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Abstract.  This article is concerned with the investigation of geometrically non-linear vibration response of refined 
thick porous nanobeams. To this end, non-local theory of elasticity has been adopted to provide the nanobeam 
formulation. Voids or pores can affect the material characteristics of the nanobeam. So, their effects have been 
considered in this research and also there are various void distributions. The closed form solution of the non-linear 
problem has been used that is adopted from previous articles. Then, it is focused on the impacts of non-local field, 
void distribution, void amount and geometrical properties on non-linear vibrational characteristic of a nano-size 
beam. 
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1. Introduction 
 

There is one type of metal material known as metal foam with low weight due to possessing 

different variations of porosities in it. The variation of porosities in this material causes a 

significant difference between metal foams and other perfect metals. In a non-perfect metal, the 

material characteristics are notably influenced by pore variations. Also, this variation in pores can 

affect the vibration frequencies of engineering structures made of metal foams. This issue can be 

understood from the works done by Chen et al. 2015 and 2016, Rezaei and Saidi (2016). Different 

from metal foams, there are also functionally graded (FG) or ceramic-metal materials in which 

pore variation effect is very important (Mechab et al. 2016, Mirjavadi et al. 2018, 2019a). In this 

material, pores may be produced in a phase between ceramic and material. Engineering structures 

made of this materials are studied to understand their vibration behaviors as reported in the works 

of Wattanasakulpong et al. (2014), Yahia et al. (2015), Atmane et al. (2015a,b).  

   Recent studies focus on engineering structures at nano-scales due to their involvement in 

nano-mechanical systems or devices. However, the main issue in these studies is to select an 

appropriate elasticity theory accounting for small scale impacts. The impact of size-dependency 

might be considered with the help of a scale parameter involved in non-local theory of elasticity 

Eringen (1983). The word “non-local” means that the stresses are not local anymore. This is 

because we are talking about a stress field of nano-scale structure. Many authors are aware of these 

facts and they are using this theory to analysis mechanical characteristics of small size engineering 
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structures (Natarajan et al. 2012, Belkorissat et al. 2015, Bounouara et al. 2016, Barati et al. 2016, 

Zenkour 2016, Barati 2017a, b, Ebrahimi and Daman 2016, Ebrahimi and Haghi 2018, Ebrahimi 

and Heidari 2018, Ebrahimi et al. 2018, Li et al. 2015). 

    The present research is concerned with the investigation of geometrically non-linear 

vibrational response of refined thick porous nanobeams. To this end, non-local theory of elasticity 

has been adopted to provide the nanobeam formulation. Voids or pores can affect the material 

characteristics of the nanobeam. Therefore, their effects have been considered in this research and 

also there are various void distributions. The closed form solution of the non-linear problem has 

been used that is adopted from previous articles. Finally, we try to show the influences of non-

local scale, void distribution, void amount and geometrical properties on non-linear vibrational 

characteristic of a nanobeam made of metal foams.  
 

 

2. Modeling a porous metal nanobeam 
 

The material characteristics of the metal relies on the type of void/pore distributions. The voids 

can distribute with uniform or non-uniform schemas. The case of non-uniform template can be 

divided into symmetric (non-uniform 1) or asymmetric (non-uniform 2). In the following, the 

expressions for material properties (elastic modulus E and mass density) of a metal foam will be 

presented (Mirjavadi et al. 2019b) 
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In above definitions, the index 2 refers to a material property at its highest value. Also, there 

are two coefficients e0 and em elated to pore amount and mass distribution as 
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The nanobeam in this study is considered to be thick. So, it is crucial to use a higher order thick 

beam model. In order to do this, we used a refined one based on following axial and transverse 

displacements (u1 and u3) as 
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in which w is total deflection and 
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Based on presented beam theory, many authors have derived its governing equations in the 

form presented below 
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In above equations Ii are mass inertias; ki (i=L, P, NL) are foundation parameters; Nx is 

membrane force; Mb and Ms defines the membrane moments which are obtained based on non-

local theory as 
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in which ea is called non-local coefficient and 
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By placing above equations into Eqs.(9-11), one can obtain the governing equation of the 

nanobeam after doing some mathematical manipulation as can be seen in previous researches 
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These are two non-linear equations for a non-local non-linear refined beam.  
 

 

3. Method of solution 
 

Here, we adopted the closed-form solution which was obtained by Barati and Shahverdi (2018). 

