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Abstract.  The effect of relaxation times is studied on plane waves propagating through semiconductor half-space 
medium by using the eigen value approach. The bounding surface of the half-space is subjected to a heat flux with an 
exponentially decaying pulse and taken to be traction free. Solution of the field variables are obtained in the form of 
series for a general semiconductor medium. For numerical values, Silicon is considered as a semiconducting 
material. The results are represented graphically to assess the influences of the thermal relaxations times on the 
plasma, thermal, and elastic waves. 
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1. Introduction 
 

Semiconductors with a band gap energy are considered by means of a laser beam with an 

energy 𝐸 greater than that of 𝐸𝑔, then an excitation process occurs. The electrons from the 

valence range are transferred to the energy level and their energy (𝐸 − 𝐸𝑔) is greater than the edge 

of the conductivity band. These free carriers will relax to an unfilled level near the lower of the 

conduction band. After the relaxation process, the electron and hole plasma are found, followed by 

pairs of electron holes formed by the recombination process. Local deformation can cause local 

tensions in the sample, which provides a plasma wave like the thermal wave resulting from local 

periodic elastic deformation. The semiconductors materials are useful in radar and microwave 

similarly semiconductors are also used in very-high-speed SiGe devices.  

In the last 40 years, the thermal theory has been very interested in the finite speed of thermal 

signals. These theories are called general thermoelastic theory. Lord and Shulman (1967) both 

proposed the first general theory of thermoelasticity which involved one relaxation time, while 

Green and Lindsay (1972) had a second general theory of thermal heat with two relaxation times. 

On the contrary, the coupled thermoelastic theory is associated with the parabolic heat equation. 

Experimental and theoretical analysis of plasma, thermal and micromechanical in one 

dimension was made by Todorović et al. (2003a, b) to deal with the properties of carrier 
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recombination and transport in the semiconducting material. In addition, such study includes the 

propagation of changes in heat and plasma waves due to the linear coupling between heat and 

mass transfer. Opsal and Rosencwaig (1985) and Rosencwaig et al. (1983) studied the depth of 

thermal and plasma waves in silicon. As an important branch of the mechanical properties of 

solids, the literature addresses various problems through numerical and analytical methods. On the 

other side, Song et al. (2010) studied the thermoelastic vibration produced by the optically excited 

semiconducting microcantilevers. They concluded that, the wave reflection in a semiconducting 

plane under photo thermal and theories of generalized thermoelasticity. Kumar and Vohra (2017) 

studied the vibration analysis of thermoelastic double porous microbeam subjected to laser pulse. 

They used the Laplace and Fourier’s transformation to find the solution of the problem. Kumar et. 

al. (2016a, b), Sharma and Sharma (2014) are containing some important results related to wave 

propagation phenomena. 

The photothermal waves in a one-dimensional semiconductor medium is studied by Abbas et 

al. (2017) and Hobiny and Abbas (2017). In Laplace, the eigen value method gives an analytical 

solution without any supposed restriction on the actual physical quantities. Lotfy (2017) presented 

photothermal waves for two-temperature model with a semiconductor medium due to a dual-

phase-lag theory and hydrostatic initial stress. In other recent articles, Zenkour (2018a, b, 2019a, 

b) presented a multi dual-phase-lag theory to treat the thermomechanical response of microbeams, 

the micro-temperatures for plane wave propagation in thermoelastic medium, and the 

photothermal waves of a gravitated semiconducting half-space. 

In this article, the heat waves propagating through the body are analyzed by using heat 

conduction equation with two relaxation times by Green and Lindsay (1972) (see also, Sharma et 

al. 2008). An analytical technique of eigen value approach is used to study their effects on the 

waves. 
 

 

2. Mathematical formulation 
 

The efforts are made to study the plasma, thermal and elastic waves generated by a focused 

laser beam in an elastic medium. For simplicity, the surface of the medium ℑ is supposed to be 

half space and 𝑦-axis is pointing vertically into the medium ℑ = {(𝑥, 𝑦, 𝑧) : − ∞ ≤ 𝑥 ≤ ∞, 𝑦 ≥
0,−∞ ≤ 𝑧 ≤ ∞}, with 𝑧-axis taken along the symmetry such that effects and changing do not 

appear along this axis. System of governing equations for the two-dimensional semiconductor 

under the influence of laser beam with radius 𝑟 (Todorović 2005, Mandelis et al. 1997) is 

represented as 

(𝜆 + 𝜇)𝑢𝑗,𝑖𝑗 + 𝜇𝑢𝑖,𝑗𝑗 − 𝛾𝑛𝑁,𝑖 − 𝛾𝑡 (1 + 𝜏1

𝜕

𝜕𝑡
)𝜃,𝑖 = 𝜌

𝜕2𝑢𝑖

𝜕𝑡2 , (1) 

𝐷𝑒𝑁,𝑗𝑗 =
𝜕𝑁

𝜕𝑡
+

𝑁

𝜏
− 𝜗

𝜃

𝜏
+ 𝑄, (2) 

