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Abstract.  In mechanical analysis of spacecraft structures situations appear where static and dynamic loads 
must be considered simultaneously. This could be necessary either by load definition or preloaded structures. 
The superposition of these environments has an impact on the load and stress distribution of the analysed 
structures. However, this superposition cannot be done by adding both load contributions directly. As an 
example, to compute equivalent Von Mises stresses, the phase information must be taken into account in the 
stress tensor superposition. Finite Element based frequency response solvers do not allow the calculation of 
superposed static and dynamic responses. A manual combination of loads in a post-processing task is 
required. In this paper, procedures for static and harmonic loads superposition are presented and supported 
by analytical and finite element-based examples. The aim of the paper is to provide evidence of the risks of 
using different superposition techniques. Real application examples such as preloaded mechanism structures 
and propulsion system tubing assemblies are provided. This study has been performed by the Structural 
Engineering department of Airbus Defence and Space GmbH Friedrichshafen. 
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1. Introduction 
 

Spacecraft structures are designed to survive all events that occur during launch and in-orbit 

phases. These events are mainly of dynamic nature. It is therefore necessary to know and 

understand the spacecraft’s dynamic characteristics to produce a compliant and optimised design. 

During mechanical analysis tasks, loads are usually combined to obtain critical or equivalent 

loads. These loads are afterwards used to size the structure. Special attention must be paid on the 

way the load combination is performed in order not to yield very conservative or non-conservative 

results. For example, the phase of the responses is a key factor to be considered when combining 

dynamic loads in order to obtain accurate results. 

In addition, statically preloaded structures such as mechanisms introduce a new element into 
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the equation: static loads. These loads may be present during the launch phase of the spacecraft 

and therefore need to be included in addition to the dynamic environmental loads. The procedure 

followed to derive the superposed responses is critical. 

In the framework of harmonic environment, this paper introduces and compares several 

dynamic response combination techniques as well as different methodologies of static and 

dynamic load superposition. The aim of the paper is to provide evidence of the risks of using each 

technique. To this end, theoretical and FEM based examples are provided. 

The structure of the paper is as follows. Section 2 provides a description of the FEM 

benchmark model used for this study. Sec. 3 reviews key aspects to be considered for accurate 

combination of dynamic responses. In sec. 4, techniques for static and dynamic loads 

superposition are presented and compared. Sec. 5 provides examples of application in spacecraft 

programmes developed in Airbus DS GmbH Friedrichshafen. Finally, future perspectives and 

conclusions are drawn in sec. 6 and sec. 7. 

 

 

2. Benchmark model 
 

For simplification and better understanding of the results of this study, a typical benchmark 

Finite Element (FE) model consisting of a beam with a large tip mass is used. As depicted in Fig. 

1, the beam is a circular tube modelled with 2D shell elements. A lumped mass is attached to the 

tip of the beam with a rigid element RBE2 spider. The global Z direction is parallel to the beam 

longitudinal axis. 

The elements highlighted in pink will be used in sec. 3 and sec. 4 to present stress results. 

 

 

 
Fig. 1 Overview of the Benchmark FE Model 

 

 

The modal properties under hard-mounted boundary conditions applied at the end of the beam 

opposite to the mass are summarised in Table 1. Since solely excitation in Y direction is analysed 

in this paper, only modes in Y direction are of interest. The shapes of the three first modes in Y 

direction are depicted in Fig. 2. 
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Table 1 Benchmark FEM modal properties 

Mode N° Frequency Description 

Mode 1 8.44 Hz 1st Bending Mode in Y 

Mode 2 11.13 Hz 2nd Bending Mode in Y + Torsion Z 

Mode 3 32.76 Hz 3rd Bending Mode in Y 

 

 
Fig. 2 Benchmark FEM Mode Shapes 

 

 

3. Dynamic load combination 
 

In harmonic analysis, amplitude and phase of responses are calculated solving the equations of 

motion. Once the responses are calculated, it is usual to combine them to produce, for instance, 

equivalent Von Mises stress or in-plane loads. In order to simplify the calculations, analysts 

sometimes take the risk to ignore the phase of the responses and work with amplitudes only. The 

aim of this section is to provide evidence that the phase information must be included when 

combining dynamic responses since ignoring it may yield very conservative or non-conservative 

results. 

