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Abstract.  Numerical study of the flutter of a plate on a viscoelastic foundation is carried out in the paper. Critical 
velocity of the flutter of a plate on an elastic and viscoelastic foundation is determined. The mathematical model for 
the investigation of viscoelastic plates is based on the Marguerre’s theory applied to the study of the problems of 
strength, rigidity and stability of thin-walled structures such as aircraft wings. Aerodynamic pressure is determined in 
accordance with the A.A. Ilyushin’s piston theory. Using the Bubnov - Galerkin method, the basic resolving systems 
of nonlinear integro-differential equations (IDE) are obtained. At wide ranges of geometric and physical parameters 
of viscoelastic plates, their influence on the flutter velocity has been studied in detail. 
 

Keywords:  mathematical modeling; numerical algorithms; supersonic flutter; viscoelastic foundation 

 
 

1. Introduction 
 

At present, composite materials with pronounced viscoelastic properties are widely used in the 

aviation industry and many other branches of engineering. These industries have obtained light, 

elegant and economical thin-walled structures, for which the role of stability calculation in general 

cycle of strength calculations increased sharply. In connection with this, the hereditary theory of 

viscoelasticity attracts more and more attention. This is evidenced by the publication in recent 

years of a number of scientific papers in which the latest achievements of the theory of 

viscoelasticity are reflected. The growing interest in this theory is due to the development of 

computer technology, which makes it possible to reliably compare the computational experiment 

obtained on the basis of mathematical models to a full-scale experiment. 

The basis for studying the processes of strain of composite materials is the hereditary theory of 

viscoelasticity; its specific application depends on the parameters of materials, the shape of the 

product and the range of variation in environmental conditions. At the same time, significant 

difficulties in obtaining “good” models arise in connection with the consideration of viscoelasticity 

properties and nonlinear effects. It should be noted that the use of traditional materials in aircraft 

construction allowed the use of mathematical models, which can now be called simplified, not 

fully considering the properties of viscoelasticity and other effects. These effects are most 

pronounced under conditions of supersonic air or fluid flows, i.e., at high velocities, which lead to 
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the occurrence of the flutter effect. 

Thus, the previously obtained scientific results in the field of modeling the processes of aircraft 

elements behavior under high-speed conditions cannot be directly applied to the problems under 

consideration, which proves the urgency of the problem of obtaining the adequate mathematical 

models for the dynamics of aircraft elements constructed from materials with pronounced 

viscoelastic and non-linear properties and functioning in flutter modes. 

The noted properties of construction materials and the above factors increase the complexity of 

research and lead to the need to develop the computational methods for studying the stability of 

viscoelastic elements of thin-walled structures. Therefore, the development of effective 

computational algorithms for solving nonlinear integro-differential equations for dynamic 

problems of viscoelastic elements of thin-walled structures with weakly singular kernels of 

heredity is an urgent aspect. 

A flutter of plates and shallow shells on an elastic foundation, was considered by a number of 

authors (Bolotin 1961, Rao and Rao 1984, Chai et al. 2017, Hasheminejadet al. 2013, Nguyen et 

al. 2014, Pagani et al. 2014, Zenkour 2017). In Bolotin (1961) an infinite plate, which lies on an 

elastic foundation and is flowed by a gas flow was considered. 

Rao et al. (1984) have presented the results of the investigation of the effect of elastic sealing 

on the conditions for flutter occurrence in skin elements of supersonic aircraft in the longitudinal 

flow regime. The equations of motion are obtained by the energy method with allowance for the 

shear strain and are written in matrix form. Aerodynamic pressure is taken in accordance with the 

piston theory at Mach numbers М∞ >1,5. To find the eigenvalues and modes of flutter oscillations, 

the finite element method is used. The effect of the elastic foundation coefficient on the stability of 

panels with various geometric, mechanical and weight characteristics is estimated. 