𝐾𝜃,𝑗𝑗 = −
𝐸𝑔

𝜏
𝑁 + 𝜌𝑐𝑒 (1 + 𝜏0

𝜕

𝜕𝑡
)
𝜕𝜃

𝜕𝑡
+ 𝛾𝑡𝑇0 (1 + 𝑚𝜏0

𝜕

𝜕𝑡
)
𝜕𝑢𝑗,𝑗

𝜕𝑡
+ 𝛿𝐸𝑄, (3) 

and the stress-strain relations are presented as 

𝜎𝑖𝑗 = 𝜇(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) + [𝜆𝑢𝑘,𝑘 − 𝛾𝑛𝑁 − 𝛾𝑡 (1 + 𝜏1

𝜕

𝜕𝑡
) 𝜃] 𝛿𝑖𝑗 , (4) 
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where 𝜌 denotes the density of medium, 𝜎𝑖𝑗 are the stress components, 𝑢𝑖 are the displacement 

components, 𝜏0, 𝜏1 are the thermal relaxation times (for semiconductor 10−12 ≤ 𝜏0 ≤ 10−10 s, 

10−12 ≤ 𝜏1 ≤ 10−10 s), 𝜃 = 𝑇 − 𝑇0, 𝑇0 is the reference temperature, 𝑁 = 𝑛 − 𝑛0, 𝑛0 is the 

equilibrium carrier concentration, 𝐾  denotes the thermal conductivity, 𝛿𝐸 = 𝐸 − 𝐸𝑔 , 𝐸 

represents the excitation energy, 𝐸𝑔 denotes the energy gap of the semiconductor, 𝜆, 𝜇 represent 

Lame's constants, 𝑐𝑒 denotes the specific heat at constant strain, 𝐷𝑒 denotes the carrier diffusion 

coefficient, 𝛾𝑛 = (3𝜆 + 2𝜇)𝑑𝑛 , 𝑑𝑛  represents the coefficient of electronic deformation, 𝛾𝑡 =
(3𝜆 + 2𝜇)𝛼𝑡 , 𝛼𝑡  represents the linear thermal expansion coefficient, 𝜏  denotes the 

photogenerated carrier lifetime, 𝜗 =
𝜕𝑛0

𝜕𝜃
 denotes the coupling parameter of thermal activation, 

and 𝑡 is the time. 

The plate surface is illuminated by a laser pulse (Othman et al. 2015, Zenkour and Abouelregal 

2015, Abouelregal and Zenkour 2019) given as 

𝑄(𝑥, 𝑦, 𝑡) =
𝐼0𝛾

∗𝑡

2𝜋𝑟2𝑡0
2 exp (−

𝑥2

𝑟2 −
𝑡

𝑡0
) exp(−𝛾∗𝑦), (5) 

where 𝐼0 denotes the energy absorbed, 𝑡0 represents the pulse rise time, 𝑟 represents the beam 

radius and 𝛾∗ denotes the absorption depth of heating energy. 

Let us consider the state of plane strain in the present 2D problem of a semiconductor half-

space. The variable components are defined by 𝑢𝑖 ≡ (𝑢, 𝑣, 0), 𝑢 ≡ 𝑢(𝑥, 𝑦, 𝑡), 𝑣 ≡ 𝑣(𝑥, 𝑦, 𝑡), 

𝜃 ≡ 𝜃(𝑥, 𝑦, 𝑡) and 𝑁 ≡ 𝑁(𝑥, 𝑦, 𝑡). Therefore, Eqs. (1)-(4) can be written by 

(𝜆 + 2𝜇)
𝜕2𝑢

𝜕𝑥2 + (𝜆 + 𝜇)
𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 𝜇

𝜕2𝑢

𝜕𝑦2 − 𝛾𝑛
𝜕𝑁

𝜕𝑥
− 𝛾𝑡 (1 + 𝜏1

𝜕

𝜕𝑡
)

𝜕𝜃

𝜕𝑥
= 𝜌

𝜕2𝑢

𝜕𝑡2 , (6) 

(𝜆 + 2𝜇)
𝜕2𝑣

𝜕𝑦2 + (𝜆 + 𝜇)
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2 − 𝛾𝑛
𝜕𝑁

𝜕𝑦
− 𝛾𝑡 (1 + 𝜏1

𝜕

𝜕𝑡
)

𝜕𝜃

𝜕𝑦
= 𝜌

𝜕2𝑣

𝜕𝑡2, (7) 

𝐷𝑒 (
𝜕2𝑁

𝜕𝑋2 +
𝜕2𝑁

𝜕𝑦2) =
𝜕𝑁

𝜕𝑡
+

𝑁

𝜏
− 𝜗

𝜃

𝜏
+ 𝑄, (8) 

𝐾 (
𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑦2) =
−𝐸𝑔

𝜏
𝑁 + 𝜌𝑐𝑒 (1 + 𝜏0

𝜕

𝜕𝑡
)
𝜕𝜃

𝜕𝑡
+ 𝛾𝑡𝑇0 (1 + 𝑚𝜏0

𝜕

𝜕𝑡
) (

𝜕2𝑢

𝜕𝑥𝜕𝑡
+

𝜕2𝑣

𝜕𝑦𝜕𝑡
) + 𝛿𝐸𝑄. (9) 