Before that, it is required to simply define the displacements as (Mirjavadi et al. 2018) 

1

( ) ( )b bm m

m

w W t X x


=

=
 

(19) 

1

( ) ( )s sm m

m

w W t X x


=

=
 

(20) 

where Wbmn and Wbmn are maximum amplitudes and the functions Xm might be defined as 
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The closed-form expression of non-linear vibration frequency might be presented as 
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And the maximum deflections replaced by W* and 

1,1 40 00 0 20 20 0 40( ) ( )L Pk K KD  =  −  −  +  − −
 

(25a) 

1,2 2,1 40 00 0 20 20 0 40( ) ( )L PEk k K K = =  −  −  +  − −
 

(25b) 

2,2 40 00 0 20 20 0 40 20( ) ( )P sLk K KF A =  −  −  +  +− − 
 

(25c) 

*

11 20 11 40 0000 0 1100 2000

1 1
( ) ( ) ( (6 3 ))
2 2

NLG A K
L L

A =   −   −  −  + 
 

(25d) 

1,1 000 0 2 220 20 40Im I I I =  −  −  + +
 

(25e) 

0 0 4 41,2 2,1 00 20 20 40I I Im Im  += =  −  −  + 
 

(25f) 

2,2 000 0 5 520 20 40Im I I I =  −  −  + +
 

(25g) 

in which 

'' '''' ' '

00 20 40 11
0

{ , , , } { , , , }
L

m m m m m m m mX X X X X X X X dx    =   

' ' ''

0000 1100 2000
0

{ , , } { , , }
L

m m m m m m m m m m m mX X X X X X X X X X X X dx   =   

Above calculations might be based on the following normalized quantities 
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Table 1 Verification of normalized frequency based on various non-local parameter (L/h=20) 

µ (nm)   

 Ebrahimi and Salari (2016) This article 

0 9.8594 9.8567 

1 9.4062 9.4036 

2 9.0102 9.0077 

3 8.6603 8.6579 

 

 
Fig. 1 A metal nanobeam based on elastic foundation 

 

  
(a) µ=0 (b) µ=0.1 

 
(c) µ=0.2 

Fig. 2 Normalized non-linear frequency against maximum deflection for various void coefficients and 

non-local parameters (L/h=10) 
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(a) S-S (b) C-C 

Fig. 3 Normalized non-linear frequency against maximum deflection for different void distributions 

(L/h=10, KL=0, Kp=0, µ=0.2) 

 

  
(a) Higher order refined (b) CBT 

Fig. 4 Normalized non-linear frequency against slenderness ratio for different void distributions (KL=0, 

Kp=0, µ=0.2, e0=0.5) 

 

  
(a) S-S (b) CBT 

Fig. 5 Normalized non-linear frequency against maximum deflection for different foundation parameters 

(L/h=10, µ=0.2, e0=0.5) 
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4. Results and discussions 

 

After the derivation of closed-form non-linear vibration frequency of metal foam nanobeams 

shown in Fig. 1, it is possible to find its dependency on various factors including pore 

amount/dispersion, elastic foundation, geometrical properties and non-local effects. To do this, set 

the material properties to 𝐸2 = 200 GPa, 𝜌2 = 7850 𝑘𝑔/𝑚3, 𝑣 = 0.33. Before that, one can 

see the frequency validation in Table 1. This table shows the accuracy of adopted methodology. 

One can see from Fig.2 the variation of non-linear frequency of the nano-size beam against 

non-local and void coefficients when L=10h. Void or pore dispersion is set as uniform with 

different values for its coefficient. The vibration frequency of a large-size beam might be achieved 

by selecting a zero non-local parameter. From the figure, it might be seen that non-local coefficient 

assigns a stiffness devaluation characteristic together with a smaller vibration frequency. Besides, 

growth of void coefficient yields a smaller frequency regardless of non-local parameter magnitude.  

One can see from Fig.3 the variation of non-linear frequency of the S-S and C-C nano-size 

beams against void dispersion type at a selected value of non-local coefficient µ=0.2. Gained 

observations notes that a nano-size beam having void type 1 results in greatest vibration frequency 

whereas the curves for uniform void type and also void type 2 are near to each other. Such 

behaviors notes that a nano-size beam with symmetrical void type might achieve the greatest beam 

stiffness as well as the excellent mechanical properties.  

Based on different void types with e0=0.5, Fig.4 gives the variation of frequency curves 

according to slenderness ratio (L/h). It is notable that a higher value for slenderness ratio means 

that the nano-size beam is less rigid. Then, one can conclude that the normalized non-linear 

frequency will increase with changing of L/h value. However, normalized vibration frequency is 

more affected by the lower values of slenderness ratio. It might be seen from the figure that shear 

deformation effect is important at smaller slenderness ratios (larger thickness). 

According to different magnitudes for foundation parameters, Fig.5 contains the variation of 

non-linear frequency with maximum deflection at L=10h. The main conclusion from the figure is 

the dependency of non-linear foundation coefficient (KNL) to maximum deflection of the nano-size 

beam. Besides, all foundation parameters might increase the value of non-linear frequency. But, 

one might see the in-dependency of linear or shear foundations to maximum deflection. 
 

 

5. Conclusions 
 

Based on the closed form of nonlinear frequency, this paper was devoted to analyze non-linear 

vibration behavior of a steel nanobeam accounting for foam properties in the presence of 

porosities. It was seen that non-local coefficient assigned a stiffness devaluation characteristic 

together with a smaller vibration frequency. Also, a nano-size beam with symmetrical void type 

might achieve the greatest beam stiffness as well as the excellent mechanical properties. Moreover, 

normalized vibration frequency became more affected by the lower values of slenderness ratio. 

Another important conclusion was the dependency of non-linear foundation coefficient to 

maximum deflection of the nano-size beam. 
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