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Abstract.  Automatic trajectory planning is an important task that will have to be performed by truly autonomous 
vehicles.  The main method proposed, for unmanned airplanes to do this, consists in concatenating elementary 
segments of trajectories such as rectilinear, circular and helical segments. It is argued here that because these cannot 
be expected to all be flyable at a same constant speed, it is necessary to consider segments on which the airplane 
accelerates or decelerates. In order to preserve the planning advantages that result from having the speed constant, it is 
proposed to do all speed changes at maximum deceleration or acceleration, so that they are as brief as possible.  The 
constraints on the load factor, the lift and the power required for the motion are derived.  The equation of motion for 
such accelerated motions is solved numerically. New results are obtained concerning the value of the angle and the 
speed for which the longest distance and the longest duration glides happen, and then for which the steepest, the 
fastest and the most fuel economical climbs happen. The values obtained differ from those found in most airplane 
dynamics textbooks. Example of tables are produced that show how general speed changes can be effected 
efficiently; showing the time required for the changes, the horizontal distance traveled and the amount of fuel 
required. The results obtained apply to all internal combustion engine-propeller driven airplanes. 
 

Keywords:  airplane accelerated trajectory; inclined rectilinear motion, airplane equation of motion; 

automatic trajectory planning; gliding; climbing 

 
1. Introduction 
 

This article presents a contribution to the project of endowing unmanned aerial vehicles 

(UAVs) with complete autonomy. A fundamental ability that this requires is for the UAV to 

generate by itself alternative trajectories to reach its goal, when unforeseen circumstances occur 

that force it to deviate from its original flight plan.   

The first studies on 3D trajectory planning were mainly concerned with finding the shortest 

path between two points, with specified departure and arrival directions, as initiated by Dubins 

(1957). However, today, trajectories are optimized with respect to many other factors such as the 

amount of fuel used, the altitude, the avoidance of detection, of danger and of forbidden zones, and 

the dynamical abilities of the UAV itself. A good overview of the factors to consider was given by 

Roberge et al. (2012).   
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1.1 Building up trajectories with motion primitives 
 

An efficient method for automatically constructing trajectories has been proposed by Frazzoli 

et al. (2005). It consists in concatenating elementary trajectory segments, called motion primitives, 

for which the properties are calculated in advance and stored in an on-board library. The motion 

primitives usually considered are rectilinear, circular and helical segments.   

A particular, very often used, realization of this approach consists in starting by building a 

skeleton trajectory of connected rectilinear segments, and then smoothing out the connections, in 

order for the velocity to be continuous. This smoothing can be done with splines, as do Judd 

(2001), Zheng et al. (2003), Nikolos et al. (2003), Yang and Sukkarieh (2010), Jiabo et al. (2012) 

and Wang et al. (2017).  It can also be done with arcs of circles as do Dubins (1957), Chandler et 

al. (2000), Jia and Vagners (2004), Chitsaz and LaValle (2007), Hwangbo et al. (2007), Allaire et 

al. (2009), Xia et al. (2009), Ambrosino et al. (2009), Babaei and Mortazavi (2010), Hota and 

Ghose (2010, 2014), Roberge et al. (2012), Niendorf et al. (2013), Gao et al. (2013), Zhan et al. 

(2014), Wang et al. (2014), Rudnick-Cohen et al. (2015), Ramana et al. (2016), Kok and 

Rajendran (2016). Actually, smoothing with arcs of circles is far preferable to smoothing with 

splines because the flyability of the resulting trajectory is more readily analyzed.     

Many of the studies mentioned above, actually construct a path instead of a trajectory, because 

they only specify the spatial curve that the airplane should follow and do not specify the speed at 

which it should fly it. This is not sufficient because essentially all realistic trajectory optimization 

criteria require the knowledge of the speed of the UAV.  It is interesting to note that in studies that 

include the speed, essentially all the authors take it to be constant on the whole trajectory.  This 

consideration simplifies the calculations, however, trajectories flown at constant speed are not 

expected to be optimal in general.  For example, if the travel time should be as small as possible, 

then some segments of the trajectory should definitely be traveled faster than others, if they can.  

Furthermore, the speed at which a segment can be flown depends very much on its inclination and 

its altitude, as was discussed in Labonté (2016, 2019). For example, a Silver Fox-like UAV can 

only fly at constant speed on a rectilinear trajectory inclined at 50 with speeds between 15.8 and 

52.7 m/s, while if the rectilinear trajectory is inclined at -100, its constant speed must be between 

54.9 and 63.4 m/s (Labonté 2018). There is then no common speed at which these two rectilinear 

segments can be flown. It will in fact generally be difficult, if at all possible, to find a single speed 

at which all the segments of the trajectory can be flown.   

These facts provide a strong motivation for the present work in which we propose to include as 

motion primitives, rectilinear segments on which the airplane accelerates or decelerates.  

Accelerations and decelerations will be considered to be as short as possible, in order for the major 

part of the segment to be subsequently traveled at constant speed. This means that we will consider 

accelerations performed at full-power and decelerations at power-off.   
 

1.2 Airplane model 
 

Essentially all studies of airplane trajectory planning, except for Roberge et al. (2012), adopt 

the airplane model of Dubins (1957), according to which the airplane flies at constant speed, while 

respecting constant bounds on the vertical component of the velocity and on the turning radius.  

However, these bounds are never constant: they depend very strongly on the altitude and on the 

inclination of the trajectory (Labonté 2018). The present work does take into account the most 

important constraints imposed by the airplane dynamics; it uses the realistic airplane model 
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How airplanes fly at power-off and full-power on rectilinear trajectories 

described by Anderson (2000) and Stengel (2004). It also uses the same nomenclature. 

The application of the formulas derived in this study is illustrated with airplanes that have 

similar properties as the following two different familiar airplanes: 

o the Cessna 182 Skylane, which has a reciprocating engine with a constant speed propeller, 

o a Silver Fox-like unmanned aerial vehicle (UAV) which has a reciprocating engine with a 

fixed pitch propeller. 

The characteristics we have used for these airplanes are listed in Appendix A.   
 