At 𝑦 = 0, the boundary conditions (Hobiny and Abbas, 2018) are considered by 

𝜎𝑦𝑦 = 𝜎𝑦𝑥 = 0,    𝐷𝑒
𝜕𝑁

𝜕𝑦
− 𝑠0𝑁 = 0,   − 𝐾

𝜕𝜃

𝜕𝑦
=

𝑞0𝑡
2e−𝑡/𝑡𝑝

16𝑡𝑝
2 ,  (10) 

where 𝑠0 represents the speed of surface recombination, 𝑞0 denotes a constant and 𝑡𝑝 denotes 

the characteristic time of the pulse heat flux. 

It is convenient to transform the above equations into dimensionless forms. To do this, the 

dimensionless quantities can be introduced as 

(𝑡∗, 𝜏∗, 𝜏0
∗, 𝜏1

∗) = 𝜂𝑐2(𝑡, 𝜏, 𝜏0, 𝜏1),     (𝑥
∗, 𝑦∗, 𝑢∗, 𝑣∗) = 𝜂𝑐(𝑥, 𝑦, 𝑢, 𝑣),

(𝜎𝑥𝑥
∗, 𝜎𝑦𝑦

∗, 𝜎𝑥𝑦
∗) =

1

𝜇
(𝜎𝑥𝑥, 𝜎𝑦𝑦 , 𝜎𝑥𝑦),     𝑁∗ =

𝑁

𝑛0
,     𝜃∗ =

𝜃

𝑇0
,      𝑄∗ =

𝑄

𝑛0𝜂
2𝑐2𝐷𝑒

,
 (11) 

where 𝜂 =
𝜌𝑐𝑒

𝐾
 and 𝑐 = √

𝜆+2𝜇

𝜌
. 

By neglecting the asterisk and rewriting Eqs. (5)-(9), we obtain, 
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𝜕2𝑢

𝜕𝑥2 + 𝛼1

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 𝛼2

𝜕2𝑢

𝜕𝑦2 − 𝛽𝑛

𝜕𝑁

𝜕𝑥
− 𝛽𝑡 (1 + 𝜏1

𝜕

𝜕𝑡
)
𝜕𝜃

𝜕𝑥
=

𝜕2𝑢

𝜕𝑡2 , (12) 

𝜕2𝑣

𝜕𝑦2 + 𝛼1

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝛼2

𝜕2𝑣

𝜕𝑥2 − 𝛽𝑛

𝜕𝑁

𝜕𝑦
− 𝛽𝑡 (1 + 𝜏1

𝜕

𝜕𝑡
)
𝜕𝜃

𝜕𝑦
=

𝜕2𝑣

𝜕𝑡2 , (13) 

𝜕2𝑁

𝜕𝑥2
+

𝜕2𝑁

𝜕𝑦2
= 𝜛

𝜕𝑁

𝜕𝑡
+ 𝜛

𝑁

𝜏
− 𝛽

𝜃

𝜏
+ 𝑄0

𝑡

𝑡0
2 exp (

−𝑥2

𝑟2
−

𝑡

𝑡0
) exp (−𝛾∗𝑦), (14) 

𝜕2𝜃

𝜕𝑥2
+

𝜕2𝜃

𝜕𝑦2
=

−𝜖2

𝜏
𝑁 + (1 + 𝜏0

𝜕

𝜕𝑡
)
𝜕𝜃

𝜕𝑡
+ 𝜖1 (1 + 𝑚𝜏0

𝜕

𝜕𝑡
) (

𝜕2𝑢

𝜕𝑥𝜕𝑡
+

𝜕2𝑣

𝜕𝑦𝜕𝑡
) 

 +𝑄1
𝑡

𝑡0
2 exp (

−𝑥2

𝑟2
−

𝑡

𝑡0
) exp (−𝛾∗𝑦),  

(15) 

𝜕2𝑁

𝜕𝑥2
+

𝜕2𝑁

𝜕𝑦2
= 𝜛

𝜕𝑁

𝜕𝑡
+ 𝜛

𝑁

𝜏
− 𝛽

𝜃

𝜏
+ 𝑄0

𝑡

𝑡0
2 exp(

−𝑥2

𝑟2
−

𝑡

𝑡0
)exp (−𝛾∗𝑦), (16) 

where 

𝛼1 =
𝜆 + 𝜇

𝜆 + 2𝜇
,     𝛼2 =

𝜇

𝜆 + 2𝜇
,     𝛼3 =

𝜆

𝜆 + 2𝜇
,     𝛽𝑛 =

𝑛0𝛾𝑛

𝜆 + 2𝜇
,     𝛽𝑡 =

𝑇0𝛾𝑡

𝜆 + 2𝜇
,

𝜛 =
1

𝜂𝐷𝑒

,     𝛽 =
𝜗𝑇0

𝑛0𝜂𝐷𝑒

,     𝜖1 =
𝛾𝑡

𝜌𝑐𝑒

,     𝜖2 =
𝐼0𝛾

∗

2𝜋𝑟
,     𝑄0 =

𝐸𝑔𝑛0

𝜂𝐾𝑇0

,     𝑄1 =
𝛿𝐸𝑛0𝐷𝑒

𝐾𝑇0

(
𝐼0𝛾

∗

2𝜋𝑟
) .

