a third-order shear deformation plate theory (TSDT) 

was developed by Reddy (1984), (2000) with cubic variations for in-plane displacements. 

Moreover, based on Carrera’s unified formulation, Neves et al. (2013) managed to develop an 

HSDT with cubic and parabolic variations of the in-plane and transverse displacements, in 

respective order. Matsunaga (2009) used an HSDT for the 2D nonlinear analysis of an FG 

rectangular plate subjected to mechanical and thermal loads. Also, Ghasemabadian and 

Kadkhodayan (2016) used the HSDT to investigate the buckling FGP plates using circuit 

conditions. 

Along with the utilize of polynomial functions in above-mentioned works, trigonometric 

functions are used for the purpose of developing HSDTs. For example, Zenkour (2006) proposed a 

generalized shear deformation plate theory for FG in which the in-plane deflections are expanded 

as sinusoidal species through the thickness (see also, Zenkour (2004, 2005a, b, c, 2007, 2009)). 

Mantari et al. (2012a, b, c) and Mantari and Guedes Soares (2012) presented trigonometric shear 

deformation plate theories which represent optimal distribution of through-the-thickness transverse 

strains and meet the free stress boundary conditions on the surface of the plate without employing 

a shear correction factor. Relying on Carrera’s unified formulation, Ferreira et al. (2011) expanded 

an HSDT with the uses of sinusoidal functions in terms of thickness for both in-plane and 

transverse displacement components, whereas Neves et al. (2012a, b) presented HSDTs with the 

use of various expansions i.e., sinusoidal (Neves et al. 2012a) or hyperbolic shear deformation 

plate theory (Neves et al. 2012b). 

Some of the HSDTs mentioned above are computational costs because of additional unknown 

variables that are introduced to the theory such as the theories proposed by Pradyumna and 

Bandyopadhyay (2008) and Neves et al. (2012a), (2013) with nine unknown variables, Reddy 

(2011) with eleven unknown variables; Tu et al. (2017) with eight unknown variables; and Talha 

and Singh (2010) with thirteen unknown variables. Even though some popular HSDTs have five 

unknowns such as the TSDT of Reddy (2000), the quasi-3D HSDT of Benbakhti et al. (2016), the 

sinusoidal and trigonometric shear plates deformation theories of Mantari et al. (2012a, b, c) and 

Zenkour and Aljadani (2018). The motion equations of such theories are far more sophisticated 

than those pertinent to the FSDT. Therefore, they require the developing a shear deformation 

theory that can be handy to use. 

Jandaghian and Rahmani (2017) discussed the problem of thermo-electro-mechanical vibration 

of the FGP nanoplates subjected to applied biaxial forces and electric voltage with uniform 

temperature. Arefi and Zenkour (2016a, b; 2017a, b, c) concluded some valuable findings pertinent 

to the electro-elastic analysis of FG plates structures. More elaboration can be obtained from the 

studies Giannakopoulos and Suresh (1999), Liew et al. (2004), Gürses et al. (2009), Baltacioglu et 

al. (2010), Fereidoon et al. (2011) and Demir et al. (2016). The free vibration analyses of smart 

annular FG rectangular plate integrated with two uniformly piezoelectric layers put at the bottom 
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and the top of the structure was carried out by Ebrahimi and Rastgoo (2008) by using the CPT. 

In this study, a simple two-variable shear deformation plate theory is analyzed for the bending 

analyses of FGP plates. Although the current theory has only five unknowns (four mechanical 

displacements and one electric potential) and five governing equations, it successfully meets the 

boundary requirements on the top and bottom surfaces of the plate without any shear correction 

factors. The mechanical response of FG plates with piezoelectric effect is presented via applying 

the present theory. The plate is also subjected to mechanical electrical loads. The effect of gradient 

index, side-to-thickness ratio, plate aspect ratio and electric loading on the electric displacement, 

electric potential, displacement and stress are presented. The influences of applied electric voltage 

and other parameters are also discussed in this study. 
 

 

2. Formulation of the problem 
 

The FGP plate is shown in Fig. 1. The length of the plate is 𝑎, width is 𝑏 and uniform 

thickness is ℎ. An orthogonal coordinate axes, 𝑥 , 𝑦 and 𝑧 is then selected. The effective 

properties 𝑃  of the FGP material, namely, Young’s modulus 𝐸  and Poisson’s ratio 𝜈  are 

continuously varied in the thickness direction according to the following formula: 

𝑃(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚) (
1

2
+
𝑧

ℎ
)
𝑘

 , 𝑘 ≥ 0, (1) 

where 𝑃𝑚 and 𝑃𝑐 represent the properties of the metal and ceramic, respectively, and 𝑘 denotes 

the non-negative gradient index. The plate is pure ceramic when 𝑘 equals to zero and and if 𝑘 

approaches infinity then a pure metallic plate in the case. 

The displacement components of the FGP plate are assumed with the aid of the simple two-

variable HSDT are expressed as (Bouazza et al. 2018, Zenkour 2013a, b, c, 2015) 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦) − 𝑧
𝜕𝑤𝑏
𝜕𝑥

− 𝑓(𝑧)
𝜕𝑤𝑠
𝜕𝑥

,

𝑣(𝑥, 𝑦, 𝑧) = 𝑣(𝑥, 𝑦) − 𝑧
𝜕𝑤𝑏
𝜕𝑦

− 𝑓(𝑧)
𝜕𝑤𝑠
𝜕𝑦

,

𝑤(𝑥, 𝑦, 𝑧) = 𝑤𝑏(𝑥, 𝑦) + 𝑤𝑠(𝑥, 𝑦),

 (2) 

where 𝑓(𝑧) = 𝑧 −
4𝑧3

3ℎ2
. Also, 𝑢, 𝑣 and 𝑤 denote the displacements in the directions of 𝑥, 𝑦 

and 𝑧, respectively; 𝑤𝑠, 𝑤𝑏 denote shear and bending components of the vertical displacement 

𝑤. 
By using Eq. (2), the strain field can be expressed as 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
− 𝑧

𝜕2𝑤𝑏
𝜕𝑥2

− 𝑓(𝑧)
𝜕2𝑤𝑠
𝜕𝑥2

,

𝜀𝑦 =
𝜕𝑣

𝜕𝑦
− 𝑧

𝜕2𝑤𝑏
𝜕𝑦2

− 𝑓(𝑧)
𝜕2𝑤𝑠
𝜕𝑦2

,

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
− 2𝑧

𝜕2𝑤𝑏
𝜕𝑥𝜕𝑦

− 2𝑓(𝑧)
𝜕2𝑤𝑠
𝜕𝑥𝜕𝑦

,

𝛾𝑦𝑧 = 𝑔(𝑧)
𝜕𝑤𝑠
𝜕𝑦

,    𝛾𝑥𝑧 = 𝑔(𝑧)
𝜕𝑤𝑠
𝜕𝑥

,

 (3) 
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Fig. 1 Coordinates and formulation of the FGP plate 