1.3 Dynamics of airplanes on inclined trajectories 
 

The motion of airplanes on rectilinear trajectories is discussed essentially in all textbooks on 

airplane dynamics. However, we did not find any that provides a complete solution to the 

descending or the climbing flight equations that describes the whole trajectory. Instead, only 

instantaneous gliding and climbing rates are calculated, which are assumed to hold for the whole 

trajectory. This local calculation is then used to derive the optimal distance and duration of the 

manoeuvre (Torenbeek 1976, Hale 1984, Mair and Birdsall 1992, Anderson 2000, Eshelby 2000, 

Yechout et al. 2003, Stengel 2004, Filippone 2006 and Boschetti et al. 2015). An important 

shortcoming of these calculations is that they consider the air density, the temperature and the 

airplane weight to be constant. The inadequacy of this approach, when longer trajectories are 

considered, is recognized and explicitly stated by Anderson (2000), Eshelby (2000), Stengel 

(2004) and Filippone (2006).   

Furthermore, when optimal gliding and climbing are discussed in textbooks, the trajectories are 

considered to be inclined at angles θ that are small so that cos(θ)  1. This may be justified for 

most commercial airplanes, for which θ is at most about 100-150, but it is not true for UAVs and 

fighter airplanes that can fly much bolder manoeuvres.  

It is our purpose in the present article to examine flights at any angle of inclination.  We shall 

take into account the variations of the air density along the trajectory and of the weight of the 

airplane due to fuel burn. We shall determine the actual parameters with which optimal glides and 

climbs occur over trajectories of any length. We shall also present examples of calculations for our 

two different sample airplanes. We construct example of tables that exhibit the properties of 

maximum decelerations and accelerations. These tables show the speeds attainable, the time 

required, the horizontal distance flown, and the amount of fuel required.  These are the quantities 

of outmost interest for the process of planning of optimal flights (Mair and Birdsall 1992).   

The analysis presented in this article does not take into account the perturbations of the 

atmosphere.  As in Phillips (2004), the material we present should be seen as a preliminary study 

of airplane performance. The results presented are otherwise quite general and constitute important 

tools not only for UAV trajectory planning, but also for the analysis of the motion of all propeller 

driven airplanes.   

 

1.4 Organization of the article 
 

We start by recalling the description of the position, velocity and acceleration of an airplane on 

a rectilinear trajectory, according to the Newton equation of motion, while taking into account the 

variation of the airplane mass due to fuel burn. We derive the equations that correspond to the 

constraints on the load factor, the lift coefficient and the power available.   

We examine the standard textbook analysis of the glides at power-off, for the longest horizontal 
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distance and for the longest duration. We also examine the textbook optimal climbs at full power, 

in particular the steepest and the fastest climbs. While textbooks normally consider only small 

angle of inclination of the trajectory, we extend this analysis in order to cover all values of that 

angle. 

We then solve the equation of motion for power-off and full power situations, with the help of 

the Runge-Kutta algorithm of order 4, at 10 digit precision. This allows us to determine the actual 

parameters for which the optimal glides and climbs occur. We produce graphs that illustrate how 

the speed, the altitude and the acceleration of the airplane vary in the optimal glides and climbs. 

Finally, we give examples of tables that list the characteristics of power-off and full-power 

trajectories. We propose an algebraic expression to describe the speed, the altitude and the 

acceleration on such trajectories.   

 

 

2. Accelerated motion on rectilinear trajectories 
 

Let us consider an airplane that flies at a speed that varies in time V(t), on a rectilinear 

segment, which extends from the point xi to the point xf. In order to simplify the notation, we place 

the coordinate system such that the z-axis is vertical, the rectilinear segment lies in the x-z plane, 

with xi on the z-axis, at the altitude hi, and such that xf has a positive x-coordinate. The position of 

the center of mass x(t) of the airplane is then given by: 

     τtdh,0,0t i x  with 
 )sin(,0),cos( τ , 

in which θ is the angle that the trajectory makes with the horizontal x-y plane, τ  is the unit 

tangent vector to the trajectory and d is the distance traveled. d is a positive definite, 

monotonically increasing function of t, such that d(0)=0.  If the trajectory is ascending, 0 , 

and if it is non-ascending, 0 .  In all cases, 0 ≤ |θ| ≤ π/2.  The velocity on this trajectory is 

  τVtv
 with  

)t('dV  . 

The acceleration is α(t)τ with α(t)=V∞’(t). In the present study, we consider that the speed 

changes as fast as possible from one value to another one, therefore, the acceleration will keep the 

same sign at all times when it is not null.   

Labonté (2012) gave the form of Newton’s equation of motion, for an airplane on a rectilinear 

inclined trajectory, which takes into account the variation of the mass of the airplane due to fuel 

consumption.  Its normal and longitudinal components are respectively: 

 cosWL 
 (1) 

 sinWDTV
dt

dW

g

AFR

dt

dV

g

W
R 




















, 
(2) 

in which L is the lift, W is the weight of the airplane, “AFR” is the air to fuel ratio for the 

combustion engine, TR is the thrust required for the motion and D is the drag.  The right-hand side 

(RHS) of Eq. (2) is the sum of the forces that act in the direction of the motion. 
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2.1 Load factor  
 
Eq. (1) yields the value of the load factor n as:  

)cos(
W

L
n 

.  

The integrity of the airplane structure requires that its value be bounded at all times, such that 

nmin ≤ n ≤ nmax.  

Since here n is always non-negative, this inequality implies  

maxn)cos(  . 

For most airplanes, this condition is satisfied for all θ since usually nmax > 1. 

 

2.2 Lift coefficient 
 

Upon replacing L by its expression from Eq. (1), one obtains  

2L
SV

)cos(W2
C








.  
(3) 

Thus, the lift coefficient CL changes in time because W, ρ∞ and V∞ do. However, it must always 

satisfy the constraint  

CL ≤ CLmax. (4) 

Ineqs. (3) and (4) imply a lower bound VLB for the speed:  

LBV)t(V   with  maxL
LB SC

)cos(W2
V








. 
(5) 

If its speed goes below VLB, the airplane will stall because the lift is too small to keep it flying 

on the prescribed trajectory. 

 

2.3 Power  
 

When an internal combustion engine produces the power PP that is transferred to a propeller of 

efficiency η, the power available to move the airplane PA is: PA = ηPP (Anderson 2000).  The rate 

of fuel usage, when this power is produced, is: 

AP P
c

Pc
dt

dW




 
(6) 

in which c is the specific fuel consumption and η is the propeller efficiency.  At the altitude h, the 

maximum power available is 

)0(P
)0(

)h(
)h(P)h(P maxPmaxPmaxA









. 
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where PPmax(0) is the maximum power that the engine can produce at sea level. 