Chai et al. (2017) have studied the effect of an elastic foundation on the flutter of three-layer 

panels. The equations of motion are obtained on the basis of the Hamilton principle. Aerodynamic 

pressure is determined in accordance with the piston theory. The influence of geometric parameters 

and elastic foundation on the flutter of three-layer panels is analyzed. 

In Hasheminejad et al. (2013), on the basis of classical theory of thin plates, a supersonic flutter 

of a three-layer plate on an elastic foundation is investigated. Foundation response is described by 

the Winkler and Pasternak models. The solution is carried out by the widely used Galerkin 

approximate method, taking into account the polynomial approximation of the deflection. The 

system of ordinary differential equations in time is solved by the Runge-Kutta method of the 

fourth order of accuracy. 

Nguyen et al. (2014) have carried out numerical studies of nonlinear oscillations of the flutter 

of layered circular cylindrical shells in a supersonic flow. Nonlinear aerodynamic pressure is 

determined in accordance with Ilyushin’s piston theory. Using the Galerkin method, with two-term 

approximation of the deflection, the nonlinear ordinary integral-differential equations are obtained. 

Numerical integration is obtained by the Runge-Kutta method of the fourth order. The influence of 

material and geometric properties, imperfections, initial conditions and elastic foundations on 

supersonic characteristics of the flutter of cylindrical shells is analyzed. 

At present an account of viscoelastic properties in dynamic strain of plates and shells is one of 

the most relevant tasks in the mechanics of deformable bodies. Its solution is an effective 

application of the theory of viscoelasticity to real processes. Therefore, the methods and problems 

of the theory of hereditary elasticity attract great attention of researchers. There is a significant 

number of publications devoted to solving problems of calculating the characteristics of 

viscoelastic thin-walled structures (Wang et al. 2017, Merrett 2016, Librescu and Chandiramani 
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1989, Teifouet et al. 2016, Badalov et al. 2007a, b, Khudayarov and Bandurin 2007, Pouresmaeeli 

et al. 2013, Mahmoudkhani et al. 2016). General theoretical bases and methods for solving 

problems of determining the stress-strain state and analyzing the dynamic properties of load-

bearing structures with regard to the rheological behavior of their material have already been 

developed. 

Wang et al. (2017) have investigated a nonlinear flutter of viscoelastic panels under supersonic 

gas flow. To construct a mathematical model of viscoelastic panels, the Karman theory is used. 

Aerodynamic pressure is determined in accordance with the piston theory. To describe the 

viscoelastic properties of materials, the model of a standard viscoelastic body (the Kelvin theory) 

is used. 

Librescu et al. (1989) based on the Boltzmann theory have considered the dynamic stability of 

viscoelastic isotropic plates. Transverse strain of shear and rotational inertia are taken into account. 

To solve the linear dynamic problems of viscoelasticity, the method of integral transformations is 

applied.  

Teifouet et al. (2016) have investigated viscoelastic rectangular plates under various boundary 

conditions. To describe the deformation processes of viscoelastic materials, the Kelvin-Voigt 

theories are used. The obtained numerical results are compared with the known results. 

Pouresmaeeli et al. (2013) have investigated the natural frequency of orthotropic viscoelastic 

nanoplates lying on an elastic foundation. 

Three-layer shells have been widely used in various fields of industry, aviation and 

shipbuilding. Mahmoudkhani et al. (2016) have investigated the problem of the flutter of 

viscoelastic three-layer cylindrical shells, which are flown by a supersonic gas flow. Numerical 

investigation of the effect of geometric parameters, the viscoelastic damping parameter and 

temperature on the flutter boundaries of the shell has been conducted. 