 

 

where 𝑔(𝑧) = 1 −
4𝑧2

ℎ2
. The stress-strain relations for the FGP plate are expressed as: 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦}

 
 

 
 

=

[
 
 
 
 
𝑐11
𝑐12
0
0
0

𝑐12
𝑐22
0
0
0

0
0
𝑐44
0
0

0
0
0
𝑐55
0

0
0
0
0
𝑐66]
 
 
 
 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

−

[
 
 
 
 
0 0 𝑒31
0 0 𝑒32
0 𝑒24 0
𝑒15 0 0
0 0 0 ]

 
 
 
 

{

𝐸𝑥
𝐸𝑦
𝐸𝑧

},  (4a) 

{

𝐷𝑥
𝐷𝑦
𝐷𝑧

} = [

0 0 0 𝑒15 0
0 0 𝑒24 0 0
𝑒31 𝑒32 0 0 0

]

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

+ [

𝜇11 0 0
0 𝜇22 0
0 0 𝜇33

] {

𝐸𝑥
𝐸𝑦
𝐸𝑧

}, (4b) 

where 𝜎𝑖𝑗, 𝜀𝑖𝑗, 𝐷𝑖 and 𝐸𝑖 represent the stress tensor, strain tensor, electric displacement vector 

and electric field, respectively; 𝑒𝑖𝑗  and 𝜇𝑖𝑘  denote piezoelectric and permittivity coefficients 

respectively. The elastic coefficients 𝑐𝑖𝑗 for the FGP plate are: 

𝑐11 = 𝑐22 =
𝐸

1 − 𝜈2
,   𝑐12 =

𝜈𝐸

1 − 𝜈2
,   𝑐𝑖𝑖 =

𝐸

2(1 + 𝜈)
 ,   (𝑖 = 4,5,6). (5) 

The non-zero components of electric field with the electric potential are defined as: 

{

𝐸𝑥
𝐸𝑦
𝐸𝑧

} = −

{
  
 

  
 
𝜕𝜙

𝜕𝑥
𝜕𝜙

𝜕𝑦
𝜕𝜙

𝜕𝑧}
  
 

  
 

.   (6) 

To get the components of electric field tensor, the distribution of the electric potential must be 

determined. In the current analysis, electrical potential is supposed to be a combination of cosine 

and linear variation as following form 

𝜙(𝑥, 𝑦, 𝑧) =
2𝑧

ℎ
𝜓0 − cos(𝜉𝑧)𝜓(𝑥, 𝑦), (7) 
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where 𝜓(𝑥, 𝑦) represents the electric potential on the mid-plane, 𝜉 =
𝜋

ℎ
 and 𝜓0 denotes the 

external electric voltage applied to upper and lower surfaces of the FGP plate. 

From Eq. (7), the components of electric field can be written as: 

{

𝐸𝑥
𝐸𝑦
𝐸𝑧

} =

{
 
 

 
 

𝜕𝜓

𝜕𝑥
cos(𝜉𝑧)

𝜕𝜓

𝜕𝑦
cos(𝜉𝑧)

−
2𝜓0
ℎ
− 𝜉 sin(𝜉𝑧)𝜓}

 
 

 
 

.  (8) 

The principle of virtual work is proposed to obtain the equilibrium equations in the form 

∫ ∫ (𝜎𝑥𝛿𝜀𝑥 + 𝜎𝑦𝛿𝜀𝑦 + 𝜏𝑦𝑧𝛿𝛾𝑦𝑧 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧 + 𝜏𝑥𝑦𝛿𝛾𝑥𝑦)
ℎ/2

−ℎ/2

d𝑧
𝛺

d𝛺 

−∫ ∫ (𝐷𝑥𝛿𝐸𝑥 + 𝐷𝑦𝛿𝐸𝑦 + 𝐷𝑧𝛿𝐸𝑧)d𝑧

ℎ
2

−
ℎ
2

d𝛺 −∫ 𝑞(𝛿𝑤𝑏 + 𝛿𝑤𝑠)d𝛺 = 0
𝛺𝛺

, 

(9) 

where ℎ denotes the total thickness of the plate. By using the Eqs. (3), (4) and (8) into Eq. (9) and 

integrating through the plate thickness, one can obtain 

∬ {𝑁𝑥
𝜕𝛿𝑢

𝜕𝑥
−𝑀𝑥

𝜕2𝛿𝑤𝑏
𝜕𝑥2

− 𝑃𝑥
𝜕2𝛿𝑤𝑠
𝜕𝑥2

+𝑁𝑦
𝛺

𝜕𝛿𝑣

𝜕𝑦
−𝑀𝑦

𝜕2𝛿𝑤𝑏
𝜕𝑦2

− 𝑃𝑦
𝜕2𝛿𝑤𝑠
𝜕𝑦2

+𝑁𝑥𝑦 (
𝜕𝛿𝑢

𝜕𝑦
+
𝜕𝛿𝑣

𝜕𝑥
) − 2𝑀𝑥𝑦

𝜕2𝛿𝑤𝑏
𝜕𝑥𝜕𝑦

− 2𝑃𝑥𝑦
𝜕2𝛿𝑤𝑠
𝜕𝑥𝜕𝑦

+ 𝑄𝑦𝑧
𝜕𝛿𝑤𝑠
𝜕𝑦

+ 𝑄𝑥𝑧
𝜕𝛿𝑤𝑠
𝜕𝑥

−𝐷̂𝑥
𝜕𝛿𝜓

𝜕𝑥
− 𝐷̂𝑦

𝜕𝛿𝜓

𝜕𝑦
+ 𝐷̂𝑧𝛿𝜓 − 𝑞(𝛿𝑤𝑏 + 𝛿𝑤𝑠)}d𝛺 = 0,

 (10) 

where (𝑁𝑥 , 𝑁𝑦, 𝑁𝑥𝑦) are called the in-plane force resultant, (𝑀𝑥 ,𝑀𝑦,𝑀𝑥𝑦) are called the moment 

resultants, (𝑄𝑥 , 𝑄𝑦) are called the transverse force resultants and piezoelectric forces (𝐷̂𝑥, 𝐷̂𝑦, 𝐷̂𝑧) 
defined as 

{𝑁𝑖 , 𝑀𝑖, 𝑃𝑖} = ∫ 𝜎𝑖{1, 𝑧, 𝑓(𝑧)}d𝑧,     𝑖 = 𝑥, 𝑦,
ℎ/2

−ℎ/2

{𝑁𝑥𝑦,𝑀𝑥𝑦, 𝑃𝑥𝑦} = ∫ 𝜎𝑥𝑦{1, 𝑧, 𝑓(𝑧)}d𝑧,
ℎ/2

−ℎ/2

𝑄𝑖𝑧 = ∫ 𝑔(𝑧)𝜎𝑖𝑧d𝑧
ℎ/2

−ℎ/2

,     𝑖 = 𝑥, 𝑦,

{𝐷̂𝑖, 𝐷̂𝑧} = ∫ {𝐷𝑖 cos(𝜉𝑧), 𝐷𝑧𝜉 sin(𝜉𝑧)}d𝑧,       𝑖 = 𝑥, 𝑦.
ℎ/2

−ℎ/2   

 (11) 

