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Abstract. In the present study, a fifth-order shear and normal deformation theory using a polynomial function in
the displacement field is developed and employed for the static analysis of laminated composite and sandwich simply
supported spherical shells subjected to sinusoidal load. The significant feature of the present theory is that it considers
the effect of transverse normal strain in the displacement field which is eliminated in classical, first-order and many
higher-order shell theories, while predicting the bending behavior of the shell. The present theory satisfies the zero
transverse shear stress conditions at the top and bottom surfaces of the shell. The governing equations and boundary
conditions are derived using the principle of virtual work. To solve the governing equations, the Navier solution
procedure is employed. The obtained results are compared with Reddy’s and Mindlin’s theory for the validation of
the present theory.
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1. Introduction

Advanced composite materials are becoming more popular and essential class of material for
modern technological development all over the world. Due to attractive properties of composite
materials, like high stiffness-to-weight ratio, strength-to-weight, light in weight, high specific
strength and high abrasion resistance. The use of laminated composite and sandwich shell panels
of cylindrical and spherical surfaces being increased in aerospace engineering in the last decades.
Some of the typical applications of shell structures in aerospace engineering are fuselage, silos,
pipelines, space station for habitation modules, rocket stages, energy absorbers, junction elements,
etc. It requires to carry out the analysis of shells for various sensitive modes of failure like
bending, buckling, and vibration. Therefore, analysis of spherical shells subjected to transverse
loads becomes an active area of research.

The well-known classical shell theory (CST) available in the literature does not suitable for the
analysis of thick laminated composite shells due to neglect of shear deformation. Hence, Mindlin
(1951) has developed the first-order shear deformation theory (FSDT) in which the transverse
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shear stresses are considered but found constant through the thickness, i.e. it does not satisfy the
shear stress boundary conditions at top and bottom surfaces of the shell. These limitations of CST
and FSDT force the researchers to develop higher-order shear deformation theories (HSDTs) for
the analysis of laminated composite spherical shells by using different analytical and numerical
methods. Several review articles are available in the literature which cover the various studies on
beams, plates and shells such as Sayyad and Ghugal (2017, 2015), Qatu (2002a, 2002b), Asadi et
al. (2012), etc. Reddy (1984a, b), has developed a third-order shear deformation theory for the
bending and free vibration analysis of laminated composite shells and plates. This theory is further
extended by the many researchers for various problems of beams, plates and shells. Liew and Lim
(2011) have presented a new HSDT for the free vibration analysis of doubly curved shallow shells.
Lee and Reddy (2004) have applied HSDT for the vibration suppression analysis of laminated
shells. Carrera et al. (2010, 2013, 2017, 2008, 2009) have presented different studies on analysis of
laminated and sandwich shells subjected to different types of loads using Carrera’s unified solution
(CUF). Neves et al. (2013) have proposed the free vibration analysis of functionally graded shells
by HSDT based on radial basis function. Mantari and Soares (2012a, 2012b, 2014) have
introduced a new generalized HSDT for the bending and free vibration analysis of multilayered
and functionally graded shells. Matsunaga (2007) has applied a HSDT for the free vibration and
buckling analysis of cross ply laminated shells considering the effects of transverse shear and
normal deformations. Oktem et al. (2012) have presented a static response of functionally graded
doubly curved shells using HSDT. Finite element formulations for the static and free vibration
analysis of spherical shells are presented by Pradyumana and Bandyopadhyay (2008). Effect of
twenty one types of boundary conditions on the vibration of the doubly curved shallow shell is
presented by Qatu and Asadi (2012). Tornabene (2011a, 2011b, 2011c, 2009, 2012) have applied a
generalized differential quadrature method (GDQ) for the free vibration analysis of doubly curved
shells of revolution with and without resting on elastic foundation using FSDT. Further GDQ
method is extended by Tornabene ef al. (2013, 2016) for the static analysis of laminated doubly
curved shells subjected to different loading conditions. The static behavior of doubly curved shells
is investigated by Tornabene et al. (2014) using carrera’s unified approach (CUF), differential
geometry and GDQ method. Based on the CUF, Tornabene et al. (2013, 2015) also presented
layerwise theories for free vibration of a doubly curved shell and panels. Viola ef al. (2013) have
developed 2D higher-order shear deformation theory for the static analysis of doubly curved shells
and panels. Recently, Sayyad and Ghugal (2019) have presented static and free vibration analysis
of laminated and sandwich spherical shells using various higher-order shell theories. Semi-
analytical solutions using Navier’s technique are obtained.