Liao and Sun (1993); Eshmatov et al. (2013), Song and Li (2012), Song et al. (2018), Zhao and 

Cao (2013), Pacheco et al. (2017), Singha and Mandal (2008), Chen and Li (2017), Yazdi (2017) 

are devoted to solving concrete problems of the flutter of composite laminated plates, panels, and 

shells. Pacheco et al. (2017) have studied numerically the nonlinear oscillations of the flutter of 

composite panels (multilayer panels) on several supports in supersonic flow. In Yazdi (2017), a 

nonlinear flutter of composite plates on an elastic foundation is studied. 

Dixon et al. (1993) have investigated the aeroelastic stability of a composite multilayer 

rectangular panel in a supersonic gas flow. The velocity vector of the unperturbed flow is assumed 

to be directed parallel to the middle plane of the panel. The equations of motion of the structure are 

derived on the basis of the principle of virtual work and are written in matrix form. The 

aerodynamic forces and moments are calculated in accordance with the quasi-stationary piston 

theory of the first order. The relationship between strains and displacements is given by nonlinear 

Karman relations. Numerical integration of the equations is carried out by the finite element 

method. Limit cycles of oscillations are constructed and their amplitudes for graphite-epoxy and 

boron-epoxy panels are calculated depending on the number of layers, fiber orientation, damping 

coefficient and boundary conditions. The accuracy of the proposed method is estimated by 

comparison with the known theoretical solutions. 

Shiau (1992) has investigated the aeroelastic dynamic stability of two-dimensional honeycomb 

panels used as elements of the supersonic aircraft skin. The panel represents two symmetrical 

multilayer plates with cellular orthotropic filler. Structural strains in a plane problem are 

considered as a superposition of bending strains of plates and shear strain of the filler. Membrane 

stresses are assumed to be small. Critical values of the aeroelastic system parameters are defined in 
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the class of harmonic functions of time. The complex eigenvalues satisfy the polynomial 

characteristic equations obtained from the condition for the existence of a nontrivial solution of the 

homogeneous boundary value problem for an ordinary differential equation of the fourth order. 

The dependence of the flutter velocity on fiber orientation under different mechanical and 

geometric characteristics of the layers is estimated. 

Mathematical and computer modeling of the flutter of viscoelastic elements and structural units 

of an aircraft is an actual scientific problem; its study is stimulated by the failure of aircraft 

structures, parts of space and jet engines. 

Due to complexity of the flutter phenomenon of aircraft elements, simplifying assumptions are 

used in studies. However, these assumptions, as a rule, turn out to be so restrictive that the 

mathematical model ceases to reflect the real conditions with sufficient accuracy. Therefore, the 

results of theoretical and experimental studies are still in bad agreement. 

As seen from the above review, the problem of aeroelastic oscillations and stability of 

viscoelastic plates, panels and shells is far from complete realization. Despite a significant number 

of publications, comparatively little research has been done on nonlinear flutter of plates and 

panels on elastic and viscoelastic foundations. Therefore, this article is aimed to investigate a 

nonlinear flutter of a plate on a viscoelastic foundation. 

So, a theoretical study of nonlinear flutter of viscoelastic plates is given in this paper. Based on 

the Bubnov-Galerkin method using quadrature formulas and the method of eliminating weakly 

singular operators, an effective computational algorithm has been developed that makes it possible 

to investigate the problems of a nonlinear flutter of viscoelastic plates flown by a supersonic gas 

flow. 
 

 

2. Mathematical model 
 

Consider the nonlinear problem of plate flutter on a viscoelastic foundation. Let the plate with 

sides a and b, and thickness h, supported with hinges along the entire contour, is flown with a 

supersonic gas flow on one side (Fig. 1). Aerodynamic pressure is calculated in accordance with 

the piston theory (Ilyushin 1957). Under the assumption adopted in (Bolotin 1961, Volmir 1972, 

Ilyushin 1956, Khudayarov 2010), the equation of oscillations of a viscoelastic plate on a 

foundation has the form 
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 h – is a plate thickness; 

E - is the modulus of elasticity; μ - is the Poisson ratio; w - deflection of the plate; V is the flow 

velocity; R*- is an integral operator with a relaxation kernel R(t), having a weakly singular feature 

of Abel type 
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Fig. 1 Plate lying on a viscoelastic foundation 
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А – parameter of viscosity, β - damping parameter; α - the singularity parameter determined by 
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the polytropic gas index; p∞, V∞ are pressure and sound speed in the unperturbed gas flow, 

respectively. 