The expressions of stress and moments resultants can be written as: 
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𝑁𝑥 = 𝐴11
𝜕𝑢

𝜕𝑥
+ 𝐴12

𝜕𝑣

𝜕𝑦
− 𝐵11

𝜕2𝑤𝑏
𝜕𝑥2

− 𝐵12
𝜕2𝑤𝑏
𝜕𝑦2

− 𝐵11
𝑎
𝜕2𝑤𝑠
𝜕𝑥2

− 𝐵12
𝑎
𝜕2𝑤𝑠
𝜕𝑦2

+ 𝐴̅31
𝑒 𝜓 + 𝑁𝑥

𝑒 , 

𝑁𝑦 = 𝐴12
𝜕𝑢

𝜕𝑥
+ 𝐴22

𝜕𝑣

𝜕𝑦
− 𝐵12

𝜕2𝑤𝑏
𝜕𝑥2

− 𝐵22
𝜕2𝑤𝑏
𝜕𝑦2

− 𝐵12
𝑎
𝜕2𝑤𝑠
𝜕𝑥2

− 𝐵22
𝑎
𝜕2𝑤𝑠
𝜕𝑦2

+ 𝐴̅32
𝑒 𝜓 +𝑁𝑦

𝑒 , 

𝑀𝑥 = 𝐵11
𝜕𝑢

𝜕𝑥
+ 𝐵12

𝜕𝑣

𝜕𝑦
− 𝐷11

𝜕2𝑤𝑏
𝜕𝑥2

− 𝐷12
𝜕2𝑤𝑏
𝜕𝑦2

− 𝐷11
𝑎
𝜕2𝑤𝑠
𝜕𝑥2

− 𝐷12
𝑎
𝜕2𝑤𝑠
𝜕𝑦2

+ 𝐴̅31
𝑧𝑒𝜓 +𝑀𝑥

𝑒 , 

𝑀𝑦 = 𝐵12
𝜕𝑢

𝜕𝑥
+ 𝐵22

𝜕𝑣

𝜕𝑦
− 𝐷12

𝜕2𝑤𝑏
𝜕𝑥2

− 𝐷22
𝜕2𝑤𝑏
𝜕𝑦2

− 𝐷12
𝑎
𝜕2𝑤𝑠
𝜕𝑥2

− 𝐷22
𝑎
𝜕2𝑤𝑠
𝜕𝑦2

+ 𝐴̅32
𝑧𝑒𝜓 +𝑀𝑦

𝑒 , 

𝑃𝑥 = 𝐵11
𝑎
𝜕𝑢

𝜕𝑥
+ 𝐵12

𝑎
𝜕𝑣

𝜕𝑦
− 𝐷11

𝑎
𝜕2𝑤𝑏
𝜕𝑥2

− 𝐷12
𝑎
𝜕2𝑤𝑏
𝜕𝑦2

− 𝐹11
𝜕2𝑤𝑠
𝜕𝑥2

− 𝐹12
𝜕2𝑤𝑠
𝜕𝑦2

+ 𝐴̅31
𝑓𝑒
𝜓 + 𝑃𝑥

𝑒 , 

𝑃𝑦 = 𝐵12
𝑎
𝜕𝑢

𝜕𝑥
+ 𝐵22

𝑎
𝜕𝑣

𝜕𝑦
− 𝐷12

𝑎
𝜕2𝑤𝑏
𝜕𝑥2

− 𝐷22
𝑎
𝜕2𝑤𝑏
𝜕𝑦2

− 𝐹12
𝜕2𝑤𝑠
𝜕𝑥2

− 𝐹22
𝜕2𝑤𝑠
𝜕𝑦2

+ 𝐴̅32
𝑓𝑒
𝜓 + 𝑃𝑦

𝑒 , 

𝑁𝑥𝑦 = 𝐴66 (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) − 2(𝐵66

𝜕2𝑤𝑏
𝜕𝑥𝜕𝑦

+ 𝐵66
𝑎
𝜕2𝑤𝑠
𝜕𝑥𝜕𝑦

), 

𝑀𝑥𝑦 = 𝐵66 (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) − 2(𝐷66

𝜕2𝑤𝑏
𝜕𝑥𝜕𝑦

+ 𝐷66
𝑎
𝜕2𝑤𝑠
𝜕𝑥𝜕𝑦

), 

𝑃𝑥𝑦 = 𝐵66
𝑎 (

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) − 2(𝐷66

𝑎
𝜕2𝑤𝑏
𝜕𝑥𝜕𝑦

+ 𝐹66
𝜕2𝑤𝑠
𝜕𝑥𝜕𝑦

), 

𝑄𝑦𝑧 = 𝐴44
𝑎
𝜕𝑤𝑠
𝜕𝑦

− 𝐴̅24
𝑒
𝜕𝜓

𝜕𝑦
,     𝑄𝑥𝑧 = 𝐴55

𝑎
𝜕𝑤𝑠
𝜕𝑥

− 𝐴̅15
𝑒
𝜕𝜓

𝜕𝑥
, 

𝐷̃𝑥 = 𝐴̅15
𝑒
𝜕𝑤𝑠
𝜕𝑥

− 𝐷̅11
𝑒
𝜕𝜓

𝜕𝑥
,     𝐷̃𝑦 = 𝐴̅24

𝑒
𝜕𝑤𝑠
𝜕𝑦

− 𝐷̅22
𝑒
𝜕𝜓

𝜕𝑦
, 

𝐷̃𝑧 = 𝐴̅31
𝑒
𝜕𝑢

𝜕𝑥
− 𝐴̅31

𝑧𝑒
𝜕2𝑤𝑏
𝜕𝑥2

− 𝐴̅31
𝑓𝑒 𝜕

2𝑤𝑠
𝜕𝑥2

+ 𝐴̅32
𝑒
𝜕𝑣

𝜕𝑦
− 𝐴̅32

𝑧𝑒
𝜕2𝑤𝑏
𝜕𝑦2

− 𝐴̅32
𝑓𝑒 𝜕

2𝑤𝑠
𝜕𝑦2

+ 𝐻̅33
𝑒 𝜓 − 𝐷𝑧

𝑒 , 

(12) 

where 

{𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗 , 𝐹𝑖𝑗 , 𝐴𝑖𝑗
𝑎 , 𝐵𝑖𝑗

𝑎 , 𝐷𝑖𝑗
𝑎 } = ∫ 𝑐𝑖𝑗{1, 𝑧, 𝑧

2, 𝑓2, 𝑔2, 𝑓, 𝑓𝑧}d𝑧
ℎ/2

−ℎ/2

,

𝐴̅31
𝑖𝑒 = ∫ 𝑒31{1, 𝑧, 𝑓(𝑧)}𝜉 sin(𝜉𝑧) d𝑧

ℎ/2

−ℎ/2

,     𝑖 = 1, 𝑧, 𝑓,

 

