
 

 

 

 

 

 

 

Advances in Aircraft and Spacecraft Science, Vol. 6, No. 5 (2019) 409-426 

DOI: https://doi.org/10.12989/aas.2019.6.5.409                                              409 

Copyright © 2019 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=aas&subpage=7      ISSN: 2287-528X (Print), 2287-5271 (Online) 
 
 
 

 

 
 
 

FE modeling for geometrically nonlinear analysis of laminated 
plates using a new plate theory  

 

Dhiraj P. Bhaskar and Ajaykumar G. Thakura 

 
Department of Mechanical Engineering, SRES’s Sanjivani College of Engineering, Savitribai Phule Pune 

University, Kopargaon-423601, Maharashtra, India 

 
(Received January 8, 2019, Revised May 22, 2019, Accepted May 30, 2019) 

 
Abstract.  The aim of the present work is to study the nonlinear behavior of the laminated composite plates under 
transverse sinusoidal loading using a new inverse trigonometric shear deformation theory, where geometric 
nonlinearity in the Von-Karman sense is taken into account. In the present theory, in-plane displacements use an 
inverse trigonometric shape function to account the effect of transverse shear deformation. The theory satisfies the 
traction free boundary conditions and violates the need of shear correction factor. The governing equations of 
equilibrium and boundary conditions associated with present theory are obtained by using the principle of minimum 
potential energy. These governing equations are solved by eight nodded serendipity element having five degree of 
freedom per node. A square laminated composite plate is considered for the geometrically linear and nonlinear 
formulation. The numerical results are obtained for central deflections, in-plane stresses and transverse shear stresses. 
Finite element Codes are developed using MATLAB. The present results are compared with previously published 
results. It is concluded that the geometrically linear and nonlinear response of laminated composite plates predicted 
by using the present inverse trigonometric shape function is in excellent agreement with previously published results. 
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1. Introduction 
 

One of the most significant characteristics of a laminated composite plate is high stiffness to 

weight ratio, which is particularly vital for various mechanical, aerospace, locomotive industries 

and several other engineering fields. By ordering layers and fiber direction in laminated plate, 

essential strength and stiffness properties can be attained.Three dimensional (3D) elasticity 

solutions for bidirectional bending of laminated composite and sandwich plates are presented by 

Pagano (1970) and Zenkour (2007). The 3D elasticity solutions are computationally difficult and 

led the development of approximate theories for the analysis of plate structures.The classical 

laminate plate theory (CLPT), which is an extension of the classical plate theory (CPT) developed 

by Kirchhoff (1850), neglects the effects of out-of-plane strains.The CLPT which ignores the 

effect of transverse shear deformation and under-calculates deflections, becomes insufficient for 

 

Corresponding author, Assistant Professor, E-mail: dpbhaskar@yahoo.com 
aProfessor, E-mail: ajay_raja34@yahoo.com 



 

 

 

 

 

 

Dhiraj P. Bhaskar and Ajaykumar G. Thakur 

the analysis of laminated composite plates. In the first order shear deformation theory (FSDT) 

developed by Mindlin (1951) a shear correction factor is multiplied with the shear modulus to 

correct the unlikely deviation of the shear strains and stresses through the plate thickness.The 

calculation of shear correction factor becomes difficult as it depends on loadings types, boundary 

conditions, geometric and material parameters. One more limitation of FSDT is that, it does not 

satisfy traction free boundary conditions at top and bottom surfaces of the plate. A large number of 

higher order shear deformation theories (HSDTs) have been suggested to overcome the limitations 

of CLPT and FSDT. Sayyad and Ghugal (2015, 2017a) have recently reviewed all higher order 

shear deformation theories for laminated composite plates.Kulkarni et al. (2018) reviewed articles 

of last fifteen years related to structural analysis of composite plates including evolution of all 

plate theories with their outcome.Sayyad and Ghugal (2017b) reviewed various literature available 

for the bending, free vibration and buckling analysis of laminated composite and sandwich beams. 

Also they presented the displacement field of various displacement based equivalent single layer 

and layerwise theories. One of the well-known higher order theories is developed by Reddy (1984) 

which is further used by many researchers for the various problems of beams, plates and shells. 