In accordance with the boundary conditions: 
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At  y=0, y=b 
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Completing the Bubnov-Galerkin procedure, the system of integro-differential equations (IDE) 

with respect to wnm(t)  and  Фnm(t) is obtained; excluding Фnm(t) from this system, the following 

nonlinear IDE with respect to the sought for function wnm(t) is written 
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3. Numerical results 
 

Systems of nonlinear IDE (3) are solved numerically using the method proposed in (Badalov 

1987, Badalov et al. 1987, Verlan et al. 2004). To do this, the system is written in integral form 

and, using a rational transformation, the weakly singular features of the integral operator R* are 

excluded. Assuming that t=ti,, ti=it, i=1,2,… (t=const) and replacing the integrals with some 

quadrature formulas for computing wnm= wnm(t), the following recurrence relationships are 

obtained 
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Owing to the proposed approach in the algorithm for numerical solution of the problem in 

formula (4), the multiplier ti−tj at j = i acquires a zero value, i.e., the last summand of the sum is 

zero. Therefore, the summation is from zero to i -1 ( 1,0 −= ij ).   

Thus, according to numerical method with respect to the unknowns, a system of linear 

algebraic equations is obtained. 
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Table 1 Comparison of exact and approximate solutions of IDE 

t 
Solution 

h 
Exact Approximate 

0 1.000000 1.000000 - 

1 0.970445 0.970373 0.710-4 

2 0.941764 0.941622 1.410-4 

3 0.913931 0.913644 2.810-4 

4 0.886920 0.886569 3.510-4 

5 0.860707 0.860271 4.310-4 

6 0.835270 0.834855 4.110-4 

7 0.810584 0.810278 310-4 

8 0.786627 0.786113 5.110-4 

9 0.763379 0.763126 2.510-4 

10 0.740818 0.740509 310-4 

 
 

3.1 Example of test solutions 
 

Verification of efficiency of the proposed numerical method and programs, based on the 

solution of test cases, is a necessary stage to confirm the reliability of research results obtained in 

solving specific problems. The problems for which an exact solution is known (Badalov 1987) 

have been considered as test cases. Table 1 show a satisfactory agreement of approximate solutions 

with exact ones; this shows the reliability and high accuracy of calculation results. 

Test Example 1. Consider a non-linear integro-differential equation of the form 
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n=1,2,…,; where Аi, Bs – are the coefficients of the quadrature formula of trapezoids. 

Table 1 gives approximate results of calculations by formulas (6) within the interval from 0 to 1 

with t=0.01 step, and exact solutions. The following initial data have been used: 0=1.1;  

1=1.2; 2=1.3; 3=1.4; A=0.01; =0.03; =0.01.  It follows from the table that the maximum 

error  of calculations performed by described method represents the value const·t2.   The 

efficiency of this numerical method and programs is shown in other test cases as well. 

From the table it follows that the error Δh of calculations performed by described method 

coincides with the error of the quadrature formulas used and has the same order of smallness 

relative to the interpolation step (for the trapezoid formula the error of the method with respect to 

the interpolation step is of second-order, for the Simpson formula – of third order, etc.). 

2. Test case 2. Consider the problem of vibrations and stability of viscoelastic strip in a gas 

flow (I.A. Kiiko, V.V. Pokazeev 2005, 2013) and present a comparative analysis of the results of 

solution with the ones obtained by the proposed method. 

In a rectangular coordinate system, the strip occupies region 0уl, x0. On one side it is flown 

over by a gas flow with velocity vector V=V ∙ 0n


, 0n


= {cos, sin}. Here  ₋ angle of flow; l ₋ 

width strip.  