 

  

 

3. Harmonic solution 
 

The solution of the considered physical quantities can be decomposed in terms of normal mode 

analysis as 

[𝑢, 𝑣, 𝑁, 𝜃, 𝜎𝑖𝑗] = [𝑢∗, 𝑣∗, 𝑁∗, 𝜃∗, 𝜎𝑖𝑗
∗ ](𝑦)e𝑖(𝑎𝑥−𝜔𝑡), (17) 

where 𝑢∗, 𝑣∗, 𝑁∗, 𝜃∗ and 𝜎𝑖𝑗
∗  are the amplitudes of the physical quantities 𝑢, 𝑣, 𝑁, 𝜃 and 

𝜎𝑖𝑗. ′𝑎′ is the wave number in the 𝑥-direction, 𝑖 = √−1 and ‘𝜔’ is the frequency, respectively. 

(𝛼2𝐷
2 + 𝑑1)𝑢

∗(𝑦) + 𝑑2𝐷𝑣∗(𝑦) − 𝑑3𝑁
∗(𝑦) − 𝑑4𝜃

∗(𝑦) = 0, (18) 

𝑑2𝐷𝑢∗(𝑦) + (𝐷2 − 𝑑5)𝑣
∗(𝑦) − 𝑑7𝐷𝑁∗(𝑦) − 𝑑8𝐷𝜃∗(𝑦) = 0, (19) 

(𝐷2 + 𝑑9)𝑁
∗(𝑦) + 𝑑14𝜃

∗(𝑦) = 𝑓1(𝑥, 𝑡)e−𝛾∗(𝑦), (20) 

(𝐷2 + 𝑑10)𝜃
∗(𝑦) + 𝑑11𝑁

∗(𝑦) − 𝑑12𝑢
∗(𝑦) + 𝑑13𝑣

∗(𝑦) = 𝑓2(𝑥, 𝑡)e−𝛾∗(𝑦), (21) 

where 

𝐷 =
d

d𝑦
,     𝑑1 = 𝜔2 − 𝑎2,     𝑑2 = 𝛼1𝑖𝑎,     𝑑3 = 𝛽𝑛𝑖𝑎,     𝑑4 = 𝛽𝑡(1 − 𝜏1𝑖𝜔)𝑖𝑎,

𝑑5 = 𝛼2𝑎
2 + 𝜔2,    𝑑7 = 𝛽𝑛,    𝑑8 = 𝛽𝑡(1 − 𝜏1𝑖𝜔),    𝑑9 = 𝜛𝑖𝜔 − 𝑎2 −

𝜛

𝜏
,    𝑑11 =

𝜖2

𝜏
,

𝑑10 = −𝑎2 + 𝑖𝜔(1 − 𝜏0𝑖𝜔),   𝑑12 = 𝑎𝜔𝜖1(1 − 𝑚𝜏0𝑖𝜔),   𝑑13 = 𝑖𝜔𝜖1(1 − 𝑚𝜏0𝑖𝜔),

𝑑14 =
𝛽

𝜏
,     𝑓1(𝑥, 𝑡) = 𝑄0

𝑡

𝑡0
2 (

−𝑥2

𝑟2
−

𝑡

𝑡0
),     𝑓2(𝑥, 𝑡) = 𝑄1

𝑡

𝑡0
2 (

−𝑥2

𝑟2
−

𝑡

𝑡0
) .
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Now, let us proceed to solve the nonhomogeneous coupled differential equations by an eigen-

value approach. Eqs. (18)-(21) can be written in a vector-matrix differential equation as follows 

d𝜙

d𝑦
= 𝜆𝜙 − 𝑔 e−𝛾∗𝑦 , (22) 

where  

𝜙 = [𝑢 𝑣 𝑁 𝜃
d𝑢

d𝑦

d𝑣

d𝑦

d𝑁

d𝑦

d𝜃

d𝑦
], 

𝜆 =

[
 
 
 
 
 
 
 

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

𝑏11 0 𝑏12 𝑏13 0 𝑏14 0 0
0 𝑏15 0 0 𝑏17 0 𝑏18 𝑏16

0 0 𝑏19 𝑏24 0 0 0 0
𝑏20 0 𝑏21 𝑏22 0 𝑏23 0 0 ]

 
 
 
 
 
 
 

,     𝑔 =

[
 
 
 
 
 
 
 

0
0
0
0
0
0

𝑓1(𝑥, 𝑡)

𝑓2(𝑥, 𝑡)]
 
 
 
 
 
 
 

. 

with 

𝑏11 =
−𝑑1

𝛼2

,    𝑏12 =
𝑑3

𝛼2

,    𝑏13 =
𝑑4

𝛼2

,     𝑏14 =
𝑑2

𝛼2

,     𝑏15 = 𝑑5,     𝑏16 = 𝑑8,     𝑏17 = 𝑑2,    𝑏18 = 𝑑7,

𝑏19 = −𝑑9,     𝑏20 = 𝑑12,     𝑏21 = −𝑑11,     𝑏22 = −𝑑10,     𝑏23 = −𝑑13,     𝑏24 = −𝑑14.