The finite element analysis of laminated anisotropic plate is presented by Panda and Natarajan 

(1979), where the stresses are computed instead of their resultants.The volume integration of the 

stiffness matrix is calculated by Gauss Legendre method of integration.The finite element method 

(FEM) is used by Phan and Reddy (1985) to study the effects of shear deformation, bending–

extension coupling and anisotropy on the response of laminated composite plates.Yin and Ruan 

(985) have developed an analytical solution for geometrically linear and nonlinear problems of 

thin plate. Whitney and Pagano (1970) and Senthilnathan et al. (1987) presented nonlinear analysis 

of anisotropic plates. Ren and Hinton (1986) extended the theory of Reddy to develop two finite 

elements for bending analysis of laminated composite plates. The deformation of antisymmetric 

angle ply laminated plate under transverse loading has been studied by Ren (1987). In his analysis 

author have used double Fourier series and obtained closed-form solution for simply supported 

boundary conditions. Pandya and Kant (1988) developed C0 isoparametric finite element 

formulation to estimate interlaminar stresses.The impact analysis for nonlinear deflection of plate 

using FEM has been presented by Kant and Mallikarjuna (1990). The HSDT is proposed by Kant 

and Kommineni (1992), accounting for parabolic distribution of the transverse shear strains with 

inclusion of von Karman higher order terms for linear and nonlinear analysis. Savithri and Varadan 

(1993) presented the geometric nonlinear analysis of laminated plates using displacement based 

higher order theory and Galerkin method.The Hybrid-Trefftz finite element model is developed by 

Qinm (1995) for the nonlinear analysis, in order to simplify by detaching the coupling between in-

plane and out-of-plane displacements.The dynamic response of layered plate is studied by 

Makhecha et al. (2001) using C0 type serendipity element. Kant and Swaminathan (2002) 

presented the static analysis of simply supported laminated composite and sandwich plates based 

on higher order refined shear deformation theories. Sayyad and Ghugal (2013a,b,2014a,b,c,2017b) 

published series of research papers on application of trigonometric shear deformation theory for 

the bending, buckling and free vibration analysis of isotropic, transversely isotropic, laminated 

composite and sandwich rectangular plates. Carrera (1999b, 2005) studied the effect of transverse 

normal strain on static and dynamic responses of multilayered plates. Carrera (2002, 2003 and 

2011) developed well-known Carrera Unified Formulation (CUF) for beams, plates and shells 

theories. The mixed FEM has been proposed by Urthaler and Reddy (2008) to solve plate bending, 

by involving the bending moments at the discrete points. FEM models based on least square 

method and weak-form Galerkin method for plates using FSDT and HSDT are studied by Reddy et 
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al. (2010) treating displacements and stress resultants as the unknown field variables. The coupled 

analysis of plate by using C0 finite element formulation is proposed by Hari et al. (2011). 

Somireddy and Rajagopal. (2015) conducted parametric study on geometric nonlinear bending 

analysis of laminated composite plates using C0 and C1 finite elements. Pingulkar and Sureshathis 

(2016) carried out vibration analysis of cantilever glass fiber and carbon fiber reinforced polymer 

composites by using ANSYS. Naik and Sayyad (2018) developed a new fifth order shear and 

normal deformation theory for the bending analysis of laminated plates subjected to transverse 

loads. Li and Zhao (2015) presented nonlinear bending analysis of laminated plate and numerical 

load-deflection curves obtained by using a mixed Galerkin perturbation technique.Zuo et al.(2015) 

proposed a wavelet finite element method using two dimensional B-spline wavelet interval for the 

static and free vibration analysis of laminated composite plates. The effect of modulus ratios and 

aspect ratios on central deflection and stresses of plate is presented by Reddy (2012). A four node 

higher order element is formulated by Grover et al. (2013) based on a refined shear plate theory 

with an extension of the in-plane cubic displacements. A new nonpolynomial shear-deformation 

theory (NPSDTs) is presented by Goswami and Becker (2013) corresponding inverse parabolic 

and secant function. Suganyadevi and Singh (2013) presented mixed finite element method based 

on the functional analysis method in combination with the Gateaux differential approach. Nam et 

al. (2017) proposed a polygonal finite element formulation for vibration analysis of laminated 

composite plates. In the present paper, the geometrically linear and nonlinear analysis of a 

laminated composite plates subjected to the transverse sinusoidal loading is investigated for the 

simply supported boundaries using a new inverse trigonometric shear deformation theory. 