The present study is based on some of the important observations and recommendations of the
Carrera. The objectives of the present study are listed below:

1) It is recommended by Carrera that to predict accurate bending behaviour of thick
laminated shells, effect of transverse normal strain cannot be neglected. Refinement in classical
theories should be done by taking the effects of transverse shear and normal deformations into
consideration. Therefore, the present theory considers the effects of both transverse shear and
normal deformations.

2) Ttis also suggested by Carrera that the expansion of polynomial shape function up to third
order is not sufficient to capture the bending behaviour of thick composite shells subjected to
mechanical and environmental loads. Therefore, to capture the accurate bending behaviour of
laminated and sandwich spherical shells, the present polynomial shape function is expanded up to
fifth-order.
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3) In the present study, all displacements and stresses in isotropic, laminated composite and
sandwich spherical shells are presented in one place which will be more suitable for future
researchers and readers.

4)  Transverse shear stresses are calculated using three-dimensional equations of equilibrium.

To achieve the above objectives, the present theory, formulated using the principle of virtual
work. Nine variationally consistent governing differential equations are derived. Closed-form
solutions are obtained using Navier’s solution technique. Finally, non-dimensional displacements
and stresses are obtained with the help of a computer program in MATLAB 8.5 (R2015a) .

2. Methodology

2.1 Spherical shell under consideration

A laminated composite spherical shell with width a along x-direction, breadth b in y-direction,
thickness 4 in z-direction and radii of curvature R; and R» is considered for the present theory. The
geometry and coordinate system of a spherical shell element is shown in Fig. 1. Shell has ~V
number of layers made up of orthotropic material and assumed to be perfectly bonded together.
Layers are stacked symmetrically or anti-symmetrically. Only cross-ply laminated spherical shell
is considered in the present study. The shell is subjected to transverse mechanical load sinusoidal
in nature.

2.2 Displacement field

Displacement field of the present theory is selected based on certain assumptions. 1) The
present theory is displacement based shear deformation theory 2) The in-plane displacements (u
and v) includes extension, bending and shear components. 3) The transverse displacement (w)
considers the effect of shear and normal deformations 4) polynomial type shape functions are used
to consider the effects of transverse shear and normal deformations. 5) Three dimensional Hooke’s
law is used to determine stresses. The displacement field assumed for the present fifth-order shear
and normal deformation theory is as follows.

142 U _1ez°
u(xy.z)= 1+R1 U (xy)-2— +[Z 3hzj¢x(x,y)+[2 i~ ]wx(xly)

ow, 47° 162°
v(xy,z)= 1+Ri2 vU(x,y)-zay+[z?mzzj¢y(x,y)+[z 5hz4 jyxy(x,y) (1)
w(xy,z)=w, (x,y)+ 1—4hzzj¢z(x,y)+ 1—1?1f ]y/z(x,y)

where, u, v, w are the displacements in x, y, z directions, respectively. uo, vo, wo are the mid-plane
displacements in x, y, z directions, respectively. ¢., ¢y, ¢-, v, ¥, w. are the shear slopes. Therefore,
the present theory has nine unknowns.

