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Abstract.  Dynamic stability of a porous metal foam nano-dimension plate on elastic substrate exposed to bi-axial 
time-dependent forces has been studied via a novel 3-variable plate theory. Various pore contents based on uniform 
and non-uniform models have been introduced. The presented plate model contains smaller number of field variables 
with shear deformation verification. Hamilton’s principle will be utilized to deduce the governing equations. Next, 
the equations have been defined in the context of Mathieu-Hill equation. Correctness of presented methodology has 
been verified by comparison of derived results with previous data. Impacts of static and dynamical force coefficients, 
non-local coefficient, foundation coefficients, pore distributions and boundary edges on stability regions of metal 
foam nanoscale plates will be studied. 
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1. Introduction 
 

Lightweight materials have been extensively utilized in multitude engineering fields owing to 

possessing desirable toughness comparing to their weights. A porous material, for instance a steel 

foam, might be placed in the category of lightweight materials and can be applied in several 

structures such as sandwich panels. Often, pore variation along the thickness of panels/plates 

results in a notable alteration in every kind of material property. Thus, such pore-dependent 

material might be the main topic of research for researchers or engineers. The most important 

examples are the works done by Jabbari et al. (2014), Chen et al. (2015, 2016), Rezaei and Saidi 

(2016) on metal foam structures. 

When the pore distribution inside the material is selected to be non-uniform, the metal foam 

might be defined as a functionally graded material since its properties obey some specified 

functions. However, the term functionally graded is not used only for non-uniform porous metal 

foams only. This term is a general term for a variety of materials in which the properties are graded 

and are not uniform. One example is a functionally graded (FG) material based on two 

components which are ceramic and metal. In fact, the properties are graded from ceramic to metal. 

In such gradation of material properties, porosities could be inevitable (Wattanasakulpong et al. 

2014). Due to contribution of two materials in this FG material, porosities occur as a sequence of 

material combination defect. Many researches have been focused on such FG material based 
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structures with the consideration of pore effect (Yahia et al. 2015, Atmane et al. 2015a, b, Barati 

and Zenkour 2016, Mechab et al. 2016, Mirjavadi et al. 2018, 2019a, b).  

    A structure at nano scale could not be modeled based on well-known elasticity theory which 

is used for macro size structures. This shortcoming comes from the inexistence of a scale 

parameter in classical elasticity. Thus, non-classical or higher order elasticity theories will be 

utilized in order to mathematically model a structure a nano scale. Such mathematical modeling is 

of great importance since experiments are at nano level are still difficult. As a consequence, the 

well-known non-local elasticity (Eringen 1983) is notably used in such mathematical modeling for 

structures at nano level. After this mathematical modeling, it is possible to analyze structural 

behaviors of beams, plates and shell having nano-dimension. Some examples are the works done 

by Ebrahimi and Heidari (2018), Natarajan et al. (2012), Bounouara et al. (2016), Barati et al. 

(2016), Belkorissat et al. (2015), Barati (2017a, b), Zenkour (2016), Ebrahimi and Daman (2016), 

Mirjavadi et al. (2018), Ebrahimi and Haghi (2018), and Ebrahimi et al. (2018).  

   In this research, a thick plate model is studied based on 3 field variables (Houari et al. 2016, 

Belabed et al. 2018). Note that classical plate model doesn’t consider shear deformations for thick 

plates (Zenkour 2009, Mehala et al. 2018, Sadoun et al. 2018, Mahmoudi et al. 2018). Based on 

introduced plate theory, dynamic instability of nano-scale plates made of metal foam exposed to 

in-plane periodic loads will be studied. The material is steel be different pore distributions inside 

it. Nonlocal effects due to nano-dimension of the plate have been considered. The governing 

equations of the nano-dimesnion plate will be solved with the help of Galerkin’s approach. The 

obtained stability regions due to applied periodic loads will be verified with the article of Han et 

al. 2015. The dynamic stability of metal foam nano-size plate is shown to be dependent on applied 

load factors, pore distribution, non-local impacts, and some other parameters. 
 