 

 

3. Textbook description of optimal glides 
 

The “Gliding Flight” section of textbooks considers an airplane that flies at power-off, with 

constant speed, on a rectilinear trajectory inclined at an angle θ with the horizon. Thus TR = 0, and 

since no fuel is consumed dW/dt = 0 and, the speed being constant, dV∞/dt = 0. The equation of 

motion Eq. (2) then becomes simply  

0)sin(WD   ,  

which with Eq. (1) implies 

 
L

D

C

C

D/L

1
tan 

.  
(7) 

 

3.1 Largest horizontal distance glide 
 

The geometry of the trajectory implies that the longest horizontal distance traveled in a glide is 

obtained when θ has its smallest possible value.  Upon differentiating tan(θ) with respect to CL, it 

is found that the minimum of θ occurs when 0DLdgL eARCCC  , for which value the angle is 

θdg such that  

0Ddg C2)tan(  
, with 

  1
eAR


 

.  
(8) 

For this value for the angle and the lift coefficient, Eq. (3) yields the speed  

  4/12
0D0Ddg C4eARC

S

W2
V





 


.  
(9) 

It is worth noting that the optimal lift coefficient CLdg is independent of the altitude so that the 

angle of descend θdg is the same at all altitudes. However this analysis has a shortcoming in that 

the glide speed Vdg depends on the air density and therefore cannot really remain constant, in 

contradiction to the initial hypothesis. This fact is often pointed out as in Example 6.9 of Anderson 

(2000).  We illustrate it in Table 1 that shows sample values of Vdg for Silver Fox-like UAV and 

the Cessna 182 at various altitudes. 

   

 
Table 1 Standard longest distance glide parameters for two different airplanes 

Silver Fox-like UAV θdg = -4.170 Cessna 182, θdg = -4.630 

Altitude (m) Vdg (m/s) Altitude (m) Vdg (m/s) 

1000 22.42 1000 41.49 

2000 23.56 3000 45.87 

3000 24.78 5000 50.95 
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3.2 Endurance (longest duration) glide  
 

The vertical speed is  sinV'h  . Eqs. (1) and (7) imply 

  4/32
D

2
L

D

CC

C

S

W2
'h





. 

The time required to descend is longest when h' is maximum. There are five critical points at 

which the derivative of h' with respect to CL is null, there is only one of them that corresponds to 

the absolute maximum for h'. It is 

   2/1

0D0DLeg C321C
2

1
C 


 

. 
(10) 

Eq. (7) yields the angle for the longest duration glide θeg when CL=CLeg and CD=CDeg, with CDeg 

=CD0+ κC2
Leg.  Eq. (3) then yields for the speed  

SC

W)cos(2
V

Leg

eg

eg







.  

(11) 

Example of values are:  

For the Silver Fox-like UAV, θeg = -4.830 and Vdg = 18.75 m/s at an altitude of 3000 m.   

For the Cessna 182, θeg = -5.360 and Veg = 38.52 m/s at an altitude of 5000 m. 

As was the case for the longest distance glide, the optimal lift coefficient CLeg and angle of 

descend θeg are altitude independent. This analysis of the endurance glide has the same 

shortcoming as that of the longest distance glide, in that it considers the speed Veg to be constant 

while it neglects the variation of air density with altitude.  
 
 

4. Textbook description of optimal climbs 
 

The “Climbing Flight” section of textbooks discuss the flight of an airplane at full power, with 

constant speed, on a rectilinear trajectory inclined at a positive angle θ with the horizon. They 

neglect fuel consumption so that the equation of motion Eq. (2) reduces to  

  0sinWDTR  
,  (12) 

which with Eq. (1) implies 

 
L

DT
tan R 


.  

(13) 

As with gliding, two situations are considered of particular interest, namely the steepest climbs 

and the fastest climbs. The determination of the value of the angle θ at which this occurs is more 

involved than it was for the gliding motion due to the fact that the variables CL, V∞ and θ that 

appear on the RHS of Eq. (17) are all inter-related. Because of this, in all textbooks that we have 

consulted, only small angles are considered, for which cos (θ) ≈ 1.  It is however possible, at the 

cost of more elaborate calculations, to deal with angles θ that could take any value. This is what 

we shall do hereafter.   
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(a) Discriminant factor Δ (b) s_(V∞)  (c) Derivative of s_(V∞) 

Fig. 1 Δ, s- and its derivative in terms of V∞ for the Cessna 182 

 

 

Since PR=V∞TR, the maximum thrust available at speed V∞ is 



V

P
T maxA

maxA . Upon substituting 

the value of CL from Eq. (3) into Eq. (12), the latter equation becomes  

0Ws
SV

)1s(W2
V

V

)0(P)h(
2

22

1
2

s

maxP 



















 

(14) 

with 

 2

CS 0D
1 

 and  )sin(s  . 

At this point, textbooks use the small angle hypothesis, cos(θ)≈1 so that the third term on the 

LHS of the equation can be neglected. This greatly simplifies the analysis because Eq. (14) is then 

simply linear in s. Without this small angle hypothesis, Eq. (14) is a quadratic equation for s that 

corresponds to an upward concave parabola. If this equation does not have real roots, then the LHS 

of Eq. (14) would always be positive. Since Eq. (14) is the same as Eq. (12), written out explicitly, 

the fact that LHS is always positive, means that the thrust is always larger than the drag and the 

component of the weight along the trajectory. This happens when the thrust provided is so large 

that there would be no angle θ for which Eq. (12) can hold.  In such a situation, the airplane 

would necessarily accelerate, i.e., the speed and the angle of climb could not be constant, contrary 

to the hypotheses made.  For the motion considered to be possible, it is therefore necessary for 

Eq. (14) to have real roots, which requires that its discriminant WΔ be non-negative, with 












3

s

maxP

4

2

1
V

)0(P

SV

W
~

2

S

8
1









 
in which

 



W

W
~

. 

Δ is dimensionless and Fig. 1(a) shows how it varies with V∞ for the Cessna 182.  It can be 

demonstrated that for this airplane, as well as for the Silver Fox-like UAV, it is always positive.  