2.3 Strain-displacement relationship

Using the linear theory of elasticity, the normal and shear strains associated with the present
displacement field are obtained.
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Fig. 1 Geometry and layer numbering system of laminated spherical shell

0w, o4, oy, fi(z)  f,(2)
(8 1] 2 +f1(2) aX+f2(Z) 6x + R1 ¢z+ Rl l//Z
Ny Wy |, 0% %, o, fi(2),  f(2)
[ay L) T 2, £ 2O,
=1 ()4, + £, (2)y, o
oy 0Ox oxoy oy ox oy  ox

Yo = 1 (24, + B (2w + 1 () s 1)(2) 2L

X OX
7= G20+ Ly, () B ()L

where

1624] () 82 roy 647 @)

The prime () indicates differentiation of the shape function with respect to coordinate z.
2.4 Stress-strain relationship

Using the generalized Hooke’s law, the stress-strain relationship for the &™ layer of laminated
composite shell can be written as follows:
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where, o represents stress vector, & represents strain vector and Q_U are the stiffness
coefficients. 1, 2, 3 are the material reference axes, and x, y, z are the laminate reference axes (see
Fig. 1). 6 is the angle made by the fibres with respect to positive x axis. The principal material axes
of lamina (1, 2, 3) will coincide with the reference axes of the laminate (x, y, z) in case of
orthotropic cross-ply laminates. It is therefore necessary to transform the constitutive relations
from lamina fiber axes to laminate reference axes.

2.5 Principle of virtual work

The principle of virtual work is used to derive nine variationally consistent governing
differential equations associated with the present fifth-order shear and normal deformation theory.
An analytical form of the principle of virtual work is as follows:

ab+h/2 ab
” j (axégx +0,08, + 0,08, + 1,07, +7,,07, +7,07,, )dz dy dx—j q(x, y)owdydx =0 (5)
0 0-h/2 00

where ¢ is the variational operator. Using fundamental lemma of calculus, the following governing
equations are derived for the present theory.
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where, expressions for stress resultants can be derived from following relations.
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Set of governing equations stated in Eq. (6) can be written in-terms of nine unknown variables
involved in the displacement field as follows:
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Along the edges x =0 and x =a,
Either uo=0 or Ny is prescribed

Either =0 or Ny is prescribed

Either wo=0 or M,® is prescribed
Either 66—-0 or My is prescribed
Either ¢x=0 or M is prescribed
Either yx=0 or M is prescribed
Either ¢y=0 or My is prescribed
Either yy=0 or My is prescribed
Either ¢,=0 or Q& is prescribed

Either y,=0 or Q. is prescribed
Along the edges y =0 and y =b,
Either ug=0 or N,y is prescribed

Either vo=0 or Ny is prescribed

Either wo=0 or Myb is prescribed
Either 2 —0 or My is prescribed

Either ¢,=0 or M, is prescribed
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Either y,=0 or My, is prescribed
Either ¢,=0 or M,®! is prescribed
Either y,=0 or M,%2 is prescribed (18)
Either ¢,=0 or Q,%" is prescribed

Either w,=0 or Q,;*? is prescribed

where,
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2.6 Navier type closed-form solution for spherical shell

According to Navier’s solution procedure the following solution form for the unknown
variables is assumed which satisfying the simply supported boundary conditions exactly.

(UO' ¢X'V/X):(u1'¢x1va1 )COSaX sin By
(vo, ¢y,l//y):(vl,¢y1,y/y1 )sinax cos By (20)
(WO’ ¢Z’l//l):(wl’¢zlll//zl )Sil’laX sin By

where, o=n/a, f=n/b; ui, ¢«1, Wi, vi, Sy, W2, Wi, éz1, w1 are the unknown coefficients to be
determined. The expression for the transverse sinusoidal load acting on the top surface of the
laminated shell is expressed as follows

q(x, y) = g, sinaxsin gy (21)

where, ¢o is the maximum intensity of the load. By using the foregoing expressions of
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displacement variables and transverse load in the governing equations (8)-(16), the following
equation can be derived:

[K]{a}={f} (22)

where [K] is the stiffness matrix, {f} is the force vector and {A} is the vector of unknowns.
Elements of these matrices are mentioned in Appendix.