Symbolic computation comparable to Roque (2014) is used in MATLAB coding based on finite 

element methods for analysis of linear and Von Karman’s nonlinearity. The numerical results for 

assumed displacement fields are presented to compare the deflection response and induced stresses 

for various lamination schemes. 
 

 

2. The present theory 
 

2.1 The geometrical configuration 
 

The geometry of plate under consideration is shown in Fig.1, in which a, b, and h indicate plate 

length, width and thickness respectively. A symmetric and asymmetric laminated plate composed 

of N laminate, where N=2, 3, 4 etc., with displacement parallels to the Cartesian Coordinates axes 

x-1, y-2 and z-3 is considered. All layers are perfectly bonded and made up of orthotropic 

 

 

 
Fig. 1 Geometry and coordinate system of laminated composite plate 
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elastic material. The plate is exposed to transverse load q (x, y) on the top surface of the plate i.e., 

z = h/2.  

 
2.2 The displacement field 
 

The displacement field is the start point for the theoretical formulation of the present theory. In 

this study, the following displacement fields for a plate are assumed for the development of the 

present shear deformation theory. 

0
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where, the present kinematic function 
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    
 represents the variation of the 

displacement within the element, and u, v and w are displacements at general points of the plate 

with u0, v0 and w0  are displacements components at a point on the midplane of the plate.              

The ϕ and ψ are rotation about y and x axis respectively. The simple field variables for each 

discrete point in this formulation are u0, v0, w0, ϕ and ψ. The condition of shear stresses is satisfied 

with the given function at the top and bottom surface of laminated composite plate.  

 

2.3 Strain-displacement relationship  
 

The strain displacement relation is expressed by assuming small displacements and moderate 

rotations. Considering geometric nonlinearity the von-Karman’s nonlinear strain–displacement 

relations are considered as follows 
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where, ( , , )T

x y z   = and ( , , )T

xy xz yz   = are normal strain vector and shear strain vector 

respectively. In general, ( , )l nl  =  
are called linear and nonlinear strain vectors, including 
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normal and shear strains.   

 

2.4 Constitutive relations  
 

The constitutive relations, for planar orthotropic laminated composite plate material, for each 

lamina of laminate in terms of principal material directions can be written as: 
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where, Qij are plane stress reduced elastic constants of lamina, { σi }
k is the stress vector and{ εi }

k 

is the strain vector. For orthotropic layer, the elastic constants are written as 
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(5) 

where E1 and E2  are the Young moduli in the 1, 2  directions which are according to fibre 

direction and its in-plane normal, respectively, and G12, G13 and G23 are the shear moduli in the 1-

2, 1-3 and 2-3 planes, respectively, and μij are Poisson’s ratios. 

 

2.5 Governing equations of equilibrium  
 

The governing equations of equilibrium are derived by using the principle of minimum 

potential energy. In analytical form it can be written as 

( ) 0U V − =
 

(6) 

where U is the strain energy, V is the potential energy and δ is the variational symbol. The strain 

energy of the plate is given by 

( )
/2

0 0 /2
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h
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(7) 

and the potential energy due to transverse load q(x, y) on the plate is given by 

( ) 0
0 0

,
a b

V q x y w dy dx=  
 

(8) 

Substituting Eqs.(7)-(8) into the Eq.(6), and integrating by parts, the following equations of 

equilibrium are obtained.  
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where the axial force, moment and shear force resultants are expressed as 
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Fig. 2 Eight noded quadratic serendipity element 

 
Table 1 Gauss Legendre integration weights and sampling points 

Order of Integration Weight Sampling Point 

3 Point (5 / 9),(8 / 9)  (5 / 9)and
 3 / 5,  0  3 / 5and −  

2 Point 1 and 1 1/ 3  1/ 3and −  
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2.6 Finite element method 
 

The present theory requires C0 continuity for its finite element approximation. The 

displacement field variables (x) for the present theory is shown in Eq. (11).  

  0 0 0[     ]Tx u v w  =
 

(11) 

A eight noded element shown in Fig. 2 is used for the finite element modelling. In the FEM the 

plate domain is discretized into a set of finite elements. 