 

Then, the characteristic equation of the matrix 𝜆 is expressed as 

𝜉8 + 𝐴𝜉6 + 𝐵𝜉4 + 𝐶𝜉2 + 𝐷 = 0, (23) 

where 

𝐴 = −𝑏11 − 𝑏15 − 𝑏14𝑏17 − 𝑏19 − 𝑏22 − 𝑏16𝑏23, 

𝐵 = 𝑏11𝑏15 + 𝑏11𝑏19 + 𝑏15𝑏10 + 𝑏14𝑏17𝑏19 − 𝑏13𝑏20 − 𝑏14𝑏16𝑏20 + 𝑏11𝑏22 + 𝑏15𝑏22 + 𝑏14𝑏17𝑏22 + 𝑏19𝑏22 +
𝑏11𝑏16𝑏23 + 𝑏13𝑏17𝑏23 + 𝑏16𝑏19𝑏23 − 𝑏21𝑏24 − 𝑏18𝑏23𝑏24, 

𝐶 = −𝑏11𝑏15𝑏19 + 𝑏13𝑏15𝑏20 + 𝑏13𝑏19𝑏20 + 𝑏14𝑏16𝑏19𝑏20 − 𝑏11𝑏15𝑏22 − 𝑏11𝑏19𝑏22 − 𝑏15𝑏19𝑏22 −
𝑏14𝑏17𝑏19𝑏22 − 𝑏11𝑏16𝑏19𝑏23 + 𝑏13𝑏17𝑏19𝑏23 − 𝑏12𝑏20𝑏24 − 𝑏14𝑏18𝑏20𝑏24 + 𝑏11𝑏21𝑏24 + 𝑏14𝑏17𝑏21𝑏24 −

𝑏12𝑏17𝑏23𝑏24 + 𝑏11𝑏18𝑏23𝑏24, 

𝐷 = −𝑏13𝑏15𝑏19𝑏20 + 𝑏11𝑏15𝑏19𝑏22 + 𝑏12𝑏15𝑏20𝑏24 − 𝑏11𝑏15𝑏21𝑏24. 

The roots of the characteristic Eq. (21) which are also the eigen values of matrix 𝜆 are of the 

form ±𝜉1 , ±𝜉2 , ±𝜉3  and ±𝜉4 . The eigenvector 𝑌 = [𝑌1 𝑌2 𝑌3 𝑌4 𝑌5 𝑌6 𝑌7 𝑌8] 
corresponding to eigen value 𝜉 can be calculated as 

𝑌1 = −(𝜉𝑏12𝑏17𝑏24 − 𝜉𝑏18𝑏24(𝑏11 − 𝜉2)) + (𝜉𝑏13 − 𝜉𝑏16(𝑏11 − 𝜉2))(𝑏19 − 𝜉2), 

𝑌2 = −(𝑏19 − 𝜉2)(𝜉2𝑏14𝑏17 − 𝜉𝑏18𝑏11 + 𝜉3𝑏18 − 𝑏11𝑏15 − 𝜉2𝑏15 − 𝜉2𝑏11 + 𝜉4), 

𝑌3 = 𝑏24(𝜉
2𝑏17𝑏14 − (𝑏11 − 𝜉2)(𝑏15 − 𝜉2)), 

𝑌4 =
𝑏14𝜉

(𝑏11−𝜉2)
(𝜉𝑏12𝑏17𝑏24 − 𝜉𝑏11𝑏18𝑏24 + 𝜉3𝑏18𝑏24 + 𝜉𝑏13𝑏19 − 𝜉3𝑏13 − 𝜉𝑏11𝑏16𝑏19 + 𝜉3𝑏16𝑏11 + 𝜉3𝑏16𝑏19 − 𝜉5𝑏16) −

𝑏12𝑏24

(𝑏11−𝜉2)
(𝜉2𝑏17𝑏14 − (𝑏11 − 𝜉2)(𝑏15 − 𝜉2)) + 𝑏13(𝜉

2𝑏14𝑏17 − 𝜉𝑏18𝑏11 + 𝜉3𝑏18 − 𝑏11𝑏15 − 𝜉2𝑏15 − 𝜉2𝑏11 + 𝜉4), 

𝑌5 = 𝜉𝑌1,     𝑌6 = 𝜉𝑌2,     𝑌7 = 𝜉𝑌3,     𝑌8 = 𝜉𝑌4. 