3. Numerical result and discussion

In this section, an efficacy and validity of the present theory are proved by applying it to the
bending analysis of laminated composite and sandwich spherical shells made up of the following

materials.

MAT1: E=210 GPa,;=0.3

MAT2: E, =E,=0.04, E,=05,G,, =G,, =0.06,G,, =0.016, 14, = sts, = 4t =0.25 (23)
E, , G, G G

. E 12 13 23
MATS3: ——25,——1,————0.5,——0.2,”] =ty = U, =0.25
E2 EZ E2 E2 EZ 2 8 3

Table 1 Non-dimensional displacement and stresses in isotropic spherical shell under the sinusoidal
mechanical load (a/h=10)

R/a Theory u w Ox gy Try Tyz Tyz
Present 0.0530 2.7244  0.1484 0.1484 0.1280 0.2111 0.2111
5 Reddy (1984b) 0.0506 2.6472 0.1519 0.1519 01225 0.2130  0.2130
Mindlin (1951) ~ 0.0502  2.6262  0.1506 ~ 0.1506  0.1230  0.2137  0.2137
Present 0.0515 29902 0.1794 0.1794 0.1244  0.2308  0.2308

10 Reddy (1984b) 0.0491 28756 0.1793 0.1793  0.1187 0.2313  0.2313
Mindlin (1951) 0.0486  2.8508 0.1777 0.1777 01192 0.2319 0.2319

Present 0.0493  3.0649 0.1924 0.1924 0.1192 0.2363  0.2363

20 Reddy (1984b) 0.0471 29389 0.1906 0.1906  0.1139 0.2364 0.2364
Mindlin (1951) 0.0467 29131 0.1889 0.1889  0.1145 0.2370  0.2370

Present 0.0476  3.0536  0.1989 0.1989  0.1151  0.2379  0.2379

50 Reddy (1984b) 0.0456 29572 0.1962 0.1962 0.1102 0.2379  0.2379
Mindlin (1951) 0.0452 29310 0.1944 0.1944 0.1109 0.2385  0.2385

Present 0.0470  3.0896 0.2008  0.2008 0.1135 0.2381  0.2381

100 Reddy (1984b) 0.0450 29598 0.1979 0.1979 0.1088 0.2381  0.2381
Mindlin (1951) 0.0446 2933 0.1961 0.1961 0.1095  0.2387  0.2387
Present 0.0441 29445 0.2001 0.2001 0.1065 0.2382  0.2382
Reddy (1984b) 0.0444 29607 0.1994 0.1994 0.1074 0.2382  0.2382
Mindlin (1951) 0.0440 29345 01976 01976 0.1080 0.2387  0.2387
Pagano (1970) 0.0443 29425 0.1988  0.1988 --- 0.2383  0.2383

Plate




Analysis of laminated and sandwich spherical shells using a new higher-order theory 29

Table 2 Non-dimensional displacement and stresses in two layer (0°/90°) laminated spherical shell
under the sinusoidal mechanical load (a/A=10)