Eq. (14) then has the following two real solutions 

60



 

 

 

 

 

 

How airplanes fly at power-off and full-power on rectilinear trajectories 

 


 
 W

W
~

4

SV
s

2

. 

The solution s+ is larger than 1 so that it cannot be a value of sin(θ) and therefore, only the solution 

s- should be considered. Fig. 1(b) shows how s- varies with V∞ for the Cessna 182. For the Silver 

Fox-like UAV, the curve for the parameters Δ and s- are very similar, except that s- does not have a 

local maximum. 

 

4.1 Steepest climb 
 

The steepest climb occurs when θ is maximum, i.e., when s- is maximum. This maximum 

occurs at the speed usually denoted by VY. This maximum occurs either at the end of the domain of 

V∞ or at a critical point at which the derivative of s- with respect to V∞ is null. Recall that, in the 

standard discussions found in textbooks, the air density is considered constant so that the 

derivative of s- is 

  

















dV

d

W
~

8

kV
1

W
~

2

kV

dV

ds 2





,  

with 



















 V

3

dV

d)0(P

kV

W
~

8

kV

8

dV

d

s

maxP

2

2

3






. 

A representation for η is clearly required for the study of the derivative of s-. Fig. 1(c) shows 

how the derivative of s- varies with V∞ for the Cessna 182.   

For this airplane that starts at sea level, VY =26.83 m/s, the angle of ascension is 11.920 and the 

ascension rate is 5.54 m/s.   

For the Silver Fox-like UAV, the variable s- is monotonically decreasing so that its maximum 

occurs at the minimum possible value of V∞ for which the constraint of Ineq. (5) is respected.  

This speed is VY = 11.57 m/s. The angle of ascension is then 57.610 and the ascension rate is 9.77 

m/s.  

 

4.2 Fastest climb  
 

The fastest climb rate is the maximum value of )V(sV)sin(V'h    . In order to 

determine this value, the derivative of h' with respect to V∞ has to be examined.  This derivative 

is  
















 dV

ds
V)V(s

dV

'dh

.  

Figs. 2(a) and 2(b) show respectively how h' and its derivative vary with V∞, for the Cessna 

182, at sea level.   

For this airplane, h' is maximum at the speed denoted VX that is VX = 43.23 m/s. The climb  
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(a) Climb rate (b) Derivative of climb rate 

Fig. 2 Climb rate and its derivative as functions of V∞ for the Cessna 182 

 

 

angle is then 9.570 and the climb rate is 7.18 m/s.   

For the Silver Fox-like UAV, h' is maximum at VX = 34.92 m/s. The climb angle is 32.910, and 

the climb rate is 18.97 m/s.   

 

4.3 Remark 
 

The above analysis of optimal climbs has two shortcomings.  The first one is the same one as 

was mentioned for the optimal glides textbook analysis, namely that the speed V∞ cannot, in fact, 

be constant because all the equations used in the derivation contain the air density which changes 

with the altitude.  The second one is that the weight of the airplane also cannot be considered to 

remain constant on long climbs since climbing at full power requires an appreciable amount of 

fuel.  We shall hereafter exhibit the extent of these shortcomings, when we examine the actual 

solutions to the equation of motion.  
 

 

5. Exact description of optimal glides 
 

When the airplane is moving at power-off, no fuel is used so that its weight is constant, and Eq. 

(2) reduces to 

 sinWDa
g

W
min 

,  
(15) 

in which amin denotes the smallest acceleration possible.  Upon replacing D by its value in this 

equation, it becomes 












 2

121
min

V

W
V

W
)sin(ga









, 
 with

   SARe

)(cos2 2

1 


 

 
(16) 

Since, as mentioned above, there does not exist constant speed solutions, we shall determine 

the parameters for which gliding is optimal by solving the equation of motion  
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)V(a
dt

dV
min 

 
. 

(17) 

Since we could not find an exact solution to this differential equation, we solved it numerically 

with the help of well-established numerical methods.  Thus, we have used the function “dsolve” 

from the mathematical software Maple (Maplesoft 2018), which implements a Runge-Kutta 

algorithm of order 4, to obtain numerical solutions that are valid to 10 digits.   

 

5.1 Slowest and longest glides  
 

In order to determine the angle and speed for which the glides are optimal, we solved Eq. (17) 

for many different angles and all speeds for which the glide was possible, at each 0.1 m/s intervals. 

We plot the glide duration for each solution calculated. A pattern is then clearly seen to emerge in 

these graphs, which points out the best angle and speed for the glides. These calculations were 

performed for both of the sample airplanes that we consider.   

For the Silver Fox-like UAV, we considered glides that start at 1800 m and for the Cessna 182, 

glides that start at 2700 m. In both cases, the airplane glided until it reached sea level. We note that 

there was no particular reason to select these starting altitudes, other than that they are not 

extreme, being about half way to the service ceiling of the airplane.   

Fig. 3(a) shows the graph of the duration of the glides for various angles of inclination for the 

Silver Fox-like UAV.  The longest duration glide is seen to occur at the glide angle θog with θog = 

0.997 θdg; at this angle, the glide lasts for 1146.0 s (19 min and 6 s) and the horizontal distance 

covered is 24,738.1 m.  Furthermore, it was determined that the smallest initial speed yielded the 

longest duration glide. The longest horizontal distance will also be covered at the same angle θog, 

because this is the smallest angle for which the motion is possible.  The longest range glide at θog, 

is obtained with the initial speed Vog = 23.21 m/s, and the final speed will be 14.18 m/s.   

Fig. 3(b) shows the corresponding glide duration graph for the Cessna 182. The longest 

duration glide occurs at the glide angle θog which is 0.99 θdg; its duration is 853.1 s (4 min and 13.1 

s).  Again, the smallest initial speed yielded the longest duration glide. The largest horizontal 

distance possibly covered is 33,691.0 m, which occurs also with the same angle θog. For the largest 

range glide the initial speed is Vog =44.3 m/s, and the final speed is 23.30 m/s.   