 

2. Governing equations 
 

2.1 Modeling of porous nanoplates 
    

A porous material, for instance a steel foam, might be placed in the category of lightweight 

materials and can be applied in several structures such as sandwich panels. Often, pore variation 

along the thickness of panels/plates results in a notable alteration in every kind of material 

property. When the pore distribution inside the material is selected to be non-uniform, the metal 

foam might be defined as a functionally graded material since its properties obey some specified 

functions. Herein, the following types of pore dispersion will be employed: 

• Uniform kind 

2 0(1 )E E e = −
 (1a) 

2 0(1 )G G e = −
 (1b) 

2 0(1 )e  = −
 

(1c) 

• Non-uniform kind 1 

2 0( ) (1 cos )
z

E z E e
h

 
= −  

   
(2a) 
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2 0( ) (1 cos )
z

G z G e
h

 
= −  

   
(2b) 

2( ) (1 cos )m

z
z e

h


 

 
= −  

   

(2c) 

• Non-uniform kind 2 

2 0( ) (1 cos )
2 4

z
E z E e

h

  
= − + 

   
(3a) 

2 0( ) (1 cos )
2 4

z
G z G e

h

  
= − + 

   
(3b) 

2( ) (1 cos )
2 4

m

z
z e

h

 
 

 
= − + 

   
(3c) 

The most important factors in above relations are the greatest values of material properties E2, 

G2 and ρ2. Also, there are two important factors related to pores and mass which are e0 and em as 

2 2
0

1 1

1 1
E G

e
E G

= − = −

 

(4a) 

2

1

1me



= −

 

(4b) 

Based on the open cell assumption of porous material, we use the following relations 

2

2 2

1 1

E

E





 
=  
   

(5) 

01 1me e= − −
 

(6) 

Based on uniformly distributed pores, the following parameter is used in Eq.(1) as 

2

0

0 0

1 1 2 2
1 1e

e e


 

 
= − − − + 

   

(7) 

    Modeling of the nanoplate is performed employing a 3-unknown plate theory which has 

fewer field unknowns compared with the refined 4-unknown and also first order plate theory. The 

displacement fields of 3-unknown plate model can be expressed as 

( ) ( )
3

1 3
, , , , ( )d x y z t u x y z

w w
z

x x

 


− −


=

 

(8a) 
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( ) ( )
3

2 3
, , , , ( )d x y z t v x y z

w w
z

y y

 


− −


=

 
(8b) 

3( , , , ) ( , )d x y z t w x y=
 

(8c) 

    Here, u, v and w are field variables; actually w is the deflection. For better modeling of FG 

structures, it is crucial to consider the exact positions of neutral surface. Generally, there is 

coupling among membrane and lateral displacements of FGM plates, as it can be seen in Eqs.(8a) 

and (8b). By considering the concept of neutral surface, it is possible to eliminate this coupling. 

So, the displacement field of 3-unknown plate model can be reduced to the following form 

( ) *

1

3
**

3
, , , ( ) ( ( ) )

w w
z z

x x
d x y z t z z

 
−  −


−


= −

 

(9a) 

( ) *

2

3
**

3
, , , ( ) ( ( ) )

w w
z z

y y
d x y z t z z

 
−  −


−


= −

 

(9b) 

3( , , , ) ( , , )d x y z t w x y t=
 

(9c) 

This is evident that the displacement field is reduced to a single-unknown model and 

/2

* /2

/2

/2

( )

( )

h

h

h

h

E z zdz
z

E z dz

−

−

=


 , 

/2

** /2

/2

/2

( ) ( )

( )

h

h

h

h

E z z dz
z

E z dz

−

−


=


  

(10) 

In above relations, the function   will be defined as 

3

2
( ) cosh sin

2 2

h z
z

h

 



   
 =    

     
(11) 

Finally, the strains based on the four-unknown plate model are obtained as 

0

0

0

( ) , ( )

x x xx

yz yz

y y y y

xz xz

xy xy xy xy

z z g z

  
 

   
 

   

     
                 

= + + =           
          

         



  