𝐴̅32
𝑖𝑒 = ∫ 𝑒32{1, 𝑧, 𝑓(𝑧)}𝜉 sin(𝜉𝑧) d𝑧

ℎ/2

−ℎ/2

,     𝑖 = 1, 𝑧, 𝑓, 

{𝐴̅24
𝑒 , 𝐴̅15

𝑒 } = ∫ {𝑒24, 𝑒15} cos
2(𝜉𝑧) d𝑧

ℎ/2

−ℎ/2
, 𝐷̅𝑖𝑖

𝑒 = ∫ 𝜇𝑖𝑖 cos
2(𝜉𝑧) d𝑧,     (𝑖 = 1,2)

ℎ/2

−ℎ/2
, 

𝐻33
𝑒 = ∫ 𝜇33𝜉

2 sin2(𝜉𝑧) d𝑧,
ℎ/2

−ℎ/2
 {𝑁𝑥

𝑒 , 𝑀𝑥
𝑒 , 𝑃𝑥

𝑒} = ∫
2𝜓0

ℎ
𝑒31{1, 𝑧, 𝑓(𝑧)}d𝑧,

ℎ/2

−ℎ/2
 

{𝑁𝑦
𝑒 , 𝑀𝑦

𝑒 , 𝑃𝑦
𝑒} = ∫

2𝜓0

ℎ
𝑒32{1, 𝑧, 𝑓(𝑧)}d𝑧,

ℎ/2

−ℎ/2
 𝐷𝑧

𝑒 = ∫ 𝜇33
2

ℎ
𝜓0𝜉 sin(𝜉𝑧) d𝑧.

ℎ/2

−ℎ/2
 

(13) 

Using Eq. (10) and integrating by parts, the equilibrium equations related with the present 

theory are obtained as 

120



 

 

 

 

 

 

Bending response of functionally graded piezoelectric plates… 

𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 0,     

𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦

𝜕𝑦
= 0,

𝜕2𝑀𝑥
𝜕𝑥2

+ 2
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝜕𝑦2
+ 𝑞 = 0,     

𝜕2𝑃𝑥
𝜕𝑥2

+ 2
𝜕2𝑃𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑃𝑦

𝜕𝑦2
+
𝜕𝑄𝑥𝑧
𝜕𝑥

+
𝜕𝑄𝑦𝑧

𝜕𝑦
+ 𝑞 = 0,

     
𝜕𝐷̂𝑥
𝜕𝑥

+
𝜕𝐷̂𝑦

𝜕𝑦
+ 𝐷̂𝑧 = 0.

 (14) 

Finally, substituting Eqs. (4) and (12) into Eq. (14) yields the equilibrium equations as 

𝐴11
𝜕2𝑢

𝜕𝑥2
+ 𝐴66

𝜕2𝑢

𝜕𝑦2
+ (𝐴12 + 𝐴66)

𝜕2𝑣

𝜕𝑥𝜕𝑦
− 𝐵11

𝜕3𝑤𝑏
𝜕𝑥3

− (𝐵12 + 2𝐵66)
𝜕3𝑤𝑏
𝜕𝑥𝜕𝑦2

 

−𝐵11
𝑎
𝜕3𝑤𝑠
𝜕𝑥3

− (𝐵12
𝑎 + 2𝐵66

𝑎 )
𝜕3𝑤𝑠
𝜕𝑥𝜕𝑦2

+ 𝐴̅31
𝑒
𝜕𝜓

𝜕𝑥
+
𝜕𝑁𝑥

𝑒

𝜕𝑥
= 0, 

 𝐴66
𝜕2𝑣

𝜕𝑥2
+ 𝐴22

𝜕2𝑣

𝜕𝑦2
+ (𝐴12 + 𝐴66)

𝜕2𝑢

𝜕𝑥𝜕𝑦
− 𝐵22

𝜕3𝑤𝑏
𝜕𝑦3

− (𝐵12 + 2𝐵66)
𝜕3𝑤𝑏
𝜕𝑥2𝜕𝑦

 

−𝐵22
𝑎
𝜕3𝑤𝑠
𝜕𝑦3

− (𝐵12
𝑎 + 2𝐵66

𝑎 )
𝜕3𝑤𝑠
𝜕𝑥2𝜕𝑦

+ 𝐴̅31
𝑒
𝜕𝜓

𝜕𝑦
+
𝜕𝑁𝑦

𝑒

𝜕𝑦
= 0, 

𝐵11
𝜕3𝑢

𝜕𝑥3
+ (𝐵12 + 2𝐵66) (

𝜕3𝑢

𝜕𝑥𝜕𝑦2
+

𝜕3𝑣

𝜕𝑥2𝜕𝑦
) + 𝐵22

𝜕3𝑣

𝜕𝑦3
− 𝐷11

𝜕4𝑤𝑏
𝜕𝑥4

− 𝐷22
𝜕4𝑤𝑏
𝜕𝑦4

 

−2(𝐷12 + 2𝐷66)
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑦2

− 𝐷11
𝑎
𝜕4𝑤𝑠
𝜕𝑥4

− 𝐷22
𝑎
𝜕4𝑤𝑠
𝜕𝑦4

− 2(𝐷12
𝑎 + 2𝐷66

𝑎 )
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

 

+𝑞 + 𝐴̅31
𝑧𝑒
𝜕2𝜓

𝜕𝑥2
+ 𝐴̅32

𝑧𝑒
𝜕2𝜓

𝜕𝑦2
+
𝜕2𝑀𝑥

𝑒

𝜕𝑥2
+
𝜕2𝑀𝑦

𝑒

𝜕𝑦2
= 0, 

𝐵11
𝑎
𝜕3𝑢

𝜕𝑥3
+ (𝐵12

𝑎 + 2𝐵66
𝑎 ) (

𝜕3𝑢

𝜕𝑥𝜕𝑦2
+

𝜕3𝑣

𝜕𝑥2𝜕𝑦
) + 𝐵22

𝑎
𝜕3𝑣

𝜕𝑦3
− 𝐷11

𝑎
𝜕4𝑤𝑏
𝜕𝑥4

− 𝐷22
𝑎
𝜕4𝑤𝑏
𝜕𝑦4

 

−2(𝐷12
𝑎 + 2𝐷66

𝑎 )
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑦2

− 𝐹11
𝜕4𝑤𝑠
𝜕𝑥4

− 𝐹22
𝜕4𝑤𝑠
𝜕𝑦4

− 2(𝐹12 + 2𝐹66)
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

 