Strip vibrations are described by equation (I.A. Kiiko, V.V. Pokazeev, 2005, 2013) 
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Assuming that 
1)exp()( −−=  ttAtR  and introducing the dimensionless coordinates ,,

l
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l
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and time  βt  given in (Kiiko and Pokazeev 2005, 2013), and retaining the previous notations, 

Eq. (7) is written in the form  
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Solution of Eq. (8) is chosen in the form 

 
yxtww  sin)exp()( 1 −=

 
(9) 

Substituting Eq. (9) into Eq. (8) at =0 we get 
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Table 2 Dependence of critical velocity of strip flutter on the parameters of the kernel of heredity 

0  

V*
cr 

(results given in  

Kiiko and Pokazeev 2005, 2013) 

V*
cr 

(Present study) 

0 - 0.096029 0.096027 

0.1 1 0.096065 0.096025 

0.1 0.1 - 0.093745 

0.1 0.03 - 0.0919745 

0.3 0.005 - 0.079220 

 

 

w(0)=S1,  2)0( Sw = , (11) 

where 
222

10 )(  −= ;  S1, S2 – are the known constants. 

Integrating system (10) twice with respect to t, it can be written in integral form; with rational 

transformation we eliminate the singular features of integral operator R1
*. Then, assuming that t=ti, 

ti=i∙∆t, i=1,2, … (∆t =const) and replacing the integrals with quadrature formulas of trapezoids for 

the calculation of wik=wk(ti), the recurrence formulas for the Koltunov-Rzhanitsyn kernel are 

obtained  
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Thus, according to numerical method with respect to the unknowns, a system of algebraic 

equations is obtained. The Gauss method is used to solve the system. Based on the developed 

algorithm, a package of applied computer programs is created. Results of calculations are given in 

Tables 2.  

Table 2 shows the results of specific calculations for the parameters values (Kiiko and 

Pokazeev 2005, 2013) 

37 108;105 == − 
E

p
kg/m3 ; =1.4; μ=0.3; V=330 m/s; 

2103 =
h

l
 . 

The third column shows the results (Kiiko and Pokazeev 2005, 2013) when dimensionless 

critical flutter velocities (V*
cr) are determined by a numerical-analytical method. 

As seen from the results obtained, for ideally elastic and viscoelastic strips (in the case of 

exponential kernel of heredity) the critical velocities of the flutter exactly coincide with the results 

given in (Kiiko and Pokazeev 2005, 2013). For viscoelastic strip with a weakly singular heredity 

kernel, this velocity decreases. 

 

3.2 Results and discussion 
 

Results of calculations are presented in the table and are shown by the graphs in Figs. 2-3 for 

N=5, L=2. On the basis of Eq. (4), the critical velocity of the flutter of viscoelastic plates is 
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determined. As a criterion determining the critical velocity Vcr, the condition is assumed that at this 

velocity there is an oscillatory motion with rapidly increasing amplitudes, which can lead to 

structure damage. In the case V< Vcr the flow velocity is less than the critical one, the amplitude of 

viscoelastic plate oscillations is damping (Badalov 2007, 1987, Khudayarov 2007, 2008, Verlan 

2004). 

To determine V=Vcr, consider the values V1 and V2 located on the interval (V0, Vn) in such a way 

that V0<V1<V2<Vn . Comparing the law of variation of w at V=V1 and V=V2, the following 

conclusions can be drawn: 

a) if, at V<V1 , the law of variation of the function w is close to a harmonic one, then Vcr cannot 

be in the interval (V0,V1); that is Vcr lies in the interval (V1, Vn); 

b) if, at V>V1, a rapid growth of the function w with time is observed, then Vcr lies in the 

interval (V0 ,V1). 