(12a) 

where ( ) ( )g z z=  and 

2 4

2 2

2 4

2 2

2 2 2( )
2

0

0 , ,

0

w w
u

x xx

v w w

y y y

u v
w w

y x
x y

x x x

y y y

x

y

y x xy

x

y

  

  

  

  
    
        
        
         

= = =          
         
         

       
   



 
− −
 

  
− −

  

 
+   

− − 
     

,

3

3

3

3

yz

xz

w

y

w

x









 
      

=  
   

  








 

 

(12b) 
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Next, one might express the Hamilton’s rule as follows based on strain energy (U) and kinetic 

energy (T) 

0
( ) 0

t

U T V dt − + =  
(13) 

and V is the work of non-conservative loads. Based on above relation we have 

( )kl kl x x y y xy xy yz yz xz xz
V V

U dV dV                  = = + + + +   
(14a) 

Inserting Eqs. (13) into Eq.(14a) lead to 

0

00

0 0[

]

b

x x x y y y

xy xy xyxy xy xy yyz xzz xz

x x x y y

a

y

N M S Q Q dxdy

U N M S N M S

     

          +

+ − − + +

= − − − −

 

(14b) 

in which 

/2

/2

/2

/2

( , , ) (1, , ) , { , , }

, { , }

h
b s

k k k k
h

h

l l
h

N M M z dz k x y xy

Q g dz l xz yz





−

−

=  =

= =



  

(14c) 

The variation of the work of non-conservative forces is expressed by 

2
0 0 0

20 0
( 2 )

a b

x y xy w p

w w w w w w w
V N N N k w k dydx

x x y y x y x

  
  

      
= + + − +

       
 

(15) 

where N0
x, N0

y, N0
xy denote membrane forces and kw, kp are elastic substrate constants. Also, the 

kinetic energy variation is obtained as 

 

(16) 

where 

 
(17) 

Substituting Eqs.(14)-(17) into Eq.(12) then collecting the coefficients of δu, δv, δw results in 

three equations of motion 

2 3 5

0 1 12 2 3 2
0

xyx
NN u w w

I I J
x y t x t x t

   
+ − + + =

        
(18) 

2 3 5

0 1 12 2 3 2
0

xy yN N v w w
I I J

x y t y t y t

    
+ − + + =

        
(19) 
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2 2 2 4 2 4 4 32 4 3

2 2 4 3 3 4 3 3

2 3 3 5 5
2 2

0 0 1 12 2 2 3 2 3 2

4 4 6 6

2 22 2 2 2 4 2 4

2

( ) ( )

( ) 2 (

xy y xy xy y yzx x xz

w p

M M S S S QM S Q

x x y y x x y x y y x y

w u v u v
k w k w N w I I J

t x t y t x t y t

w w w w
I J

x t y t x t y

       
+ + + + + + − −

           

    
− −  −  = + + + +

        

   
− + − +

      

8 8

22 6 2 6 2
) ( )

w w
K

t x t y t

 
− +

      

(20) 

    Based on nonlocal elasticity theory, the nonlocality of stress field can be incorporated into the 

stress-strain relationship as 

0
2(1 ( ) ) kl kle a t−  =

 
(21) 

in which 2 denotes the Laplacian parameter and e0a is a scale parameter introducing the small 

size impact. Finally, the nonlocal constitutive relations based on refined FG plate model can be 

expressed by 

0 0(1

0

0 0 0
11 12

0 0 012 22
2 0 0) 66

0 0 44

55

0

0 0 0 0

Q Q

Q Q

Q

Q

Q

x x

y y

xy xy

yz yz

xz xz

 

 

 

 

 



  
   
   
   
    

    
    
    
    

    





− =

  

(22) 

where 

11 22 12 11 44 55 662

( ) ( )
, ( ) ,

1 ( ) 2(1 ( ))

E z E z
Q Q Q z Q Q Q Q

z z


 
= = = = = =

− +  
(23) 

After integrating Eq. (23) in thickness direction, we get to the following relationships 

2

2
0

11 120 011 12 11 12 2
2

(1 ) 0 0 012 22 12 22 12 222
0 0 0 066 66 0 02 66

2

w
u

s sx B BxN A A B Bx
v w s sN A A B B B By
y yA BN sxy Bu v

w
y x

x y



   −                   
−  = + − +       

        
          +  

−      

2 2

4

( )