R/a Theory U w Oy gy Try Toz Tyz
Present 00151 11271 0.6461 0.0752  0.0695  0.0841  0.1391
5 Reddy (1984b)  0.0151  1.1164  0.6530  0.0754  0.0694  0.0823  0.1382
Mindlin (1951)  0.0148 11096  0.6262  0.0747  0.0686  0.0839  0.1402
Present 0.0126 ~ 1.2006  0.7076 ~ 0.0819  0.0631  0.1043  0.1335
10 Reddy (1984b)  0.0126 ~ 1.1894  0.7130  0.0818  0.0630  0.1026  0.1324
Mindlin (1951)  0.0122 11819  0.6835  0.0811  0.0622  0.1044  0.1344
Present 0.0109  1.2205 0.7292  0.0841  0.0586  0.1134  0.1283
20 Reddy (1984b)  0.0110 ~ 1.2091  0.7337  0.0839  0.0586  0.1119  0.1270
Mindlin (1951)  0.0106 =~ 1.2014  0.7033 ~ 0.0831  0.0577  0.1137  0.1290
Present 0.0099  1.2262 0.7385  0.0851  0.0556  0.1184  0.1244
50 Reddy (1984b)  0.0100  1.2148  0.7424  0.0847  0.0555 0.1170  0.1230
Mindlin (1951)  0.0096 12070  0.7116  0.0840  0.0546  0.1189  0.1250
Present 0.0096  1.2270  0.7410  0.0853  0.0545 0.1200  0.1230
100 Reddy (1984b)  0.0096  1.2156  0.7447  0.0850  0.0545 0.1186  0.1216
Mindlin (1951)  0.0092 12078  0.7138  0.0842  0.0536  0.1205  0.1235
Present 0.0091 1.2197 07398 0.0860 0.0531  0.1215  0.1215
Reddy (1984b)  0.0092  1.2158  0.7466  0.0851  0.0534  0.1201  0.1201
Mindlin (1951)  0.0088 12081  0.7156  0.0843  0.0525  0.1220  0.1220
Pagano (1970) -- 1.2250  0.7302 0.0886  0.0535 0.1210  0.1250

Plate

Table 3 Non-dimensional displacement and stresses in three layer (0°/90°/0°) laminated spherical shell under
the sinusoidal mechanical load (a/A=10)

R/a Theory u w Oy gy Try Tez Tyz
Present 0.0112 0.6910 0.5441 0.0364 0.0398 0.3431 0.1133
5 Reddy (1984b) 0.0108 0.6769 0.5218 0.0352 0.0388 0.3508  0.1109
Mindlin (1951) ~ 0.0098  0.6025 0.4780 0.0311  0.0346 0.3658  0.1018
Present 0.0095 0.7211 05757 0.0388  0.0347  0.3568  0.1178

10 Reddy (1984b) 0.0091 0.7032 0.5515 0.0374 0.0338 0.3645 0.1152
Mindlin (1951) 0.0083 0.6233 0.5029 0.0329 0.0301 0.3784  0.1053

Present 0.0085 0.7283 0.5865 0.0396 0.0317 0.3604 0.1190

20 Reddy (1984b) 0.0082 0.7102 0.5617 0.0381 0.0309 0.3681  0.1163
Mindlin (1951) 0.0074  0.6288 0.5115  0.0335 0.274 0.3817  0.1062

Present 0.0079  0.7304 0.5912 0.0400 0.0298 0.3614  0.1193

50 Reddy (1984b) 0.0075 0.7121 0.5662 0.0385 0.0290 0.3691  0.1167
Mindlin (1951) 0.0069 0.6303 0.5153 0.0338 0.0257 0.3826  0.1064

Present 0.0076  0.7307 05925 0.0401 0.0292 0.3616 0.1194

Reddy (1984b) 0.0073  0.7124 05674 0.0386  0.0283 0.3692  0.1167

100
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Table 3 Continued

R/a Theory u w [ [ Try Tyz Tyz
100 Mindlin (1951) 0.0067  0.6305 05163 0.0339  0.0252 0.3828  0.1064
Plate Present 0.0074  0.7285 05925  0.0407 0.0284  0.3616  0.1194

Reddy (1984b) 0.0071  0.7125 0.5684  0.0387  0.0277  0.3693  0.1168
Mindlin (1951) 0.0065 0.6306 05172 0.0340 0.0246  0.3828  0.1065
Pagano (1970) - 0.7528  0.5898  0.0418 0.0289  0.3570  0.1200

Table 4 Non-dimensional displacement and stresses in three layer (0°/core/0°) sandwich spherical shell under
the sinusoidal mechanical load (a/A=10)