 

 

  
(a) For the Silver Fox-like UAV (b) For the Cessna 182 

Fig. 3 Glide duration at various angles 
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(a) Speed (b) Altitude (c) Acceleration 

Fig. 4 Speed, altitude and acceleration as functions of t, for the Silver Fox-like UAV at power-off, from 

1800 m to sea level, with the optimal glide parameters 

 

 

Fig. 4 illustrates the behavior of the speed, altitude and acceleration, in the longest range 

solution. In Fig. 4(a), the speed V∞ is shown together with the stall speed VLB, which is represented 

by the dotted line. The glide speed is not constant: it decreases all through the flight due to the 

increase in the air density.  Its decrease appears to be regular for most of the trajectory but it 

precipitates sharply at the end of the glide. The airplane reached sea level just before its speed 

decrease to the value of the stall speed. From this behavior, we conclude that the actual optimal 

initial speed for the glide will be obtained with conditions for which the airplane attains its stall 

speed right at the time it reaches the ground. As Fig. 4(b) shows, the altitude h(t) decreases almost 

linearly, so that the speed could be approximated by some constant, although it is not clear how its 

value could theoretically be determined. Fig 4(c) shows the acceleration as function of time. It is 

very small, almost null, for most of the glide and it suddenly decreases as the airplane approaches 

its stall speed. 

The corresponding graphs for the speed, the altitude and the acceleration for the Cessna 182 

have very much the same appearance as those for the Silver Fox-like UAV, shown in Fig. 4.   

For both airplanes, all the trajectories that are less inclined than the optimal angle θog lead to a 

stall before the airplane reaches sea level. 

 

 

6. Exact description of optimal climbs 
 

In the present section, we determine the actual parameters that yield the steepest and the fastest 

climbs.  We do so by examining the solutions of the equation of motion when the airplane is 

flying at full-power, while taking into account the variation of air density with the altitude and the 

variation of the airplane weight due to fuel burning. At full-power, the power required for the 

motion is PR = PAmax and Eq. (6) becomes 

      .0P
)0(

)h(c
hP

c
hcP

dt

dW
maxAmaxAmaxP








  
(18) 

Eqs. (2) and (6) yield for the maximum acceleration 
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in which 
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The equation of motion is then 

)V(a
dt

dV
max 

 
. 

(20) 

The amount of fuel used during the acceleration is obtained by solving Eq. (18). For both the 

Silver Fox-like UAV and the Cessna 182, the climbs considered started at sea level. The 

parameters that yield the optimal climbs were determined by solving the equation of motion at 

various angles for many different speeds and plotting the climb durations. A clear pattern emerges 

in these graphs that points out the value of the parameters for the optimal climbs.  

 

6.1 Climb duration vs speed 
 

We endeavored to determine the actual optimal climb speed by analyzing how our sample two 

airplanes climb from sea level to various altitudes. Here are typical results obtained with the Silver 

Fox-like UAV climbing up to the altitude of 1800 m and the Cessna 182 to 2700 m, which are 

altitudes that are about halfway to their service ceiling. These results are quite typical of what is 

observed at any angle of inclination for both our sample airplanes.     

The duration of the climbs of the Silver Fox-like UAV at 300 with various speeds is shown in 

the graph of Fig. 5(a). The corresponding behavior for the climbs of the Cessna 182 at 7.50 is 

shown in the graph of Fig. 5(b). As can be observed, for both airplanes, at any angle of climb, the 

shortest climb duration occurs at the maximum possible speed.   

 

 

  
(a) For the Silver Fox-like UAV up to 1800 m (b) For the Cessna 182 up to 2700 m 

Fig. 5 Climb duration in terms of the speed 
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(a) For the Silver Fox-like UAV up to 1800 m (b) For the Cessna 182 up to 2700 m 

Fig. 6 Climb duration in terms of the angle 

 

 

6.2 Fastest climb  
 

We analyzed solutions at various angles in order to determine the angle at which the duration of 

the climb is the shortest. In accordance with the results described in Section 6.1, the climbs were 

all performed with the largest possible initial speed. The fastest climbs were always obtained with 

this initial speed. Fig. 6 shows the duration of the climbs at various angles for the Silver Fox-like 

UAV and the Cessna 182. The Silver Fox like-UAV always started at its maximum speed of 66 m/s 

and the Cessna 182 at its maximum speed of 90 m/s. The fastest climb corresponds to the 

minimum in the curve of the duration of the climb in terms of the angle. These minimum can be 

clearly seen in the graphs of Fig. 6. 

For the Silver Fox-like UAV, the fastest climb occurs at the angle of 31.20, at which angle, the 

airplane takes 99.2 s to reach 1800 m, with the final speed of 30.09 m/s. These parameters differ 

considerably from the textbooks parameters, which give the angle of 32.90 at the constant speed of 

34.92 m/s.  When actually solving the equation of motion with these textbook parameters, the 

climb obtained requires 126.4 s, which is much longer than the value we found for the actual 

fastest climb.  

For the Cessna 182, the fastest climb occurs at the angle of 7.50; the airplane then takes 446.7 s 

to reach 2700 m and its final speed is 33.76 m/s. As for the Silver Fox-like UAV, the values of 

these parameters for the fastest climb differ appreciably from the textbook values. Actually, the 

solution of the equation of motion with the textbook fastest climb angle of 9.570 and speed of 

43.23 m/s, yield that the airplane stalls after 275.1 s, at the altitude of 1690.4 m.   

 

6.3 Steepest climb  
 

The steepest climb is the climb with the largest possible angle for which a solution of the 

equation of motion exists. The value of this angle can be seen in Fig. 6. For the Silver Fox-like 

UAV, this occurs at 41.90; at which angle the airplane takes 116.1 s to reach 1800 m, with the final 

speed of 15.18 m/s.   

 For the Cessna 182, the steepest climb occurs at 8.10; at which angle, the airplane takes 520.5 

s to reach the altitude of 2800 m, with the final speed of 25.6 m/s.   

Again, these parameters for the steepest climb differ from the standard values. For the Cessna 

182, the solution of the equation of motion shows that, at the textbook optimal angle of 11.920 and  
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(a) For the Silver Fox-like UAV up to 300 m (b) For the Cessna 182 up to 500 m 

Fig. 7 Climb duration at various angles 

 

  
(a) For the Silver Fox-like UAV up to 1800 m (b) For the Cessna 182 up to 2700 m 

Fig. 8 Amount of fuel in terms of the angle 

 

  
(a) For the Silver Fox-like UAV up to 1800 m (b) For the Cessna 182 up to 2700 m 

Fig. 9 Rate of fuel use in climbs in terms of the angle 
 

 

speed of 26.83 m/s, the airplane stalls after 55.3 s, at the altitude of 293.1 m.     