Processes a) and b), i.e., the processes of excluding the intervals that do not give rise to 

undesirable phenomena is repeated for (V0,V1) or (V1, Vn), etc. The search ends when the remaining 

sub-interval is reduced to a sufficiently small size. 

The Table 3 shows the critical values of the flutter velocity depending on physical-mechanical 

and geometric characteristics of the plate. 

The effect of viscoelastic properties of the plate material on the critical values of flutter velocity 

is investigated. Calculation results presented in the table show that the solutions of elastic (A=0) 

and viscoelastic (A>0) problems differ significantly. For example, as the parameter A increases 

from zero to 0.1, the critical flutter velocity decreases by 27.7%. 

Next, the effect of the singularity parameter  on the critical flutter velocity is investigated. 

With increasing of , this velocity increases. For example, the difference between the values of the 

critical velocity at =0.1 and =0.4 is 53%. 

It is seen from the table above that the effect of damping parameter  of the heredity kernel on 

the flutter velocity of the plate compared with the effect of viscosity parameter A and the 

singularity  is insignificant, which confirms that the exponential relaxation kernel is unable to 

completely describe the hereditary properties of structure material. 

The effect of the relative thickness parameter of the plate 1 on the critical velocity Vcr of the 

flutter is studied. The calculations are carried out at 1= 220, 280, 300, and 350. The results 

obtained show that as the plate thickness decreases (with increasing parameter 1), the critical 

velocity of the flutter of viscoelastic plate decreases. 

The effect of elongation parameter of plate  on the critical flutter velocity is investigated. As  

increases, the critical velocity increases, which is explained by the fact that the size of the plate 

decreases perpendicular to the flow direction with increasing  (at constant 1) and, consequently, 

the relative rigidity of the system increases. 

From the tables it follows that, with account of viscoelastic foundation, the flutter velocity 

increases compared to the cases when viscoelastic foundations are not considered. For great values 

of the coefficients of bed, the flutter velocity increases markedly. 

The effect of viscoelastic properties of material on the oscillation amplitudes of the plate is 

shown in Fig. 2. As seen from the figure, with increasing parameter A, the amplitude and 

frequency of oscillations decrease. 

Fig. 3 shows the curves of deflection w – time dependence of the viscoelastic plate at different 

values of the parameter 1=а/h. The calculation was carried out for viscoelastic plates with a 

relative thickness 1=а/h, varying in the range from 200 to 310. Analysis of these curves suggests  
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Fig. 2 Dependence of the viscoelastic plate deflection on time t at А=0 (1); А=0.005 (2); А=0.1 (3); 

k=0.0001; =0.25; =0.05; =2.5; A0=0.1; 0=0.25; 0=0.02; 1=250; N=5; L=2 

 

 
Fig. 3 Dependence of the viscoelastic plate deflection on time t at 1=200 (1); 1=310 (2); А=0,1; =0,25; 

=0,05;  k=0,0001; =2,5; A0=0,11; 0=0,2; 0=0,02; N=5; L =2; V=875 m/s 

 

 

that a decrease in the thickness of the plate leads to an increase in the frequency of oscillations. In 

Fig. 3 there is a noticeable increase in the deflection amplitude of the plate at 1=а/h (curve 2). 

 

3.2.1 Effect of boundary conditions 
The study of boundary conditions on flutter velocity of plate given. Results of calculations are 

given in Table 4. Comparison of different cases of plate fixation shows that with an increase in a 

number of fixed sides of the plate, flutter critical velocity increases. For elastic plate flutter 

velocity is 990 m/s (G1), 1535 m/s (G2), and 1688 m/s (G3). These results practically coincide with 

the values obtained by analytical method in (A.A. Movchan 1956, 1957) (G1: Vcr = 969 m/s, A1 = 