4

4

4

w

w

x

w

y

x y

 
−

 

  −
 
 
   
−  
   
  

  
 
   

(24) 

2

2
0

11 120 011 12 11 12 2
2

(1 ) 0 0 012 22 12 22 12 222
0 0 0 066 66 0 02 66

2

w
u

s sx D DM xx B B D D
v w s sM B B D D D Dy
y yB D sM Du vxy

w
y x

x y



   −           
         

−  = + − +       
        

          +  
−      

2 2

4

( )

4

4

4

w

w

x

w

y

x y

 
−

 

  −
 
 
   
−  
   
  

  
 
   

(25) 
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2

2
0 0 0

11 12 11 12 11 12
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(1 ) 0 0

12 22 12 22 2

0 0 0 0 266 66
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v ws s s sS B B D Dy
y y

s sS B Du vxy
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y x
x y


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  
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 
−


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 
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(26) 
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Three equations of motion based on neutral surface location will be derived by placing Eqs. 

(25)-(28) into Eqs. (19)-(21) as follows 
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(32) 

As mentioned, bending-extension coupling eliminates with consideration of neutral surface 

position. Three coupled governing equations might be reduced to a single equation in term of w by 

discarding u and v as 

 

(33) 

in which 
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3. Solution procedure 
 

The above single governing equation will be solved with the help of Galerkin’s technique for a 

nano-dimension plate having bottom edge conditions: 
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Simply-supported (S): 

2

2
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w
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
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at y=0, b

 

Clamped (C): 

0
w

w
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at x=0, a and y=0, b
 

Finally, the displacement field is considered as 

1 1

( ) ( ) i t

mn m n

m n

w W F x F y e 
 

= =

=
 

(36) 

where Wmn largest deflection. Placing Eq. (36) into Eq. (33) leads to  
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where 
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  ( ) ( ) ( ) ( ) ( ) ( )  ( ) ( )(6) (2) (8) (8)

6200 8000 0800
0 0

, , , ,
a b

m n m n m n m nF x F y F x F y F x F y F x F y dxdy   =    
(42) 

For introduced conditions, Fm might be expressed as 
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(43) 

It is possible to derive Fn by replacing a, x, m with b, y, n. 

By introducing mass matrix (M), stiffness matrix (K) and geometric matrix (G), the governing 

equation of nano-dimension plate exposed to time-dependent loads might be defined as 

0[ ]{ } [[ ] ( )[ ]]{ } 0mn mnM W K N t G W+ + =
 

(44) 

The time-dependent forced will be defined as 0( ) [ cos( )] crN t t N  = − +  based on static 

and dynamic load parameters (α, β) and critical buckling load (Ncr); so above equation becomes 

[ ]{ } [[ ] { cos( )} [ ]]{ } 0mn cr mnM W K t N G W  + − + =
 

(45) 

Here  is the frequency of excitation for the time-dependent force and is normalized as 
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(46) 

The solution for such time-dependent problem based on Mathieu–Hill equation will be 

presented as follows 
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The solution of above equation is 
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where [ ] [ ] [ ]crK K N G= −  and normalized coefficients are 
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4. Results and discussions 
 

Using 3-unknown plate theory, dynamic stability of nano-scale plates made of metal foam  
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(a) Non-uniform kind 1 (b) Non-uniform kind 1 

 
(c) Uniform kind 

Fig. 1 Assumed pore variations in the plate 

 

 

Fig. 2 Geometry and coordinates of porous nanoplate 

 

 

subjected to in-plane periodic loads will be studied in this section. The material is steel be different 

pore distributions inside it. Nonlocal effects due to nano-dimension of the plate have been 

considered. The governing equations of the nano-dimension plate were solved with the help of 