For given element, Ni(ξ, η) is shapes (interpolation) function and (ξ, η) are natural coordinates 

for isoparametric elements. The shape functions in local (natural) coordinates in Eq. (12). 
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The displacement variables can be written in terms of shape function in which i=1 to 8, 
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(13) 

The displacement field variables {x}, and displacement field in plate domain at nodes  ix  are 

linked by shape functions Ni mentioned in Eq. (12). 
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[ ]
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i i

i

x N x
=

=

=
 

(14) 

where  ix
 

and [Ni] are the nodal displacements and shape functions for given element. Using Eq. 

(6), Eq. (12) and Eq. (14), the system of algebraic equations of the plate using FEM for static 

analysis has the following form 

[ ]{ } { }i sK x q=  (15) 
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where [Kall] is the global stiffness matrix,  ix
 is the displacement vector and [qs] is the global 

force vector. The bending terms are calculated using Gauss Legendre Integration with 3 point 

method and the shear terms are calculated using 2 point method with reduced integration scheme 

for each element. The values of sampling points and weights for each order are given as below. 

On imposing SS-BCs Eq.(15). is solved by Newton-Raphson method for active DoF. For linear 

problems algebraic equations     i sK x q=  is solved and non-linear systems equations are 

linearized around equilibrium point and solution is sought by iterative procedure. The Newton 

Raphson iterations at each force level is continued until residual becomes less than tolerance level. 

 

 

3. The numerical results 
 

To confirm the applicability and efficacy of the present theory, geometrically linear and 

nonlinear analysis of laminated composite plate is carried out. The plate is subjected to sinusoidal 

load as shown in Fig. 3.  

The Newton Raphson method is used to solve the succeeding nonlinear finite element 

equations. The symmetric and asymmetric laminates of the graphite-epoxy material is considered 

for the present linear and nonlinear analysis.  

1 2 12 2 31 2 23 2 12 21/ 25, 0.5 , 0.5 , 0.2 , 0.25, 0.01.E E G E G E G E  = = = = = =  (17) 

The present results are presented in the form of following non-dimensional stresses and 

deflection for comparing those with previously published results. 
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Fig. 3 Laminated composite plate subjected to sinusoidal load 
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Table 2 Convergence of non-dimensionalized central transverse deflection w  with mesh size (0◦/90◦/0◦) 
laminated composite plate 

S Mesh size Linear (0)

w
 Mesh size Nonlinear (0)

w
 

4 

4×4 1.943 4×4 1.776 

6×6 1.935 6×6 1.784 

8×8 1.924 8×8 1.799 

10×10 1.924 10×10 1.800 

  12×12 1.800 

Zenkour (2007) 2.004 Whitney and Pagano (1970) 1.775 

10 

4×4 0.716 4×4 0.663 

6×6 0.714 6×6 0.674 

8×8 0.713 8×8 0.683 

10×10 0.713 10×10 0.686 

  12×12 0.686 

Zenkour (2007) 0.752 Whitney and Pagano (1970) 0.669 
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Fig. 4 Through-the-thickness variation of in-plane normal stress ( )x for two layered (0°/90°) 

antisymmetric laminated composite square plate (S=4) 
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Fig. 5 Through-the-thickness variation of transverse shear stress ( )xz for two layered (0°/90°) 

antisymmetric laminated composite square plate (S=4) 
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Table 3 Non-dimensional displacements and stresses for two layered (0°/90°) antisymmetric laminated 

composite square plate 

S Theory 
(0)

w

 ( / 2)

x

h



−
 

( / 2)

y

h



−
 

( / 2)

xy

h



−
 

(0)

xz

 
(0)

yz

 