R/a Theory u w Ty oy Try Taz Tyz
Present 0.0133  1.0198 10745 0.0671 0.0948  0.2957  0.0483
5 Reddy (1984b) 0.0131  1.0063 1.0733  0.0745 0.0932  0.2956  0.0486
Mindlin (1951) 0.0109  0.7122  1.0147  0.0607  0.0715 0.3096  0.0384
Present 0.0103  1.0416 1.1111 0.0821 0.0824  0.3014  0.0492

10 Reddy (1984b) 0.0102  1.0250 1.1081  0.0891  0.0812  0.3011  0.0495
Mindlin (1951) 0.0088 0.7215 1.0385 0.0708 0.0628  0.3137  0.0389

Present 0.0087  1.0466  1.1244  0.0894  0.0757 0.3029  0.0495

20 Reddy (1984b) 0.0086  1.0298  1.1207 0.0962 0.0747  0.3025  0.0497
Mindlin (1951) 0.0077  0.7238 1.0471  0.0757  0.0582  0.3147  0.0390

Present 0.0078  1.0481  1.1307 0.0936  0.0715 0.3033  0.0495

50 Reddy (1984b) 0.0077 10312 11267 01003 0.0707 0.3029  0.0498
Mindlin (1951) 0.0070  0.7245 1.0512 0.0786  0.0553  0.3150  0.0390

Present 0.0074  1.0483 1.1326  0.0950 0.0700  0.3034  0.0495

100 Reddy (1984b) 0.0073  1.0314 11284 0.1017 0.0693 0.3029  0.0498
Mindlin (1951) 0.0068 0.7246  1.0524 0.0795 0.0544  0.3150 0.0390
Present 0.0071  1.0473 11335 0.0966 0.0685  0.3034  0.0495
Reddy (1984b) 0.0070  1.0315 11300 0.1030 0.0679  0.3029  0.0498
Mindlin (1951) 0.0066  0.7246  1.0535 0.0805 0.0534 0.3151  0.0390
Pagano (1970) 0.0071  1.1002 1.1518 0.1098 0.0706  0.2997  0.0526

Plate

For the comparison purpose the numerical results are presented in the following non-
dimensional form.

2 3

U(O,E,—Ej:h E:u’ W(Eygyojzloohfsw’

2 2) qga 22 goa
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where, F3 is of middle layer.
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Fig. 5 Continued

3.1 Discussion on isotropic spherical shell

The non-dimensional displacements and stresses in the isotropic spherical shell subjected to
sinusoidal load using the present theory are shown in Table 1 for various (R/ a) ratios and a/h=10.
The shell is made up of material MAT1. 3D elasticity solution of spherical shell is not available in
the literature. Therefore, the present results are compared with parabolic shear deformation theory
(PSDT) of Reddy and first-order shear deformation theory (FSDT) of Mindlin. Also, the exact
elasticity solution of Pagano is used to compare the displacements and stresses in the isotropic
plate (R = o). The examination of Table 1 reveals that the present theory predicts excellent results
for the plate compared with 3D elasticity solution of Pagano. Displacements and stresses obtained
using the present theory for spherical shells are in excellent agreement with those presented by
Reddy and Mindlin. Through-the-thickness variations of displacement and stresses in isotropic
spherical shells are plotted in Fig. 2.