It is noteworthy that for climbs to lower altitudes, there may not be a local minimum in the 

climb duration vs the angles, as was the case in Fig. 6. This is illustrated in Fig. 7 that shows the 

climb duration at various angles, for the Silver Fox-like UAV that climbs to 300 m and the Cessna 

182 that climbs to 500 m. When there is no local minimum, the fastest climb is then also the 

steepest climb, because the minimum of the duration is at the largest angle possible.   

For the Silver Fox-like UAV, the fastest climb to 300 m occurs at the angle of 900, and the 
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airplane then takes 7.5 s to reach this altitude. Its initial speed is 66 m/s and its final speed is 23.64 

m/s.  

For the Cessna 182, the fastest climb to 500 m occurs at 22.50, and the airplane takes 25.7 s to 

reach this altitude. Its initial speed is 90 m/s and its final speed is 22.90 m/s. 

As is evident, for both airplanes, the speed is far from being constant and the parameters for the 

optimal flights differ appreciably from the value found in the textbooks for the optimal parameters.   

 

6.4 Fuel consumption  
 

The amount of fuel burned in the climbs is obtained by solving Eq. (18). Fig. 8 shows the 

amount of fuel required in the climbs at various angles, when the airplanes start at their maximum 

speeds. The amount of fuel used is seen to be minimum at the angle of the fastest climb.  

Fig. 9 shows the rate of fuel burned in terms of the angle of climb. It is seen to decrease 

monotonically as the angle of inclination of the trajectory increases. It is minimum during the 

steepest climb.  

Note that for Silver Fox-like UAV, these climbs require about 3% of its total amount of fuel, 

and for the Cessna 182, they require about 5% of its total fuel.   
 

6.5 Speed, altitude, acceleration  
 

Fig. 10 shows how the speed, the altitude and the acceleration vary in time during the steepest 

climb for the Silver Fox-like UAV. These variables also behave in the same way for the Cessna 

182. 

As can be seen in Fig. 10(a), the speed of the airplane decreases as it is climbing, and it reaches 

the prescribed altitude right at the instant at which its speed has decreased to its stall speed. This is 

a clear indication that, in this trajectory, the initial speed is the optimal speed for this climb. It 

starts with the largest speed the airplane can fly and any smaller initial speed will make the 

airplane stall before reaching the specified altitude. 

 

 

   
(a) Speed and stall speed (dotted) (b) Altitude (c) Acceleration 

Fig. 10 Speed, altitude and acceleration as functions of t, for the Silver Fox-like UAV at full-power, from 

sea level up to 1800 m, with the optimal parameters for the steepest climb 
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 The graph of the altitude as function of time, in Fig. 10(b) shows that it does not vary linearly; 

it has a definite curvature. Thus, a constant speed approximation may not be too appropriate for 

this motion. Fig. 10(c) shows that the airplane decelerates on the whole trajectory. Its acceleration 

changes very rapidly at first and it then becomes close to zero until the end of the trajectory.     

Note that the behavior of these physical variables is very much the same in the fastest climbs. 

 

 

7. Tables of maximum deceleration trajectories 
 

In the process of trajectory construction, it is very helpful to be able to determine rapidly 

whether or not the airplane can go from a given speed V1 to another one V2, when flying on a 

trajectory inclined at an angle θ. In the present section, we give examples of tables that provide 

this information for the case when the airplane should decelerate as fast as possible. We will give 

similar tables for the maximum acceleration in the next section.   

The following tables list, for different value of θ, the minimum possible speed Vf that can be 

reached when the airplane starts at its maximum speed.  In these tables, the airplane starts on the 

ascending trajectories, from sea level, with its maximum speed and with its maximum weight, and 

flies until it reaches its stall speed or its ceiling. For the trajectory at 00, the duration, entered in the 

table, is the time required to reach a speed that is within 0.25 m/s of the “final” speed (this being 

defined here as its speed after 5000 s). All the descending trajectories start at the airplane ceiling 

hc, which is 3700 m for the Silver Fox-like UAV and 5517 m for the Cessna 182, and terminate 

when the airplane reaches sea level.   

The entries in the tables are at each 100 for the Silver Fox-like UAV and at each 2.50 for the 

Cessna 182. In the tables, Vi and Vf are respectively the initial and final speed on the trajectory, tf is 

the duration of the trajectory, xf is the horizontal distance covered. The angles that are marked with 

an asterisk correspond to trajectories that terminate when the airplane reaches its stall speed 

instead of its ceiling. The final altitude reached hf can be calculated from the data in the table, as  

hf = hi + xf tan(θ). The deceleration from a speed V1 to a speed V2 will be possible if these two 

speeds are in the speed intervals [Vi, Vf] shown in the tables. Note that these tables are simply 

given as examples; trajectories actually exist at any angle of inclination. 
 

 

Table 2 Largest deceleration trajectories for the Silver Fox-like UAV 

θ (deg.) 30* 20* 10* 0* -10 -20 -30 

Vi (m/s) 66.00 66.00 66.00 66.00 66.00 66.00 66.00 

Vf (m/s) 14.82 15.42 15.76 15.80 45.86 65.86 80.30 

tf (s) 8.1 10.5 16.0 39.9 420.9 151.9 87.3 

xf (m) 269.0 379.1 593.6 1361.4 20983.7 10165.7 6408.6 

 

Table 3 Largest deceleration trajectories for the Cessna 182 

θ (deg.) 20* 15* 10* 5* 0* -5 -10 -15 -20 

Vi (m/s) 90 90 90 90 90 90 90 90 90 

Vf (m/s) 22.72 23.01 23.20 23.26 23.13 49.00 81.18 101.71 118.60 

tf (s) 15.0 18.2 23.5 33.6 61.0 1096.1 345.9 191.5 128.7 

xf (m) 775.1 965.3 1261.7 1801.6 3172.8 63059.6 31288.5 20589.7 15157.8 
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Fig. 11(a) shows how the speed varies on the ascending trajectory at θ=100 for the Cessna 182; 

the dotted line represents its approximation by the straight line described by the following 

equation: 

   ffapprox ttmtVV      
with

 

   
ff

ff

t5.0t

t5.0VtV
m








.  
(21) 

The corresponding approximation for the altitude happrox(t) is obtained by integrating Eq. (21).  

Fig. 11(b) shows the true altitude together with a dotted line that represents this approximation.  