4 

Present 2.0214 0.8188 0.0981 0.0599 0.127 0.128 

Sayyad and Ghugal (2013b) 1.9424 0.9062 0.0964 0.0562 0.127 0.127 

Mindlin (1951) 1.9682 0.7157 0.0843 0.0525 0.091 0.091 

Kirchhoff (1850) 1.0636 0.7157 0.0843 0.0525 0.000 0.000 

Zenkour (2007) 2.0670 0.8410 0.1090 0.0591 0.120 0.135 

10 

Present 1.2173 0.7455 0.0888 0.0534 0.112 0.124 

Sayyad and Ghugal (2013b) 1.2089 0.7471 0.0876 0.0530 0.130 0.130 

Reddy (1984) 1.2161 0.7468 0.0851 0.0533 0.127 0.127 

Mindlin (1951) 1.2083 0.7157 0.0843 0.0525 0.091 0.091 

Kirchhoff (1850) 1.0636 0.7157 0.0843 0.0525 0.000 0.000 

Zenkour (2007) 1.2250 0.7302 0.0886 0.0535 0.121 0.125 

 
Table 4 Non-dimensional displacements and stresses for four layered (0°/90°/0°/90°) antisymmetric 

laminated composite square plate 

S Theory 
(0)

w

 ( / 2)

x

h



−
 ( / 2)

y

h



−  ( / 2)

xy

h



−  
(0)

xz

 (0)

yz

 

4 

Present 1.7348 0.7378 0.7258 0.0383 0.1943 0.2199 

Sayyad and Ghugal (2013b) 1.5827 0.4057 0.7088 0.0351 0.1398 0.1398 

Zenkour (2007) 1.9581 0.6146 0.7444 0.0457 0.2325 0.2410 

10 

Present 0.7097 0.4851 0.5281 0.0287 0.2315 0.2348 

Sayyad and Ghugal (2013b) 0.6847 0.4531 0.5226 0.0266 0.1433 0.1433 

Zenkour (2007) 0.7624 0.4942 0.5308 0.0292 0.2713 0.2714 
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Fig. 6 Through-the-thickness variation of in-plane normal stress ( )x for four layered (0°/90°/0°/90°) 

antisymmetric laminated composite square plate (S=4) 
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Table 5 Non-dimensional displacements and stresses for three layered (0°/90°/0°) symmetric laminated 

composite square plate 

S Theory 
(0)

w

 ( / 2)

x

h



−
 

( / 2)

y

h



−
 

( / 2)

xy

h



−
 

(0)

xz

 
(0)

yz

 

4 

Present 1.9248 0.7584 0.08248 0.0499 0.2304 0.2010 

Sayyad and Ghugal (2013b) 1.9015 0.7535 0.0880 0.0496 0.2092 0.1914 

Reddy (1984) 1.9218 0.7345 0.0782 0.0497 0.2024 0.1832 

Mindlin (1951) 1.5681 0.4370 0.0614 0.0369 0.1201 0.1301 

Kirchhoff (1850) 0.4312 0.5387 0.0267 0.0213 – – 

Zenkour (2007) 2.0046 0.7550 0.0949 0.0505 0.2550 0.2170 

10 

Present 0.7136 0.5692 0.0417 0.0277 0.3827 0.0982 

Sayyad and Ghugal (2013b) 0.7155 0.5720 0.0411 0.0278 0.2577 0.1070 

Reddy (1984) 0.7125 0.5684 0.0387 0.0277 0.2447 0.1033 

Mindlin (1951) 0.6306 0.5134 0.0353 0.0252 0.1363 0.0762 

Kirchhoff (1850) 0.4312 0.5387 0.0267 0.0213 – – 

Zenkour (2007) 0.7528 0.5898 0.0418 0.0289 0.3570 0.1200 

 
Table 6 Non-dimensional displacements and stresses for four layered (0°/90°/90°/0°) symmetric laminated 

composite square plate 

S Theory 
(0)

w

 ( / 2)

x

h



−
 

( / 2)

y

h



−
 

( / 2)

xy

h



−
 

(0)

xz

 
(0)

yz

 

4 

Present 2.1229 0.6864 0.6810 0.0478 0.2407 0.2749 

Sayyad and Ghugal (2013b) 1.8784 0.6830 0.6210 0.0442 0.2147 0.2474 

Zenkour (2007) – 0.7202 0.6625 0.0466 0.2193 0.2915 

10 

Present 0.7742 0.5460 0.3914 0.02835 0.3231 0.1724 

Sayyad and Ghugal(2013b) 0.7173 0.5484 0.3898 0.0268 0.2783 0.1588 

Zenkour (2007) – 0.5586 0.4009 0.0275 0.3013 0.1959 

 
Table 7 Non-dimensional transverse displacement ( w ) for three layered (0°/90°/0°) symmetric laminated 

composite square plate with geometric nonlinearity  

Theory 
a/h 

2 4 10 20 50 100 

Present 5.0389 1.8007 0.6860 0.4832 0.4448 0.4448 

Hari and Singh (2011) 