 

3.1 Example 1 
 

As an example, consider the following 2D dynamic stress tensor 
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where i , ij  are normal and shear stress amplitudes and i , ij  are response initial phases. 

The exact Von Mises stress is calculated as in Eq. (2) 

222 )(3)()()()()( tttttt xyyxyxvm  +−+=  (2) 

Eq. (2) is a periodic function of period  ) ,0= t  where   is the circular frequency of 

excitation. Developing Eq. (2) using Eq. (1), one yields an exact expression to determine the value 

of t =  for which Eq. (2) reaches a maximum or a minimum value (Charron et al. 1993) 
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If one decides to neglect the phase of the responses in order to simplify the dynamic Von Mises 

stress calculation one leads to Eq. (4) 

222 ||3|||||||| xyyxyxampvm  +−+=  (4) 

As an example, let us consider the 2D stress tensor displayed in Table 2. With this tensor, one 

can plot the dynamic 2D stress tensor of Eq. (1) together with the Von Mises stress calculated with 

Eqs. (2) and (4) as depicted in Fig. 3. 

 

 
Table 2 Dynamic 2D stress tensor example 

|| x
 

[MPa] 

x  

[rad] 

|| y  

[MPa] 

y  

[rad] 

|| xy  

[MPa] 

xy  

[rad] 

200  2/  200  2/3  80  4/  

 

 

Fig. 3 shows the exact dynamic Von Mises stress over a period  ) 2,0= t . Using Eq. 

(3), one exactly obtains that the maximum Von Mises stress is located at 65.1=  rad. In 

addition, the Von Mises stress neglecting the phase of the responses (Eq. (4)) is depicted in black 

solid line. 

 

 

 
Fig. 3 Example of dynamic Von Mises stress 

 

 

Using Eq. (5), one can compute the percentage of error committed when neglecting the phase 

of the responses (see Table 3). 

  100%
max

max


−
=

exactvm

exactvmampvm

vme



 (5) 
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Table 3 Error in dynamic Von Mises stress calculation 

maxexactvm  

[MPa] 

ampvm  

[MPa] 

vme  

[%] 

361 243 -33 

 

 

It can be clearly noted in Table 3 that neglecting the phase information for the Von Mises stress 

calculation leads to very non-conservative results. 

 

3.2 Example 2 
 

In a similar way, consider the following force vector 
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where || iF  are force amplitudes and i  are response initial phases. 

Very often forces are combined to obtain, for example, in-plane resultant forces as shown in Eq. 

(7) 

22 )()()( tFtFtF yxR +=  (7) 

Combining Eqs. (6) and (7) one can obtain an exact expression to determine the value of 

t =  for which Eq. (7) reaches a maximum or minimum value 
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If one decides to neglect the phase of the responses so as to simplify the dynamic in-plane 

resultant force calculation, one leads to Eq. (9) 

22 |||| yxampR FFF +=  (9) 

As an example, let us consider the force vector displayed in Table 4. With this vector, one can 

plot the dynamic force vector of Eq. (6) together with the in-plane resultant force calculated with 

Eqs. (7) and (9) as depicted in Fig. 4. 

 

 
Table 4 Dynamic Force vector example 

|| xF  

[N] 

x  

[rad] 

|| yF  

[N] 

y  

[rad] 

1000 0 8 2/  
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Fig. 4 Example of dynamic resultant force 

 

 

Fig. 4 shows the exact in-plane resultant force over a period  ) 2,0= t . Using Eq. 8, the 

maximum exact resultant force is located at  =  rad. In addition, in black solid line, the 

resultant in-plane force neglecting the phase information (Eq. (9)) is depicted.  