Galerkin’s approach. The obtained stability regions due to applied periodic loads will be verified 

with the work of Han et al. 2015 and also the natural frequencies of a nanoplate will be verified by 

the work of Natarajan et al. 2012. These verifications are presented in Tables 1 and 2. The 

dynamic stability of metal foam nano-size plate is shown to be dependent on applied load factors, 

pore distribution, non-local impacts, and some other parameters. Herein, the material properties of 

steel foam plate will be selected as 

• 𝐸1 = 200 GPa, 𝜌1 = 7850 𝑘𝑔/𝑚3, 𝑣 = 0.33, 
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Table 1 Normalized frequency verification based on various factors at n=5 

a/h 

Fully 

simply-

supported 

   
Fully 

clamped 
   

 a=b  a=2b  a=b  a=2b  

 
Natarajan et 

al. (2012) 
present 

Natarajan et 

al. (2012) 
present 

Natarajan et 

al. (2012) 
present 

Natarajan et 

al. (2012) 
present 

10 0.0441 0.043823 0.1055 0.104329 0.0758 0.078893 0.1789 0.189380 

 0.0403 0.04007 0.0863 0.085493 0.0682 0.070135 0.1426 0.146338 

 0.0374 0.037141 0.0748 0.074174 0.0624 0.063767 0.1218 0.123547 

 0.0330 0.032806 0.0612 0.060673 0.0542 0.054949 0.0978 0.098461 

20 0.0113 0.011256 0.0279 0.027756 0.0207 0.020954 0.0534 0.054706 

 0.0103 0.010288 0.0229 0.022722 0.0186 0.018639 0.0422 0.042393 

 0.0096 0.009534 0.0198 0.019704 0.0170 0.016953 0.0358 0.035836 

 0.0085 0.008418 0.0162 0.016110 0.0147 0.014615 0.0287 0.028592 

 

Table 2 Frequency verification of a plate under time-dependent forces at 𝛽=0.5 

  𝛼=0  𝛼=0.1  𝛼=0.2  𝛼=0.3  

  

Han et 

al. 

(2015) 

This 

article 

Han et 

al. 

(2015) 

This 

article 

Han et 

al. 

(2015) 

This 

article 

Han et 

al. 

(2015) 

This 

article 

[ ] (0.5 ) [ ]crK N G−  n=0.1 3.0113 3.01141 2.8033 2.80349 2.5787 2.57885 2.3325 2.33267 

 n=1 2.9785 2.97861 2.7729 2.77295 2.5507 2.55075 2.3072 2.30725 

 n=10 2.9365 2.93662 2.7337 2.73384 2.5147 2.51477 2.2746 2.2747 

          

[ ] (0.5 ) [ ]crK N G+  n=0.1 3.8874 3.88761 3.7287 3.72889 3.5629 3.56309 3.389 3.3892 

 n=1 3.8452 3.84531 3.6882 3.68830 3.5242 3.52431 3.3522 3.3523 

 n=10 3.7910 3.79113 3.6362 3.63633 3.4745 3.47464 3.3049 3.30504 

 

  
(a) a=0.1 (b) a=0.2 

Fig. 3 Normalized frequency of nano-dimension plates with uniform porosities with respect to dynamical 

force coefficient for different non-local and static force coefficients (Kw=0, Kp=0, e0=0.5, a/h=10) 
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(c) a=0.3 

Fig. 3 Continued 

 

  
(a) Uniform kind (b) Non-uniform kind 1 

 
(c) Non-uniform kind 2 

Fig. 4 Normalized frequency of nano-dimension plates versus dynamical force coefficient for different 

porosity distributions (α=0.2, Kw=0, Kp=0, µ=0.2, a/h=10) 
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(a) Kp=0 (b) Kp=2 

 
(c) Kp=5 

Fig. 5 Normalized frequency of nano-dimension plates versus dynamical force coefficient based on 

different foundation constants and uniform pores (a/h=10, α=0.3, µ=0.2, e0=0.5) 

 

 

Fig. 6 Normalized frequency of nano-dimension plates versus dynamical force coefficient according to 

the classical and present plate theories (α=0.3, µ=0.2, Kw=50, Kp=5, e0=0.5) 
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(a) Uniform kind (b) Non-uniform kind 1 

Fig. 7 Normalized frequency of nano-dimension plates versus dynamical force coefficient for diffe

rent edge conditions (a/h=10, α=0.3, µ=0.2, Kw=50, Kp=5, e0=0.5) 

 

 

Fig. 3 indicates the impact of static force coefficient (α) and non-local coefficient (µ) on 

dynamic buckling properties of nano-dimension porous plates when a/h=10, e0=0.5 and Kw=Kp=0. 