Savithri and Vardhan (1992) 

5.1828 

--- 

1.9091 

---- 

0.7101 

0.7031 

0.5000 

0.4952 

0.4378 

---- 

0.4283 

0.4350 

Kant and Swaminathan (2002) 4.9147 1.8948 0.7151 0.5053 0.4432 0.4343 

Kant and Swaminathan (2002) 5.2158 1.9261 0.7176 0.5058 0.4433 0.4343 

Reddy(1984) 5.1286 1.9218 0.7125 0.5041 0.4430 0.4342 

Senthilnathan (1970) 4.3088 1.4852 0.6041 0.4746 0.4382 0.4330 

Whitney and Pagano (1970) 5.2293 1.7758 0.6693 0.4921 0.4411 0.4337 
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Table 8 Non-dimensional transverse displacements ( /w w h= ) for three layered (0°/90°/0°) symmetric 

laminated composite square plate with geometric nonlinearity for various values of Nondimensional load 

  a/h  
4

0 2/q q S E=
 10 20 100 

40 0.250 0.220 0.166 

80 0.500 0.410 0.361 

120 0.722 0.550 0.500 

160 0.900 0.722 0.660 

200 1.110 0.866 0.750 

240 1.230 0.970 0.900 

280 1.300 1.110 1.100 

320 1.350 1.194 1.112 

360 1.410 1.277 1.190 

400 1.520 1.361 1.250 
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Fig. 7 Through-the-thickness variation of in-plane normal stress ( )y for four layered (0°/90°/0°/90°) 

antisymmetric laminated composite square plate (S=4) 
 

 
Fig. 8 Through-the-thickness variation of transverse shear stress ( )xz for four layered (0°/90°/0°/90°) 

antisymmetric laminated composite square plate (S=4) 
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Fig. 9 Through-the-thickness variation of in-plane normal stress ( )x for three layered (0°/90°/0°) 

symmetric laminated composite square plate (S=4) 
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Fig. 10 Through-the-thickness variation of in-plane normal stress ( )y for three layered (0°/90°/0°) 

symmetric laminated composite square plate (S=4) 
 

 
Fig. 11 Through-the-thickness variation of transverse shear stress ( )xz for three layered (0°/90°/0°) 

symmetric laminated composite square plate (S=4) 
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Fig. 12 Through-the-thickness variation of in-plane normal stress ( )x for four layered (0°/90°/90°/0°) 

symmetric laminated composite square plate (S=4) 
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Fig. 13 Through-the-thickness variation of in-plane normal stress ( )y for four layered (0°/90°/90°/0°) 

symmetric laminated composite square plate (S=4) 
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Fig. 14 Through-the-thickness variation of transverse shear stress ( )xz for four layered (0°/90°/90°/0°) 

symmetric laminated composite square plate (S=4) 
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4. Discussion on numerical results  
 

A nonlinear finite element code in MATLAB has been developed for the analysis procedure 

described above. The accuracy of the present FE formulation for linear and nonlinear bending 

analysis is validated by comparing the results with those available in the literature. 

The convergence of nondimensional central transverse deflection based on mesh size is 

presented in Table 2. The solution process continues until the two subsequent iterations are within 

the tolerance of 0.0001. Then the convergence is considered to be reached and the corresponding 

value is the required central displacement of the laminated composite plate. It is noted that the 

central deflections appear closely converging for mesh size 10×10. The present results are 

compared with those presented by Zenkour (2007) for linear analysis and with Whitney and 

Pagano (1970) for nonlinear analysis. Also the given kinematic function based FE model calculate 

the behavior of deflection with good accuracy with less computational effort than 3D elasticity 

solution of Zenkour (2007). Hence for all the problems mesh size 10×10 is used to calculate 

displacements and stresses.  

Based on this convergence study presented in Table 2 it is concluded that 8×8 mesh and 10×10 

mesh would be sufficient for linear and nonlinear analysis respectively. The Table 2 clearly shows 

that the performance of the present FE formulation is very good in terms of solution accuracy. 