+𝐴55
𝑎
𝜕2𝑤𝑠
𝜕𝑥2

+ 𝐴44
𝑎
𝜕2𝑤𝑠
𝜕𝑦2

+ 𝐴̅31
𝑓𝑒 𝜕

2𝜓

𝜕𝑥2
+ 𝐴̅32

𝑓𝑒 𝜕
2𝜓

𝜕𝑦2
− 𝐴̅24

𝑒
𝜕2𝜓

𝜕𝑦2
− 𝐴̅15

𝑒
𝜕2𝜓

𝜕𝑥2
 

+𝑞 +
𝜕2𝑃𝑥

𝑒

𝜕𝑥2
+
𝜕2𝑃𝑦

𝑒

𝜕𝑦2
= 0, 

𝐴̅15
𝑒
𝜕2𝑤𝑠
𝜕𝑥2

+ 𝐷̅11
𝑒
𝜕2𝜓

𝜕𝑥2
+ 𝐴̅24

𝑒
𝜕2𝑤𝑠
𝜕𝑦2

+ 𝐷̅11
𝑒
𝜕2𝜓

𝜕𝑦2
+ 𝐴̅31

𝑒
𝜕𝑢

𝜕𝑥
+ 𝐴̅32

𝑒
𝜕𝑣

𝜕𝑦
 

−𝐴̅31
𝑧𝑒
𝜕2𝑤𝑏
𝜕𝑥2

− 𝐴̅32
𝑧𝑒
𝜕2𝑤𝑏
𝜕𝑦2

− 𝐴̅31
𝑓𝑒 𝜕

2𝑤𝑠
𝜕𝑥2

− 𝐴̅32
𝑓𝑒 𝜕

2𝑤𝑠
𝜕𝑥2

+ 𝐻33
𝑒 𝜓 − 𝐷𝑧

𝑒 = 0. 

(15) 
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3. Exact solution 
 

In the present study, the rectangular FGP plate is subjected to simply-supported conditions and 

the electric potential is zero at all edges of the plate. So, one can solve the problem analytically 

and the boundary conditions will be simplified as 

𝑢(𝑥, 0) = 𝑢(𝑥, 𝑏) = 𝑢(0, 𝑦) = 𝑢(𝑎, 𝑦) = 0,

𝑣(𝑥, 0) = 𝑣(𝑥, 𝑏) = 𝑣(0, 𝑦) = 𝑣(𝑎, 𝑦) = 0,

𝑤𝑏(𝑥, 0) = 𝑤𝑏(𝑥, 𝑏) = 𝑤𝑏(0, 𝑦) = 𝑤𝑏(𝑎, 𝑦) = 0,

𝑤𝑠(𝑥, 0) = 𝑤𝑠(𝑥, 𝑏) = 𝑤𝑠(0, 𝑦) = 𝑤𝑠(𝑎, 𝑦) = 0,

𝜓(𝑥, 0) = 𝜓(𝑥, 𝑏) = 𝜓(0, 𝑦) = 𝜓(𝑎, 𝑦) = 0.

  (16) 

The solution to the equilibrium equations can be supposed as: 

{

𝑢
𝑣

[𝑤𝑏 , 𝑤𝑠, 𝜓]
} = {

𝑈 cos(𝜆𝑥) sin(𝜇𝑦)

𝑉 sin(𝜆𝑥) cos(𝜇𝑦)

[𝑊𝑏 ,𝑊𝑠, 𝛹] sin(𝜆𝑥) sin(𝜇𝑦)
}, (17) 

where 𝜆 = 𝜋/𝑎, 𝜇 = 𝜋/𝑏. and 𝑈, 𝑉,  𝑊𝑏 , 𝑊𝑠 , 𝑌 and 𝛹 are unknowns Fourier expansion 

coefficients. Both the mechanical load 𝑞 and the applied voltage 𝜓0 are applied sinusoidally on 

the upper surface of the FGP plate and they can be expressed as 

{
𝑞
𝜓0
} = {

𝑞0
𝜓̃0
} sin(𝜆𝑥) sin(𝜇𝑦), (18) 

where 𝑞0 is the intensity of the mechanical load and 𝜓̃0 is the applied electric voltage. Using 

Eqs. (17)-(18) in Eq. (14), we get  

[𝐿]{𝛥} = {𝐹}, (19) 

where {𝛥} = {𝑈, 𝑉,𝑊𝑏 ,𝑊𝑠, 𝛹}
𝑇 and the component of the vector force {𝐹} are given by 

𝐹1 =
𝜕𝑁𝑥

𝑒

𝜕𝑥
,  𝐹2 =

𝜕𝑁𝑦
𝑒

𝜕𝑦
,

 𝐹3 = 𝑞0 +
𝜕2𝑀𝑥

𝑒

𝜕𝑥2
+
𝜕2𝑀𝑦

𝑒

𝜕𝑦2
,

  𝐹4 = 𝑞0 +
𝜕2𝑃𝑥

𝑒

𝜕𝑥2
+
𝜕2𝑃𝑦

𝑒

𝜕𝑦2
,   𝐹5 = 𝐷𝑧

𝑒 ,

 (20) 

and 𝐿𝑖𝑗 represent the coefficients of the symmetric stiffness matrix [𝐿] which are given by 

𝐿11 = 𝐴11𝜆
2 + 𝐴66𝜇

2,     𝐿12 = (𝐴12 + 𝐴66)𝜆𝜇,     𝐿13 = −𝐵11𝜆
3 − (𝐵12 + 2𝐵66)𝜆𝜇

2, 

𝐿14 = −𝐵11
𝑎 𝜆3 − (𝐵12

𝑎 + 2𝐵66
𝑎 )𝜆𝜇2,     𝐿15 = −𝐴̅31

𝑒 𝜆,     𝐿22 = 𝐴66𝜆
2 + 𝐴22𝜇

2, 

𝐿23 = −𝐵22𝜇
3 − (𝐵12 + 2𝐵66)𝜆

2𝜇,     𝐿24 = −𝐵22
𝑎 𝜇3 − (𝐵12

𝑎 + 2𝐵66
𝑎 )𝜆2𝜇,     𝐿25 = −𝐴̅32

𝑒 𝜇, 

𝐿33 = 𝐷11𝜆
4 + 2(𝐷12 + 2𝐷66)𝜆

2𝜇2 + 𝐷22𝜇
4,   𝐿34 = 𝐷11

𝑎 𝜆4 + 2(𝐷12
𝑎 + 2𝐷66

𝑎 )𝜆2𝜇2 + 𝐷22
𝑎 𝜇4, 

𝐿35 = 𝐴̅31
𝑧𝑒𝜆2 + 𝐴̅32

𝑧𝑒𝜇2,    𝐿44 = 𝐹11𝜆
4 + 2(𝐹12 + 2𝐹66)𝜆

2𝜇2 + 𝐹22𝜇
4 + 𝐴55

𝑎 𝜆2 + 𝐴44
𝑎 𝜇2, 

𝐿45 = 𝐴̅31
𝑓𝑒
𝜆 + 𝐴̅15

𝑒 𝜆2 + 𝐴̅32
𝑓𝑒
𝜇 + 𝐴̅24

𝑒 𝜇2,     𝐿55 = 𝐷̅11
𝑒 (𝜆2 + 𝜇2) + 𝐻33

𝑒 . 