The solution of Eq. (22) has the following form 

𝜙 = ∑𝐵𝑖𝑌𝑖e
−𝜉𝑖𝑦 + ∑𝐵𝑖+4𝑌𝑖+4e

𝜉𝑖𝑦 + 𝑔2e
−𝛾∗𝑦

4

𝑖=1

4

𝑖=1

, (24) 
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where 𝐵𝑖 , (𝑖 = 1,2,… ,8) are constants to be determined by the boundary conditions of the 

problem and  

𝑔∗ = [𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 𝑔7 𝑔8]𝑇, 

𝑔 = −(𝑏20(𝛾
∗2

− 𝑏15) + 𝛾∗2
𝑏23𝑏17)(

𝛾∗𝑏17 (𝑏12𝑏24 + 𝑏13(𝛾
∗2

− 𝑏19)) +

(𝛾∗2
− 𝑏11) (𝛾∗𝑏18𝑏24 + 𝛾∗𝑏16(𝛾

∗2
− 𝑏19))

) − (𝛾∗𝑏17𝑏14 − (𝛾∗2
− 𝑏15)(𝛾

∗2
−

𝑏11)) ((−𝛾∗𝑏17𝑏21𝑏24 + 𝛾∗𝑏17(𝛾
∗2

− 𝑏22)(𝛾
∗2

− 𝑏19)) + (𝛾∗𝑏18𝑏20 + 𝛾∗𝑏16𝑏20(𝛾
∗2

− 𝑏19))), 

𝑔3 =
1

𝑔
(𝑏20(𝛾

∗2
− 𝑏15) + 𝛾∗2

𝑏23𝑏17) (𝛾∗𝑏13𝑏17 + 𝛾∗𝑏16(𝛾
∗2

− 𝑏11)) − 𝑓1(𝑥, 𝑡) (𝛾∗𝑏17𝑏14 − (𝛾∗2
− 𝑏15)(𝛾

∗2
−

𝑏11)) (𝛾∗𝑏16𝑏20 + 𝛾∗𝑏17(𝛾
∗2

− 𝑏24)) + 𝑓2(𝑥, 𝑡) (𝛾∗𝑏17𝑏24 (𝛾∗𝑏17𝑏14 − (𝛾∗2
− 𝑏15)(𝛾

∗2
− 𝑏11))), 

𝑔4 =
(𝛾∗2−𝑏19)

𝑏24
𝑔3 + 𝑓1(𝑥, 𝑡)

1

𝑏24
, 

𝑔2 =
𝛾∗𝑏17(𝑏12𝑏24+𝑏13(𝛾∗2−𝑏19))+(𝛾∗2−𝑏11)(𝛾∗𝑏18𝑏24+𝛾∗𝑏16(𝛾∗2−𝑏19))

𝑏24(𝛾∗𝑏17𝑏14−(𝛾∗2−𝑏15)(𝛾∗2−𝑏11))
𝑔3  +

𝛾∗𝑏17𝑏13+𝛾∗𝑏16(𝛾∗2−𝑏11)

𝑏24(𝛾∗𝑏17𝑏14−(𝛾∗2−𝑏15)(𝛾∗2−𝑏11))
𝑓1(𝑥, 𝑡), 

𝑔1 = −
𝛾∗𝑏14

(𝛾∗2−𝑏11)
𝑔2 +

𝑏12𝑏24+𝑏13(𝛾∗2−𝑏19)

𝑏24(𝛾∗2−𝑏11)
𝑔3 +

𝑏13

𝑏24(𝛾∗2−𝑏11)
𝑓1(𝑥, 𝑡), 

𝑔5 = −𝛾∗𝑔1,     𝑔6 = −𝛾∗𝑔2,     𝑔7 = −𝛾∗𝑔3,     𝑔8 = −𝛾∗𝑔4. 

The general solution of the field variables can be written as 

𝑢̅ = ∑𝐵𝑖𝑈𝑖e
−𝜉𝑖𝑦 + ∑𝐵𝑖+4𝑈𝑖+4e

𝜉𝑖𝑦 + 𝑔1e
−𝛾∗𝑦

4

𝑖=1

4

𝑖=1

, (25) 

𝑣̅ = ∑𝐵𝑖𝑉𝑖e
−𝜉𝑖𝑦 + ∑𝐵𝑖+4𝑉𝑖+4e

𝜉𝑖𝑦 + 𝑔2e
−𝛾∗𝑦

4

𝑖=1

4

𝑖=1

, (26) 

𝑁̅ = ∑𝐵𝑖𝑁𝑖e
−𝜉𝑖𝑦 + ∑𝐵𝑖+4𝑁𝑖+4e

𝜉𝑖𝑦 + 𝑔3e
−𝛾∗𝑦

4

𝑖=1

4

𝑖=1

, (27) 