Fig. 12 shows the same parameters for the Cessna 182 on a descending trajectory inclined at -10°.  

In both cases, the parabolic curves that represent happrox(t) can barely be discerned from the actual 

curve for h(t). For both the ascending and the descending trajectories, it can be seen that these 

approximations are quite good, shortly after the departure. The same approximations can be made 

for the Silver Fox-like UAV. 

 

 

  
(a) Speed and its approximation (dotted) (b) Altitude and its approximation (dotted) 

Fig. 11 Speed and altitude, with their approximations, for the Cessna 182 on the trajectory at 100 

 

  
(a) Speed and its approximation (dotted) (b) Altitude and its approximation (dotted) 

Fig. 12 Speed and altitude, with their approximations, for the Cessna 182 on the trajectory at -7.50 
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8. Tables of maximum acceleration trajectories 
 

The following tables are similar to Tables 2 and 3. However in these trajectories, the airplane 

starts with its maximum weight and a speed that is just above its stall speed. These tables also give 

the amount of fuel required for the trajectory. Again, trajectories are possible at any angle of 

inclination, and the tables are just particular examples.  
 

    

  
(a) Speed and its approximation (dotted) (b) Altitude and its approximation (dotted) 

Fig. 13 Speed and altitude, with their approximations, for the Silver Fox-like UAV on the trajectory at 250 

 

  
(a) Speed and its approximation (dotted) (b) Altitude and its approximation (dotted) 

Fig. 14 Speed and altitude, with their approximations, for the Silver Fox-like UAV on the trajectory at -250 
 

 

Table 4 Largest accelerations for the Silver Fox-like UAV 

θ (deg) 35* 25 15 5 -5 -15 -25 -35 

Vi (m/s) 14.40 15.14 15.63 15.87 19.08 18.78 18.20 17.31 

Vf (m/s) 16.54 29.89 49.97 55.48 60.73 64.27 67.36 70.02 

tf (s) 204.6 243.6 299.2 760.1 698.6 222.2 130.0 92.4 

xf (m) 4200.4 7934.7 13808.6 42291.2 42291.2 13808.6 7934.7 5284.1 

Fuel (N) 1.054 1.217 1.503 3.825 3.513 1.116 0.652 0.463 
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Table 5 Largest accelerations for the Cessna 182 

θ (deg.) 7.5* 5* 2.5 0 -2.5 -5 -7.5 -10 

Vi (m/s) 23.13 23.18 23.22 23.23 30.75 30.70 30.63 30.53 

Vf (m/s) 26.58 29.12 54.89 76.37 83.61 91.04 98.37 105.54 

tf (s) 527.8 1043.5 2011.2 130* 1515.5 690.7 427.0 301.2 

xf (m) 22031.3 52572.8 1.26×105 8830.0 1.26×105 63059.6 41905.8 31288.5 

Fuel (N) 58.29 105.5 196.1 16.6 148.4 67.5 41.6 29.3 

 

 

Fig. 13(a) shows how the speed varies on the ascending trajectory at θ=250 for the Silver Fox-

like UAV; the dotted line represents its approximation by the straight line that corresponds to Eq. 

(21). Fig. 13(b) shows the altitude together with a dotted line corresponding to its approximation; 

the two curves are essentially undistinguishable. Fig. 14 shows the same parameters for a 

descending trajectory inclined at -250. Clearly, for both the ascending and the descending 

trajectories, these approximations are quite adequate, shortly after the departure.  The 

corresponding approximations are also valid for the Cessna 182. 
 

 

9. Conclusions 
 

The automatic construction of airplane trajectories is usually done by concatenating elementary 

segments of trajectory called motion primitives. Most of these trajectories consist of straight lines 

that are connected by arcs of circles or helixes. A new observation is made in this article that states 

that it will, in fact, very rarely be possible to assemble complete trajectories with elementary 

segments of a common constant speed, as most authors propose doing. This motivated the present 

study of straight line segments on which the airplane decelerates or accelerates. In order to 

preserve as much as possible of the segments at constant speeds, we considered speeds that 

changed as fast as possible. That is, we looked at motion at the maximum decelerations and 

accelerations, i.e. at power-off and full power. 

The article starts by recalling the equation of motion for an accelerating airplane on a 

rectilinear trajectory, which includes the variation of the air density and of the weight of the 

airplane due to fuel burn. We derived general formulas that express the constraints on the load 

factor, on the lift coefficient and on the power available for the motion.  

We then reviewed the derivation found in textbooks of the conditions for optimal glides and 

climbs. Upon noting that only climbs at small inclination angles are usually considered, we 

produced a derivation of the corresponding conditions for any angle of inclination. This is a new 

result that completes the standard textbook presentations.  

We point out shortcomings of the textbook presentations in that they wrongly consider that a 

limiting constant speed exists, and it neglects the change of the airplane weight as fuel is burned in 

climbing flights. The subsequent analysis that we present takes these facts into account. We 

determined the true value of the parameters for optimal glides and climbs, according to the actual 

solutions of the equation of motion.   

We started by looking at gliding flights at power-off, for various angles of inclination and 

initial speeds. Upon plotting the glide durations for these different conditions, we obtained the 

value of the angle and the initial speed at which the glides are optimal. Our results show the 
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unexpected until now unknown features that 

◦both the longest horizontal distance and the longest duration glides happen, in fact, at exactly 

the same angle and speed and 

◦the angle and speed values given in textbooks, for both the longest distance and the longest 

duration glides, are incorrect by an appreciable amount. We give the true values. 

We showed graphs of the speed, the altitude and the acceleration of the airplane as functions of 

time, in the optimal glides. These show very characteristic behaviors that had never been exhibited 

before. 

We then analyzed the solutions of the equation of motion for climbs at full-power. By 

examining climbs durations at various speeds, we obtained the new result that the optimal climbs 

always occur when the initial speed is the maximum speed of the airplane. This is in 

contradistinction to what is found in all textbooks which always give two distinct speeds for the 

two optimal climbs which are actually not the maximum airplane speed. 

By systematically varying the angle of inclination and plotting the glide durations at different 

angles, we obtained the value of the angle for the fastest climb, which corresponds to a minimum 

in the duration graph in terms of the angles. Our graphs also yield the value of the angle for the 

steepest climb, as the largest angle at which a solution exists. We obtained the unexpected results 

that     

◦for climbs to higher altitudes the angles for the fastest and the steepest climbs differ, but they 

can take the same value for climbs to lower altitudes, as there is then no local minimum in the 

duration vs the angles curve, 

◦the angle and speed values given in textbooks, for the fastest and the steepest climbs, are 

inaccurate by an appreciable amount. We give the true values. 