3.2 Discussion on laminated spherical shell

The effects of transverse shear and normal deformations are more pronounced in thick
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laminated composite shells. Therefore, the present theory is applied for the bending analysis of
symmetric and anti-symmetric laminated composite spherical shells. The present results of
displacements and stresses for anti-symmetric (0°/90°) and symmetric (0°/90°/0°) laminated
composite spherical shells are summarized in Tables 3 and 4 respectively. Both the types of shells
are made up of material MAT3 and all the layers are of equal thickness. From Tables 3 and 4 it is
observed that the present results are in excellent agreement with 3D exact elasticity solution for
laminated plate given by Pagano. This is in fact, due to inclusion of fifth-order term in terms of
thickness coordinate in the displacement field and the effect of normal deformation. It is pointed
out that the in-plane displacement and stresses in laminated shells are increased with increase in
R/a ratio, whereas the in-plane shear stresses decrease due to increase in radii of curvature. The
transverse shear stresses are obtained using the 3D equations of equilibrium to ascertain continuity
at the layer interface. Through-the-thickness variations of displacements and stresses for (0°/90°)
and (0°/90°/0°) laminated spherical shells are shown in Figs. 3 and 4 respectively.

In case of two layered (0°/90°) anti-symmetric laminated spherical shell, from Fig. 3(b) it is
observed that the in-plane normal stress (o;) has a maximum value at the top surface (z = -#/2) of
the shell, i.e. 0° layer and minimum at the bottom surface (z = //2) i.e., 90° layer. Exactly opposite
trend is observed from Fig. 3(c). It is also observed that the in-plane normal stresses changes its
sign at z = -0.26h. Figs. 3(e) and 3f show variations of transverse shear stresses (z.., 7,-) through-
the-thickness of shell is found maximum at z = -0.254 whereas is found maximum at z = 0.25h.
For three layered (0°90°0°) symmetric laminated spherical shell, it is to be noted that for
laminated plate (Ri=R,=w0) stresses are symmetrically distributed over the thickness but for
laminated spherical shell these stresses are not symmetric due to curvature effect. In-plane normal
stress is maximum at z = A/2 whereas is maximum at z = -4/2. Similarly, transverse shear stress
is maximum at z = 0.25/ and is maximum at z = 0.

3.3 Discussion on sandwich spherical shell

Effect of thickness stretching is more pronounced in the sandwich shell with soft core.
Therefore, the present theory is also applied for the bending analysis of sandwich shell subjected
to sinusoidal loading. The shell has top and bottom face sheets made up of fibrous composite
material, whereas core at the center is made up of transversely isotropic material. Thickness of
each face sheet is 0.1h and that of core is 0.8h. Face sheets are made up of MAT3 and core is made
up of MAT?2. Table 4 shows a comparison of displacement and stresses developed in sandwich
spherical shells subjected to sinusoidal load for various R/a ratios. From Table 4, it is observed that
as R/a ratio increases the in-plane normal stresses increase whereas in-plane shear stresses
decreases. Fig. 5 shows through-the-thickness variations of in-plane displacement and stresses in
sandwich spherical shells.

In case of (0°/core/0°) sandwich spherical shell, from Fig. 5b and Fig. 5c it is observed that the
in-plane normal stresses (o,) have the maximum value at the bottom surface, i.e., (z= 4/2). Figs. 5S¢
and 5f show variations of transverse shear stresses (.., 7,-) through-the-thickness of the shell and
observed to be maximum at (z = 0). Also, in case of sandwich spherical shell, it is seen that the in-
plane normal stresses and transverse shear stresses are varying in face sheets and almost constant
in the core.
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4. Conclusions

In the present study a fifth-order shear and normal deformation theory is developed for the
static analysis of spherical laminated composite and sandwich spherical shells. The theory
accounts for both transverse shear and normal deformation effects. The non-dimensional
displacements and stresses are obtained for isotropic, laminated and sandwich spherical shells. The
present results are compared with previous results. Based on comparison of numerical results and
discussion, it is concluded that the present theory gives excellent results for laminated plates
compared to the exact elasticity solution given by Pagano. Also the present results are in close
agreement with the theory of Reddy when applied for laminated composite and sandwich spherical
shells. Interlaminar shear stresses are obtained using equations of equilibrium by satisfying
continuity at the layer interface. Due to the inclusion of transverse shear and normal deformations,
the present theory is strongly recommended for the analysis of laminated and sandwich spherical
shells.
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