513; G2: Vcr = 1537 m/s; A1 = 814 m/s; G3: Vcr = 1542 m/s; A1 = 842). For viscoelastic plate with 

regular kernel of heredity, this velocity is 935 m/s (G1), 1442 m/s (G2) and 1605 m/s (G3), 

respectively.  
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Table 3 Dependences of the critical velocities of the flutter of a plate on a viscoelastic foundation on 

physical-mechanical and geometric parameters 

A   Ao o o  1 k Vcr (m/s) 

0.0 

0.001 

0.01 

0.1 

0.25 0.05 0.02 0.3 0.01 2.5 250 0.0001 

1620 

1595 

1492 

1170 

0.1 

0.1 

0.4 

0.7 

0.05 0.02 0.3 0.01 2.5 250 0.0001 

865 

1325 

1479 

0.1 0.25 
0.01 

0.1 
0.02 0.3 0.01 2.5 250 0.0001 

1186 

1167 

0.1 0.25 0.05 

0.0 

0.05 

0.3 

0.3 0.01 2.5 250 0.0001 

1219 

1158 

1137 

0.1 0.25 0.05 0.02 

0.1 

0.5 

0.9 

0.01 2.5 250 0.0001 

1162 

1211 

1230 

0.1 0.25 0.05 0.02 0.3 
0.1 

0.5 
2.5 250 0.0001 

1165 

1162 

0.1 0.25 0.05 0.02 0.3 0.01 

2 

2.2 

2.7 

250 0.0001 

718 

887 

1467 

0.1 0.25 0.05 0.02 0.3 0.01 2.5 

220 

280 

300 

350 

0.0001 

1740 

846 

674 

412 

0.1 0.25 0.05 0.02 0.3 0.01 2.5 250 

0.0 

0.0002 

0.0004 

0.0006 

1047 

1244 

1322 

1439 
 

Table 4 Effect of boundary conditions on flutter velocity of plate  

Boundary conditions А   Vcr  (m/s) 

G1 

0 

0,01 

0,05 

- 

1 

0,5 

- 

0,1 

0,1 

990 

935 

536 

G2 

0 

0,01 

0,05 

- 

1 

0,5 

- 

0,1 

0,1 

1535 

1442 

871 

G3 

0 

0,01 

0,05 

- 

1 

0,5 

- 

0,1 

0,1 

1688 

1605 

915 
 

 

It can be seen from the obtained results that if the exponential kernel ( = 1) is used, flutter 

velocity decreases by approximately 5%, and when the Koltunov-Rzhanitsyn kernel is used this 

velocity decreases by 45% relative to critical velocity of the flutter of ideally elastic plates. 

Therefore, when using exponential kernels, flutter velocity of viscoelastic plate practically 
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coincides with critical flutter velocity for ideally elastic plates. These conclusions and results fully 

agree with the conclusions and results given in (I.A. Kiiko, V.V. Pokazeev 2005, 2013), where 

critical flutter velocities are determined by a numerical-analytical method. 
 

 

4. Conclusion 
 

Thus, we may conclude that the singularity parameter  affects not only the viscoelastic system 

oscillations, but also the critical flutter velocity. Consequently, consideration of this effect in 

aviation structures design is important, since the smaller the singularity parameter of structure 

material, the more intensive the dissipation processes in these structures. 

On the basis of the results obtained, it can be concluded that an account of viscoelastic 

properties of plate material leads to a decrease in the critical flutter velocity Vcr, which is the cause 

of flutter phenomenon. 

A number of new dynamic effects have been studied in the modeling of nonlinear problems: 

• it is found that an account of viscoelastic properties of thin-walled structures of an aircraft 

leads to 40-60% decrease in the critical flutter velocity;  

• it is established that an account of nonlinear effects in solving the flutter problem of 

viscoelastic elements of an aircraft leads to 15-20% increase in the critical velocity. 

It should be also noted that at a flow velocity less than Vcr, the effect of viscoelastic property of 

material reduces the amplitude and the frequency of oscillations. If the flow velocity exceeds Vcr, 

the viscoelastic property of material exerts a destabilizing effect. 
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