Table 3 shows comparison of non-dimensional transverse displacement and stresses of for two 

layered (0°/90°) antisymmetric laminated composite square plate subjected to sinusoidal load. 

Both the layers are of equal thickness i.e., h/2 where h is the overall thickness of the plate. The 

material properties are stated in Eq. (17). The present results are compared with those presented by 

Sayyad and Ghugal (2014a), Reddy (1984), Mindlin (1951), Kirchhoff (1850) and 3D elasticity 

solution of Zenkour (2007). The examination of Table 1 reveals that the present results are in 

excellent agreement with 3D elasticity solution. It is to be noted that the present results are even 

better than the well-known theory of Reddy (1984). FSDT of Mindlin (1951) and CLPT of 

Kirchhoff (1850) under predict the results due to neglect of transverse shear deformation. Figs. 4 

and 5 show through the thickness variations of in-plane normal stress and transverse shear stress 

for (0°/90°) laminated composite square plate. The examination of these figures reveals that the 

stresses are maximum in zero degree layer whereas minimum in ninety degree layer. This is in fact 

due to high elastic modulus along the fibre.      

Table 4 shows non-dimensional displacements and stresses for four layered (0°/90°/0°/90°) 

antisymmetric laminated composite square plate. All the layers are of equal thickness i.e. h/4. 

Same material properties are used in this problem. In this problem also, the present results are in 

excellent agreement with 3D elasticity solution presented by Zenkour (2007). It is also observed 

that present trigonometric function shows improvement over trigonometric function suggested by 

Sayyad and Ghugal (2014a). Figs. 6-8 plot through the thickness distribution of stresses in four 

layered (0°/90°/0°/90°) laminated composite plate.       

Table 5 shows comparison of non-dimensional displacements and stresses for three layered 

(0°/90°/0°) symmetric laminated composite square plate subjected to sinusoidal load. All layers of 

plate are of equal thickness (h/3). It is pointed out from Table 5 that the present theory is predicting 

excellent results compared to those presented by Zenkour(2007) for symmetric lamination scheme 

also. Similar accuracy can be observed from Table 6 when the present theory is applied for the 

bending analysis of four layered (0°/90°/90°/0°) symmetric laminated composite square plate 

subjected to sinusoidal load. In this plate, each layer thickness is h/4. Figs. 9-11 show the plot of 

distribution of stresses in symmetric laminated plates.       
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Table 7 shows comparison of geometrically nonlinear displacements obtained for three layer 

(0°/90°/0°) symmetric laminated composite square plates subjected to sinusoidal load. Numerical 

results are obtained for various values of aspect ratio (a/h = 2, 4, 10, 20, 50 and 100). The present 

results are compared with those presented by Hari et al. (2011), Savithri and Vardhan (1993), Kant 

and Swaminathan (2002), Reddy (1984), Senthilnathan (1987) and Whitney and Pagano (1970). 

The examination of Table 7 reveals that the present results are in good agreement with those 

presented by Kant and Swaminathan (2002) and Reddy (1984). It is also pointed out that the 

nondimensional transverse displacement decreases with increase in aspect ratio i.e. thin plate 

undergoes large dimensional deflection whereas thick plate undergoes small deflection.  

Table 8 contains the transverse central deflection for (0°/90°/0) laminated composite square 

plate in which central deflection is a function of the load parameter and the results are at par with 

results by Savithri and Vardhan (1993) for various non-dimensional load step (40:40:400) and for 

different a/h values (10,20,100).  
 

 

5. Conclusions 
 

In the present study, a new inverse trigonometric shear deformation theory is used for the 

geometrically linear and nonlinear analysis of laminated composite plates. The theory satisfies 

traction free boundary conditions and does not need shear correction factor. A simply supported 

laminated plate is analyzed using finite element method. Finite element codes are developed using 

MATLAB. Numerical results are obtained for different symmetric and antisymmetric lamination 

schemes. From the numerical results and discussion it is concluded that the present theory predicts 

excellent numerical results compared to other higher order shear deformation theories available in 

the literature. Therefore, the present theory is strongly recommended for the geometrically linear 

and nonlinear analysis of laminated composite plates.  
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