(21) 
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Table 1 The deflection and normal stress in the FGP square plate 

𝑘 Methods 
𝑤(0) 𝜎𝑥(1/3) 

𝑎 ℎ⁄ = 4 𝑎 ℎ⁄ = 10 𝑎 ℎ⁄ = 100 𝑎 ℎ⁄ = 4 𝑎 ℎ⁄ = 10 𝑎 ℎ⁄ = 100 

1 

CPT (Carrera et al. 2008) 

FSDT (Carrera et al. 2008) 

Q-3D (Carrera et al. 2008) 

Q-3D (Carrera et al. 2011) 

0.5623 

0.7291 

0.7171 

0.7171 

0.5623 

0.5889 

0.5875 

0.5875 

0.5623 

0.5625 

0.5625 

0.5625 

0.8060 

0.8060 

0.6221 

0.6221 

2.0150 

2.0150 

1.5064 

1.5064 

20.150 

20.150 

14.969 

14.969 

Present 

FG 

FGP (𝜓0 = 0.5) 

FGP (𝜓0 = 0) 

FGP (𝜓0 = −0.5) 

0.7284 

-0.0305 

0.1271 

2.8498 

0.5889 

0.0354 

0.0442 

0.5303 

0.5625 

0.0005 

0.0005 

0.0056 

0.5812 

0.1835 

0.7731 

1.3635 

1.4898 

1.8186 

2.0844 

2.3504 

14.967 

21.612 

21.640 

21.669 

4 

CPT (Carrera et al. 2008) 

FSDT (Carrera et al. 2008) 

Q-3D (Carrera et al. 2008) 

Q-3D (Carrera et al. 2011) 

0.8281 

1.1125 

1.1585 

1.1585 

0.8281 

0.8736 

0.8821 

0.8821 

0.8281 

0.8286 

0.8286 

0.8286 

0.6420 

0.6420 

0.4877 

0.4877 

1.6049 

1.6049 

1.1971 

1.1971 

16.049 

16.049 

11.923 

11.923 

Present 

FG 

FGP (𝜓0 = 0.5) 

FGP (𝜓0 = 0) 

FGP (𝜓0 = −0.5) 

1.1598 

-0.1446 

0.2129 

5.7046 

0.8815 

0.0625 

0.0854 

1.0846 

0.8287 

0.0011 

0.0011 

0.0119 

0.4449 

0.2052 

0.7128 

1.2206 

1.1793 

1.7468 

2.0114 

2.2760 

11.921 

21.598 

21.629 

21.659 

10 

CPT (Carrera et al. 2008) 

FSDT (Carrera et al. 2008) 

Q-3D (Carrera et al. 2008) 

Q-3D (Carrera et al. 2011) 

0.9354 

1.3178 

1.3745 

1.3745 

0.9354 

0.9966 

1.0072 

1.0072 

0.9354 

0.9360 

0.9361 

0.9361 

0.4796 

0.4796 

0.3695 

0.3695 

1.1990 

1.1990 

0.8965 

0.8965 

11.990 

11.990 

8.6077 

8.6077 

Present 

FG 

FGP (𝜓0 = 0.5) 

FGP (𝜓0 = 0) 

FGP (𝜓0 = −0.5) 

1.3908 

-0.0657 

0.2551 

5.7607 

1.0087 

0.0892 

0.1117 

1.3424 

0.9362 

0.0016 

0.0016 

0.0166 

0.3258 

-0.0086 

0.6460 

1.3011 

0.8784 

1.6003 

1.9243 

2.2483 

8.9060 

21.576 

21.614 

21.651 

 

 

4. Numerical results and discussions 
 

In this part, the numerical results are presented for simply-supported FGP rectangular plates. 

The material properties of the FGP plate made of metal (Aluminum, Al) and ceramic (Alumina, 

Al2 O3) are given by 

𝐸𝑚 = 70 GPa,      𝐸𝑐 = 380 GPa,       𝜈 = 0.3. (22) 

Before submitting the numerical results, a comparison is made with previous works to validate 

the present formulation. Table 1 shows the calculated results of non-dimensional displacement 𝑤 

and stress 𝜎𝑥 of the square FGP plate under sinusoidal load as compared with the published 

results by Carrera et al. (2008, 2011). The results presented in the papers of Mantari et al. (2012c), 

Zenkour (2006) and Carrera et al. (2011) are also taken as references and used for the validation 

purposes in Table 2. 

The non-dimensional form of the deflection and stress parameters of mechanical bending are 

𝑤 =
10ℎ3𝐸𝑐
𝑎4𝑞0

𝑤 (
𝑎

2
,
𝑏

2
, 𝑧),     𝜎𝑖 =

ℎ

𝑎𝑞0
𝜎𝑖 (

𝑎

2
,
𝑏

2
, 𝑧),     (𝑖 = 𝑥, 𝑦), 

𝜏𝑥𝑦 =
ℎ

𝑎𝑞0
𝜏𝑥𝑦(0,0, 𝑧),     𝜏𝑦𝑧 =

ℎ

𝑎𝑞0
𝜏𝑦𝑧 (

𝑎

2
, 0, 𝑧),     

(23) 
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𝜏𝑥𝑧 =
ℎ

𝑎𝑞0
𝜏𝑥𝑧 (0,

𝑏

2
, 𝑧) , 𝜓 =

103ℎ3 𝑒31
𝑎2𝑞0

𝜓 (
𝑎

2
,
𝑏

2
, 𝑧), 

𝐷𝑧 =
ℎ3𝐸𝑐

𝑎2𝑞0 𝑒31
𝐷𝑧 (

𝑎

2
,
𝑏

2
, 𝑧),    𝑧 =

𝑧

ℎ
,   𝜓̃0 =

𝜓0
ℎ𝑞0

 . 