One could observe that by the increment of non-local coefficient, the boundary of dynamic 

stability will be decreased. Actually, non-local effect will enhance the instability of the plate under 

time-dependent forces. Also, the value β=0 denote the static buckling of the non-local plate and the 

obtained buckling load is called critical load for this situation. So, the critical load will be 

decreased with the growth of non-local coefficient (reduction in plate stiffness). This important 

fact makes the static/dynamic buckling of a nano-dimension plate different from a macro-

dimension one. Another observation from the figure is that by the static force coefficient 

increment, the boundary of dynamic stability zone will be reduced at a prescribed non-local 

coefficient.  

Pore content effects on instability boundary of a porous nanoplate with respect to dynamical 

force coefficient has been depicted in Fig. 4 at µ=0.2, α=0.2, Kw=0 and Kp=0. An increase in 

porosity coefficient yields larger frequencies for nanoplates containing pore distribution 1 while 

smaller frequencies for nanoplates containing uniform porosities and dispersion 2. Obtained results 

indicate that by increase of the pore parameter, the nanoplate containing pore distribution 1 gives 

the greatest excitation frequencies while the results for a nanoplate containing uniform pores and 

graded pore dispersion 2 are relatively closer.  

In Fig. 5, normalized excitation frequency variation according to dynamical forced coefficient 

(𝛽) based on different elastic foundation constants has been studied for simple-supported 

nanoplates when a/h=10, α=0.3, µ=0.2, e0=0.5. It is observable that increasing the foundation 

constants leads to greater normalized excitation frequencies. Actually, by increasing in foundation 

constants, the dynamic buckling boundaries will be shifted to higher values and excitation 

frequencies will grow.  

Fig.6 shows the normalized excitation frequency variation of the porous nano-dimension plates 

according to dynamical force coefficient and classical and 3-unkonwn plate theories when α=0.3, 

µ=0.2, Kw=50, Kp=5, e0=0.5. At a fixed dynamic load factor, it can be seen that frequency results 

according to the classical plate theory are overestimated. In fact, more accurate examination of 
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stability boundaries of porous nanoplates can be carried out employing higher order shear 

deformation plate theories. However, the value of side-to-thickness ratio has a remarkable 

influence on the instability boundaries. One can see that the width of instability boundaries for 

a/h=10 is smaller than that of a/h=5. In other words, excitation frequency reduces with the 

increase of side-to-thickness ratio at a constant dynamic load factor. 

Normalized excitation frequency variation according to dynamical force coefficient (𝛽) based 

on different edge condition (SSSS, CCSS and CCCC) at 𝛼=0.3, Kw=50, Kp=5 and µ=0.2 has been 

illustrated in Fig. 7. By assuming a prescribed dynamical force coefficient, the porous nano-

dimension plate possessing harder edge condition gives greater normalized excitation frequencies. 

Thus, fully clamped boundary type exhibits greatest excitation frequencies followed by CCSS and 

SSSS. Therefore, the broadest stability zone might be derived based on fully clamped edge 

supports. 

 

 

5. Conclusions 
 

Using 3-unknown plate theory, dynamic stability of nano-scale plates made of metal foam 

subjected to in-plane periodic loads was studied in this paper. The material was steel with different 

pore distributions inside it. Nonlocal effects due to nano-dimension of the plate were considered. 

The governing equations of the nano-dimension plate were solved with the help of Galerkin’s 

approach. The obtained stability regions due to applied periodic loads were verified with a 

previous work. The dynamic stability of metal foam nano-size plate was shown to be dependent on 

applied load factors, pore distribution, non-local impacts, and some other parameters. Non-local 

effect will enhance the instability of the plate under time-dependent forces. Also, by the static 

force coefficient increment, the boundary of dynamic stability zone will be reduced at a prescribed 

non-local coefficient. 
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