 We have solved the equation for the amount of fuel required for each full-power climb. We 

presented a graph of the solutions obtained, which yielded the new result that the minimum 

amount of fuel used occurs in the fastest climbs and the minimum rate of fuel burned occurs in the 

steepest climbs. For the Silver Fox-like UAV, these climbs require about 3% of its total amount of 

fuel, and for the Cessna 182, they require about 5% of its total fuel. These quantities should not be 

neglected, especially for trajectories that contain many climbing segments. 

We showed graphs of the speed, the altitude and the acceleration of the airplane as functions of 

time, in the optimal climbs. These also show very characteristic behaviors that had never been 

exhibited before. 

We produced sample tables that show, for various angles of inclination, the properties of the 

maximum decelerations. These tables exhibit the initial speed and the final speed attainable when 

the airplane is flying at power-off, the time it takes to decelerate from one speed to the other, and 

the horizontal distance covered in this process. Similar tables are shown for the possible maximum 

accelerations. They show the same parameters and also the amount of fuel required to accelerate 

from one speed to the other.  

We proposed algebraic expressions to represent the speed, the altitude and the acceleration, 

which had never been done before. We show graphs that illustrate our approximation for the speed 

and the altitude superimposed with their true values. These indicate that our proposed 

approximation is quite good.    

The results presented in this article are original in that they have never been published before.  

These results shed much light on what happens in flights at power-off and at full power and they 
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exhibit much fundamental information that was unknown until our work. They are very important 

for the automatic construction of UAV trajectories and they also constitute an important tool for 

the analysis of general airplane performances. Knowing how to optimize the range and duration in 

glides and climbs and the amount of fuel required can yield some worthwhile economy of 

operation of airplanes. 
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Appendix A: Reference airplanes 
 

We note that there could be small differences between the values we list here and the actual values for a 

particular model of the airplanes considered. We used values that we could find on the internet or estimate 

from the values for similar airplanes. These data are quite adequate for our purpose that is to illustrate the 

calculations involved in the formulas we have derived.   

The thrust of the Cessna 182 is provided by a reciprocating engine with constant speed propeller; that of 

the Silver Fox by a reciprocating engine with a fixed pitch propeller. We recall that the efficiency of the 

propeller is a function of the advance ratio J, defined as: 

DN

V
J 

 

in which N is its number of revolution per second and D is its diameter. Thus the maximum power available 

PAmax will depend on the speed, according to the equation: 

maxmaxA P)J(P 
 

The dependence of η on J for a constant speed propeller has the general features shown in Fig. 15(a). 

This curve approximates that given in Cavcar (2004) by the following quadratic expressions: 

 

The dependence of η on J for a fixed pitch propeller has the general features shown in Fig. 15(b). This 

curve approximates that given in the Aeronautics Learning Laboratory for Science Technology and Research 

(ALLSTAR) of the Florida International University (2011) by the following quadratic expressions: 

 

 

 

  

(a) Constant speed propeller (b) Constant pitch propeller 

Fig. 15 Typical efficiency factor η as a function of the advance ratio J 
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Note that the propeller efficiency of this fixed pitch propellers goes to 0 at V∞ = 66.1 m/s and becomes 

negative after that.  Although a negative propeller efficiency might be desirable to slow down the airplane 

when it descends, it is not recommended to let this happens.  When this happens, the propeller drives the 

engine and damage to the engine may result [see for example the Commercial Aviation Safety Team 

document (2011).  We shall therefore not allow speeds larger than that value.  

 

A.1 Cessna 182 Skylane  
 

The parameters listed are W1 = the weight of the empty airplane, W0 = the maximum take-off weight, WF 

= the maximum weight of fuel, b = the wingspan, S = the wing area, e = Oswald's efficiency factor, CLmax = 

the maximum global lift coefficient, CD0 = the global drag coefficient at zero lift, nmax and nmin are 

respectively the maximum and minimum value of the load factor, PPmax = maximum breaking power at sea 

level, RPM = number of revolution per minute, Diameter = diameter of the propeller, ηmax = maximum value 

of the propeller efficiency. 

The characteristic parameters for the Cessna 182 can be found in Airliners.net (2015), Roud and Bruckert 

(2006) and McIver (2003).  Some of the parameters, which were not readily available, were estimated from 

those of the very similar Cessna 172.  

 

A.2 Silver Fox-like UAV  
 

The Silver Fox UAV is presently produced by Raytheon. Some of its specifications can be found in 

Parsch (2006). The power available PA(0) for the Silver Fox is only about 370 W, which allows it to climb 

only at low angles. Meanwhile, it is common for Radio Controlled (RC) airplanes to climb at very steep 

angles (See for example Carpenter (2018)). Thus, upon taking advantage of motors that have been developed 

in this domain, a Silver Fox-like airplane could be endowed with much more power in order to improve 

considerably its manoeuvre envelope. One such motor is the Zenoah GT-80 Twin Cylinder 80cc 

(ZENE80T). It weighs 34 N and outputs 4045 W at 7500 rpm. (Horizon Hobby 2017).  We shall consider a 

Silver Fox-like UAV with such a motor. 

 

 

Table 6 Characteristic parameters of the Cessna 182  

W1 = 7,562 N W0  = 11,121 N WF =1737 N 

b = 11.02 m S = 16.1653 m2 e = 0.75 

CLmax = 2.10 CD0 = 0.029 nmax = 3.8, nmin = -1.52 

PPmax = 171.511 kW RPM = 2,600  

Const. speed propeller Diameter = 2.08 m η max = 0.80 

 

Table 7 Characteristic parameters of the Silver Fox-Like airplane   

W1 = 100.0 N W0  = 148.0 N WF = 19.1 N 

b = 2.4 m S = 0.768 m2 e = 0.8 

CLmax = 1.26 CD0 = 0. 0251 nmax = 5.0, nmin = -2.0 

PPmax = 4.413 kW RPM = 7500 c = 7.447510-7 

Fixed pitch propeller Diameter = 0.56 m η max = 0.77 

hc = 3700 m   
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