(23) 

The present results are compared well with those of Carrera et al. (2008, 2011) in Table 1 and 

with those of Mantari et al. (2012c), Zenkour (2006) and Carrera et al. (2011) in Table 2. In fact, 

some further results are also reported in Tables 1 and 2 for the FGP plates to observe the impact of 

the external electric voltage 𝜓̃0. We use the values of 𝜓̃0 = −0.5, 0 and 0.5 for this purpose. It 

is clear that, in both tables the value of 𝜓̃0 = −0.5 gives the largest deflection while 𝜓̃0 = 0.5 

gives the smallest one. Table 1 shows that the deflection 𝑤 decreases as 𝑘 decreases and 𝑎/ℎ, 

𝜓̃0 increases while the normal stress 𝜎𝑥 increases as 𝑎/ℎ, 𝑘 increases and 𝜓̃0 decreases. Table 

2 illustrates that the dimensionless deflection 𝑤 and stresses 𝜏𝑥𝑦, 𝜏𝑥𝑧 increase as 𝜓̃0 decreases 

and 𝑘 increases. In the same table the normal stress 𝜎𝑥  decreases as 𝑘  increases and 𝜓̃0 

decreases. 
 

 

Table 2 The deflection and stresses in the FGP square plate at 𝑎 ℎ⁄ = 10 

𝑘 Methods 𝑤(0) 𝜎𝑥(1/3) 𝜏𝑥𝑦(−1/3) 𝜏𝑥𝑧(1/6) 

1 

Q-3D (Carrera et al. 2008) 

SSDT (Zenkour, 2006) 

HSDT (Mantari et al. 2012c) 

0.5875 

0.5889 

0.5880 

1.5062 

1.4894 

1.4888 

0.6081 

0.6110 

0.6109 

0.2510 

0.2622 

0.2566 

Present 

FG 

FGP (𝜓0 = 0.5) 

FGP (𝜓0 = 0) 

FGP (𝜓0 = −0.5) 

0.5889 

0.0354 

0.0442 

0.5303 

1.4898 

1.8186 

2.0844 

2.3504 

0.6111 

-0.3206 

0.8278 

1.9763 

0.2607 

0.1730 

0.1626 

0.1523 

2 

Q-3D (Carrera et al. 2008) 

SSDT (Zenkour 2006) 

HSDT (Mantari et al. 2012c) 

0.7570 

0.7573 

0.7564 

1.4147 

1.3954 

1.3940 

0.5421 

0.5441 

0.5438 

0.2496 

0.2763 

0.2741 

Present 

FG 

FGP (𝜓0 = 0.5) 

FGP (𝜓0 = 0) 

FGP (𝜓0 = −0.5) 

0.7573 

0.0456 

0.0614 

0.7734 

1.3960 

1.7977 

2.0674 

2.3372 

0.5442 

-0.2323 

0.7989 

1.8302 

0.2736 

0.1624 

0.1443 

0.1261 

4 

Q-3D (Carrera et al. 2008) 

SSDT (Zenkour 2006) 

HSDT (Mantari et al. 2012c) 

0.8823 

0.8819 

0.8814 

1.1985 

1.1783 

1.1755 

0.5666 

0.5667 

0.5662 

0.2362 

0.2580 

0.2623 

Present 

FG 

FGP (𝜓0 = 0.5) 

FGP (𝜓0 = 0) 

FGP (𝜓0 = −0.5) 

0.8815 

0.0625 

0.0854 

1.0846 

1.1793 

1.7468 

2.0114 

2.2760 

0.5669 

-0.2332 

1.0053 

2.2438 

0.2536 

0.1789 

0.1665 

0.1541 

8 

Q-3D (Carrera et al. 2008) 

SSDT (Zenkour 2006) 

HSDT (Mantari et al. 2012c) 

0.9738 

0.9750 

0.9737 

0.9687 

0.9466 

0.9431 

0.5879 

0.5856 

0.5850 

0.2262 

0.2121 

0.2140 

Present 

FG 

FGP (𝜓0 = 0.5) 

FGP (𝜓0 = 0) 

FGP (𝜓0 = −0.5) 

0.9746 

0.0829 

0.1067 

1.3057 

0.9476 

1.6385 

1.9420 

2.2455 

0.5858 

-0.2993 

1.1848 

2.6690 

0.2087 

0.2119 

0.2130 

0.2142 
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Fig. 2 Variation of the deflection 𝑤 vs the thickness ratio 𝑎/ℎ 

 

 
Fig. 3 Variation of the transverse shear stress 𝜏𝑥𝑧 vs the thickness ratio 𝑎/ℎ 

 

 
Fig. 4 Variation of the electric potential 𝛹̅ vs the thickness ratio 𝑎/ℎ 

 

 

Figs. 2 and 3 illustrate the variation of the deflection 𝑤 and the transverse shear stress 𝜏𝑥𝑧 
versus the thickness ratio 𝑎/ℎ (𝑎/𝑏 = 1, 𝜓̃0 = 1). According to Fig. 2, the deflection 𝑤 

increases as 𝑎/ℎ increases and 𝑘 decreases for the FGP plate only while the deflections 𝑤 for 

the homogeneous ceramic and metal plates is decreasing as 𝑎/ℎ increases. Also, in Fig. 3 the 

transverse shear stress 𝜏𝑥𝑧 is increasing with the increases in the thickness of the square plate,  
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Fig. 5 Variation of the electric potential 𝛹̅ through-the-thickness of the FGP plate 

 

 
Fig. 6 Variation of the normal stress 𝜎𝑥 vs the thickness ratio 𝑎/ℎ 

 

 
Fig. 7 Variation of the normal stress 𝜎𝑥 through-the-thickness of the FGP plate 

 

 

especially for small values of 𝑎/ℎ. It will be independent of the variation in 𝑎/ℎ with the 

increase of thickness ratio.  

Figs. 4 and 5 demonstrate the variation of the electric potential 𝛹 versus the thickness ratio 

𝑎/ℎ and through-the-thickness of the FGP square plate (𝑎/ℎ = 10, 𝜓̃0 = 1). As per in Fig. 4, the  
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Fig. 8 Variation of the deflection  𝑤 vs the aspect ratio 𝑎/𝑏 

 

 
Fig. 9 Variation of the transverse shear stress 𝜏𝑥𝑦 vs the aspect ratio 𝑎/𝑏 

 

 

electric potential 𝛹 increases directly as 𝑎/ℎ increases for homogeneous and FG piezoelectric 

plates. The gradient index 𝑘 desn’t have impact on the electric potential 𝛹 as appeared in both 

figures. Also, the values of 𝛹 for the homogeneous ceramic and metal plates are identical. 

Figs. 6 and 7 show the variation of the in-plane normal stress 𝜎𝑥 versus the thickness ratio 

𝑎/ℎ and through-the-thickness of the FGP square plate (𝑎/ℎ = 10, 𝜓̃0 = 1). The normal stress 

𝜎𝑥 increases as 𝑘 increases as shown in Fig. 6. From Fig. 7 the normal stress 𝜎𝑥 is compressive 

in the lower half plane of the FGP plate and tensile in the upper one. Once again, the values of 𝜎𝑥 

for the homogeneous ceramic and metal plates are identical. 