𝜃̅ = ∑𝐵𝑖𝜃𝑖e
−𝜉𝑖𝑦 + ∑𝐵𝑖+4𝜃𝑖+4e

𝜉𝑖𝑦 + 𝑔4e
−𝛾∗𝑦

4

𝑖=1

4

𝑖=1

, (28) 

and 

𝜎̅𝑦𝑦 = ∑ 𝐵𝑖(−𝜉𝑖𝑉𝑖 + 𝛼3𝑖𝑎𝑈𝑖 − 𝛽𝑛𝑁𝑖 − 𝛽𝑡(1 − 𝜏1𝑖𝜔)𝜃𝑖)e
−𝜉𝑖𝑦4

𝑖=1 + ∑ 𝐵𝑖+4(−𝜉𝑖+4𝑉𝑖+4 + 𝛼3𝑖𝑎𝑈𝑖+4 − 𝛽𝑛𝑁𝑖+4 −4
𝑖=1

𝛽𝑡(1 − 𝜏1𝑖𝜔)𝜃𝑖+4)e
𝜉𝑖𝑦 − (𝛾∗𝑔2 − 𝛼3𝑖𝑎𝑔1 + 𝛽𝑛𝑔3 + 𝛽𝑡(1 − 𝜏1𝑖𝜔)𝑔4)e

−𝛾∗𝑦, 

𝜎̅𝑥𝑦 = ∑ 𝐵𝑖(−𝛼2𝜉𝑖𝑈𝑖 + 𝛼2𝑖𝑎𝑉𝑖)e
−𝜉𝑖𝑦4

𝑖=1 + ∑ 𝐵𝑖+4(−𝛼2𝜉𝑖𝑈𝑖+4 + 𝛼2𝑖𝑎𝑉𝑖+4)e
𝜉𝑖𝑦4

𝑖=1 + (−𝛼2𝛾
∗𝑔1 + 𝛼2𝑖𝑎𝑔2)e

−𝛾∗𝑦. 

After applying the boundary conditions of the problem as mentioned above, we have the 

following set of equations: 

∑𝐵𝑖(−𝜉𝑖𝑉𝑖 + 𝛼3𝑖𝑎𝑈𝑖 − 𝛽𝑛𝑁𝑖 − 𝛽𝑡(1 − 𝜏1𝑖𝜔)𝜃𝑖)

4

𝑖=1

= (𝛾∗𝑔2 − 𝛼3𝑖𝑎𝑔1 + 𝛽𝑛𝑔3 + 𝛽𝑡(1 − 𝜏1𝑖𝜔)𝑔4), 

∑𝐵𝑖(−𝛼2𝜉𝑖𝑈𝑖 + 𝛼2𝑖𝑎𝑉𝑖)

4

𝑖=1

= 𝛼2(𝛾
∗𝑔1 − 𝑖𝑎𝑔2),∑𝐵𝑖(−𝐷𝑒𝜉𝑖𝑁𝑖 − 𝑠0𝑁𝑖)

4

𝑖=1

= 𝛾∗𝐷𝑒𝑔3 + 𝑠0𝑔3,∑𝐵𝑖(−𝜉𝑖𝜃𝑖)

4

𝑖=1

= 𝛾∗𝑔4 +
𝑞0𝑡

2e−𝑡/𝑡𝑝

16𝑐𝑡𝑝
2

, 
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where 𝐵𝑖, (i = 1,2,3,4) are constants based on the boundary conditions of the problem, which 

can be determined by: 

[𝐵]𝑇 = [𝑀]−1[𝐻]𝑇 . (29) 

Therefore, 

[

𝐵1

𝐵2

𝐵3

𝐵4

] = [

𝑀11 𝑀12 𝑀13 𝑀14

𝑀21 𝑀22 𝑀23 𝑀24

𝑀31 𝑀32 𝑀33 𝑀34

𝑀41 𝑀42 𝑀43 𝑀44

]

−1

[
 
 
 
 
 
𝛾∗𝑔2 − 𝛼3𝑖𝑎𝑔1 + 𝛽𝑛 + 𝛽𝑡(1 − 𝜏1𝑖𝜔)𝑔4

𝛼2𝛾
∗𝑔1 − 𝛼2𝑖𝑎𝑔2

𝛾∗𝐷𝑒𝑔3 + 𝑠0𝑔3

𝛾∗𝑔4 +
𝑞0𝑡

2𝑒
−(𝑡 𝑡𝑝⁄ )

16𝑐𝑡𝑝
2 ]

 
 
 
 
 

, 

in which  

𝑀1𝑝 = ∑ (−𝜉𝑝𝑉𝑝 + 𝛼3𝑖𝑎𝑈𝑝 − 𝛽𝑛𝑁𝑝 − 𝛽𝑡(1 − 𝜏1𝑖𝜔)𝜃𝑝)
4
𝑝=1 , 𝑀2𝑝 = ∑ (−𝛼2𝜉𝑝𝑈𝑝 + 𝛼2𝑖𝑎𝑉𝑝)

4
𝑝=1 , 

𝑀3𝑝 = ∑ (−𝐷𝑒𝜉𝑝𝑁𝑝 − 𝑠0𝑁𝑝)
4
𝑝=1 , 𝑀4𝑝 = ∑ (−𝜉𝑝𝜃𝑝)

4
𝑝=1 . 

Hence, we obtain the solution of each variable. 
 