The variation of the deflection 𝑤 and transverse shear stress 𝜏𝑥𝑦 versus the aspect ratio 𝑎/𝑏 

are shown, respectively, in Figs. 8 and 9. It can be detected from Fig. 8 that the deflection 𝑤 

decreases as 𝑎/𝑏 increases and 𝑘 decreases for the FGP plate. The deflection of metallic plate is 

greater than that of the ceramic plate. From Fig. 9 the transverse shear stress 𝜏𝑥𝑦 is no longer 

decreasing as 𝑎/𝑏 increases to get its smaller values when then 𝑎/𝑏 = 0.85 then it increases 

with the increase in 𝑎/𝑏 ratio. Also, 𝜏𝑥𝑦 is increasing as 𝑘 decreases for the FGP plate. Once 

again, the values of 𝜏𝑥𝑦 for the homogeneous ceramic and metal plates are the higher and 

identical. 

Fig. 10 shows the variation of electric displacement 𝐷𝑧 versus the aspect ratio 𝑎/𝑏 of the 
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Fig. 10 Variation of the electric displacement 𝐷𝑧 vs the aspect ratio 𝑎/𝑏 

 

 
Fig. 11 Variation of the non-dimensional deflection 𝑤 vs the thickness ratio 𝑎/ℎ 

 

 
Fig. 12 Variation of the electric potential 𝛹̅ vs the thickness ratio 𝑎/ℎ 

 

 

FGP plate. The electric displacement decreases as 𝑎/𝑏 and 𝑘 increase for the FGP plates while 

the electric displacement is linear for homogeneous (ceramic/metal) plates. 

Now, one can discuss the impact and variation of the external electric voltage 𝜓̃0 at, for 

example, 𝑘 = 3. Figs. 11-17 display the variation of 𝑤, 𝛹, 𝜎𝑥 and 𝜎𝑦, respectively, with the  
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Fig. 13 Variation of the electric potential 𝛹̅ through-the-thickness of the FGP plate 

 

 
Fig. 14 Variation of the normal stress 𝜎𝑥 vs the thickness ratio 𝑎/ℎ 

 

 
Fig. 15 Variation of the normal stress 𝜎𝑥 through-the-thickness of the FGP plate 

 

 

thickness ratio 𝑎/ℎ and through-the-thickness of the FGP square plate for different value of the 

external electric voltage 𝜓̃0. Fig. 11 shows the variation of the non-dimensional deflection 𝑤 

versus the side-to-thickness ratio of the FGP plate. Accordingly, the deflection 𝑤 increases as 𝜓̃0 

decreases. Also, as 𝑎/ℎ increases the deflection 𝑤 increases for positive values of 𝜓̃0 while it  
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Fig. 16 Variation of the longitudinal stress 𝜎𝑦 vs the thickness ratio 𝑎/ℎ 

 

 
Fig. 17 Variation of the longitudinal stress 𝜎𝑦 through-the-thickness of the FGP plate 

 

 

decreases for negative values of 𝜓̃0.  

Figs. 12 and 13 illustrate that the electric potential increases with the decrease in 𝜓̃0. The 

electric potential 𝛹 may be vanished when 𝜓̃0 = 1 V. For positive values of 𝜓̃0 (50 V and 100 

V) the electric potential 𝛹 is no longer decreasing as 𝑎/ℎ increases and has its minimum values 

when 𝑎/ℎ = 3.5 as shown in Fig. 12. Also, for negative values of 𝜓̃0 (-50 V and -100 V) the 

electric potential 𝛹 is no longer increasing as 𝑎/ℎ increases and has its maximum values when 

𝑎/ℎ = 3.5. However, Figure 13 shows that the electric potential 𝛹 is tensile upwards of 𝑧̅ =
0.18  for positive values of 𝜓̃0  and downwards of 𝑧̅ = 0.18  for negative values of 𝜓̃0 . 

Otherwise, the electric potential 𝛹 is compressive upwards of 𝑧̅ = 0.18 for negative values of 

𝜓̃0 and downwards of 𝑧̅ = 0.18 for positive values of 𝜓̃0. 

Fig. 14 shows the variation of normal stress 𝜎𝑥 versus the aspect ratio 𝑎/ℎ of the FGP plate. 

It is clear that, 𝜎𝑥 increases as the applied voltage 𝜓̃0 decreases. For lower values of 𝑎/ℎ, 𝜎𝑥 

increases for positive values of 𝜓̃0 and decreases for negative values of 𝜓̃0. However, the normal 

stress 𝜎𝑥 is plotted through-the-thickness of the FGP plate in Fig. 15. It may be tensile for -ve 𝜓̃0 

and compressive for +ve 𝜓̃0. It is obvious that the variation of 𝜓̃0 has no effect on the normal 

stress 𝜎𝑥 in two positions 𝑧̅ = −0.35 and 𝑧̅ = 0.45, respectively. 

Finally, Figs. 16 and 17 show the variation of the longitudinal stress 𝜎𝑦 versus the thickness 
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ratio and through-the-thickness of the FGP plate. Once again, 𝜎𝑦 is generally increasing as 𝜓̃0 

decreases. Also, 𝜎𝑦 increases as 𝑎/ℎ increases for +ve 𝜓̃0 and decreases as 𝑎/ℎ increases for 

-ve 𝜓̃0. Both figures show that the longitudinal stress is tensile for -ve 𝜓̃0 and compressive for 

+ve 𝜓̃0. 

 

 

5. Conclusions 
 

This article presents the bending analyses of the FGP plates employing a simple two-variable 

shear deformation plate theory. This theory contains the impacts of both shear and normal 

deformations and effects of thickness stretching in the FGP plate. According to the five-unknown 

primary variables (four mechanical displacements and one electric potential), the theory satisfies 

the boundary conditions on the surfaces of the FGP plate without employing shear correction 

factors. 

The governing equations in the current study are construed based on the virtual work principle 

and the FGP plates analytical solutions are obtained by using the Navier’s method. Numerical 

results due to the influences of external electric voltages and power-law indices are investigated. 

Moreover, the positive values of external electric voltage generate smaller values of all variables 

compared to negative voltages. The effect of material gradient index, plate’s aspect ratio, and 

thickness ratio on the mechanical bending of FGP plates is also investigated. Such investigation 

connotes that the study can yield precise results in comparison with other theories. Therefore, it is 

worthy of special attention and additional enforcement by employing numerical methods. 

The current study for indicates the following: 

• The deflection of FGP decreases as aspect ratio increases and the gradient index decreases, 

while the deflection decreases as the aspect ratio increases for the FGP plate. 

• The deflection of the full ceramic and full metal FGP decreases as the thickness ratio 

increases. 

• The negative electric voltage gives the largest deflection while the positive electric voltage 

gives the smallest one. 

• The deflection of FGP increases as the thickness ratio and electric voltage increase. 

• The normal stress 𝜎𝑥 in FGP increases as the thickness ratio and gradient index increase and 

electric voltage decreases. 

• The electric potential of FGP increases directly as the thickness ratio increases. 
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