 

4. Numerical results and discussions 
 

To evaluate with the numerical examples, we consider for the computational purpose the silicon 

(Si) material. The thermoelastic properties of such material are (Alzahrani and Abbas 2018) 

𝐸 = 2.33 (eV),     𝐸𝑔 = 1.11 (eV),     𝑠0 =  2 (m𝑠−1),     𝐷𝑒 = 2.5 × 10−3 (m2s−1), 

𝜌 = 2330 (kg m−3),     𝜆 = 3.64 × 1010(Nm−2),     𝜇 = 5.64 × 1010 (Nm−2), 

𝑛0 = 1020 m−3,     𝑑𝑛 = −9 × 10−31 (m3),     𝜏 = 5 × 10−5 (s),     𝛼𝑡 = 3 × 10−6 (K−1), 

𝑐𝑒 = 695 (Jkg−1K−1),     𝑇0 = 300 (K),     𝐾 = 1.7 × 102 (Wm−1K),    𝜔 = −0.1 + 0.1𝑖, 

𝑎 = 0.5,     𝑞0 = 0.1. 

Based on the data set, the following graphs represent the numerically computed physical 

quantities at different values of the distance 𝑦. Numerical computations are carried out for the 

displacement, distribution of the temperature, the density of carriers along the 𝑦-axis for the two-

dimensional isotropic and homogenous medium in context of the coupled photo-thermo-elastic 

conditions.  
 

 

 
Fig. 1 Variation of temperature against 𝑦 for different values of 𝑡𝑝 
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Fig. 2 Variation of concentration against 𝑦 for different values of 𝑡𝑝 

 

 
Fig. 3 Variation of vertical displacement against 𝑦 for different values of 𝑡𝑝 

 

 
Fig. 4 Variation of horizontal displacement against 𝑦 for different values of 𝑡𝑝 

 

 

As shown graphically in Figures 1-4, the distributions with different values of characteristic 

time of heat pulse 𝑡𝑝 i.e., 𝑡𝑝 = 0.1, 0.2 and 0.4. The solid line refers to 𝑡𝑝 = 0.1, while the 

dashed line shows to the time 𝑡𝑝 = 0.2 and the dotted line refers to the time 𝑡𝑝 = 0.4. Fig. 1 

shows the variation in temperature distribution and it starts with its maximum value and gradually 

decreases with the distance 𝑦. Variation in carrier density is shown in the Fig. 2 and it also starts  
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Fig. 5 Variation of temperature against 𝑦 for different values of 𝑡 

 

 

Fig. 6 Variation of concentration against 𝑦 for different values of 𝑡 

 

 

Fig. 7 Variation of vertical displacement against 𝑦 for different values of 𝑡 
 

 

with its peak value and the graph comes down with the increasing distance y with a range of 0 ≤
𝑦 ≤ 10. In Fig. 3, the variation in vertical displacement is shown with a wide range of 0 ≤ 𝑦 ≤
15, initially graph goes up to its maximum value and after reaching its peak point it decreases to 

its minimum value of zero. Fig. 4 displays the distribution of the horizontal component with the 

same range of 0 ≤ 𝑦 ≤ 15; it starts with its maximum value and decreases with the increasing 

distance. 
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Fig. 8 Variation of horizontal displacement against 𝑦 for different values of 𝑡 
 

 

Graphs 5-8 show the variation with different values of thermal source for time 𝑡 = 0.05, 0.1 

and 0.2. The solid line refers to the time 𝑡 = 0.05, while the dashed line refers to the time 𝑡 =
0.01 and the dotted line refers to the time 𝑡 = 0.2. Fig. 5 displays the distribution of the values of 

the temperature 𝑇 with respect to 𝑦-axis for different values of time 𝑡 with respect to wide 

range 0 ≤ 𝑦 ≤ 10. It is noted that the temperature starts by its maximum value at the first end of 

the strip 𝑦 = 0 and gradually decreases with increasing distance up to zero. Figure 6 shows the 

distribution of the values of the carrier density with respect to 𝑦-axis for different values of time 𝑡 

with the same range. It also starts with its maximum value and decreases with increasing distance 

𝑦. Figure 7 shows the distribution of the values of the vertical displacement component 𝑣 with 

respect to 𝑦-axis for different times 𝑡 with wide range of 0 ≤ 𝑦 ≤ 15. It is noted that the vertical 

displacement first increases and goes to its peak and then decreases with the increasing distance up 

to zero. Figure 8 shows the distribution of the values of the displacement component 𝑢 with 

respect to 𝑦-axis for different times 𝑡, it starts with the maximum value and the decreases with a 

range of 0 ≤ 𝑦 ≤ 15. 
 

 

5. Conclusions 
 

According to the proceeding results, the time parameters 𝑡𝑝 and 𝑡 are having significant 

effects on distribution function of each variable. Based upon Eigen value approach, an analytical 

solution is analyzed for thermoelastic problem in semiconductor. Based on the graphical 

representation, it can be concluded that the characteristic time of pulse is having a decreasing 

effect on each variable, while the temporal variable is directly proportional to the amplitudes of 

each variable. Values of all physical quantities converge to zero with the increase in the distance 

𝑦. 
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