Using Eq. (10), one can compute the percentage of error committed when neglecting the phase 

of the responses (see Table 5).  

  100%
max

max


−
=

exactR

exactRampR

F
F

FF
e  (10) 

 

 
Table 5 Error in dynamic resultant force calculation 

maxexactRF  

[N] 

ampRF  

[N] 

Fe  

[%] 

1000 1281 +28 

 

 

From Table 5, one can conclude that ignoring the phase information is leading to a very 

conservative result. 

Additionally, it can be demonstrated that considering only force response amplitudes is always 

a conservative approach. Let us consider the force vector cases listed in Table 6. If we vary the 

phases x  and y  such as we cover ( )  2/,0  − xy , then one can plot Eq. (7) as a 

function of )(tFx  and )(tFy  for one period of  ) 2,0= t  as depicted in Fig. 5. 
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Static and dynamic load superposition in spacecraft structural analysis 

Table 6 Force vector demonstration cases 

Case 
|| xF  

[N] 

|| yF  

[N] 

|||| yx FF =  100 100 

|||| yx FF   100 90 

 

 
Fig. 5 Resultant in-plane force for cases |||| yx FF =  and |||| yx FF   

 

 

The ellipses depicted in Fig. 5 represent the trace of the resultant in-plane force (Eq. (7)) over a 

period of t =  and for several combinations of x  and y . The blue curve depicts an 

example of resultant ellipse for a phase difference ( )xy  −  of 3/ . The red curve shows the 

trail of the maximum in-plane resultant force maxexactRF  for all possible ( )xy  −  combinations 

between 0  and 2/ . Note that in the case |||| yx FF   the resultant ellipse rotates when 

( )xy  −  increases. 

It can be clearly seen that maxexactRF  does always reach its maximum when )(tFx  and 

)(tFy  are in phase (meaning 0=− xy  ). This particular case is equivalent to neglecting the 

phase information as assumed in Eq. (9). 

Hence, when calculating resultant forces, one will always be conservative if the phase of 

responses is ignored. Nevertheless, the degree of conservatism can be very high as seen in Table 5. 

 

3.3 Benchmark example 
 

The goal of this subsection is to provide numerical evidence of the errors in the Von Mises 

stress calculation when neglecting the phase information of the stress tensor. 

Consider the beam finite element benchmark model presented in sec. 2. The structure is 
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submitted to a harmonic base excitation applied in Y direction as shown in Fig. 6. A stress analysis 

is performed on the tube. For simplification, only the stress tensor and Von Mises stresses on the 

pink elements are presented. The Von Mises stress distribution of the beam for the first three 

modes in Y direction is depicted in Fig. 7. 

 

 

 
Fig. 6 Overview of Benchmark FEM with base excitation in Y direction 

 

 
Fig. 7 Von Mises stress distribution for the three first modes in Y direction 

 

 

Table 7 shows the stress tensor and Von Mises stress results for the sine Y excitation. The exact 

maximum Von Mises stress is calculated with Eqs. (2) and (3). The simplified Von Mises stress 

using Eq. (4) is presented as well. The error is computed according to Eq. (5) and is also shown in 

Table 7. Fig. 8 depicts the evolution of the Von Mises stress over one period of t =  for the 

three elements indicated in Fig. 6. 

 

 

Table 7 Benchmark example dynamic Von Mises stress results overview 

Mode Element 
|| x  

[MPa] 

x  

[deg] 

|| y  

[MPa] 

y  

[deg] 

|| xy  

[MPa] 

xy  

[deg] 

vm  

exact 

[MPa] 

vm  

only amplitude 

[MPa] 

Error 

vme  

[%] 

1 

1 

2 

3 

418 

316 

141 

-89.1 

-89.6 

-91.7 

16.5 

1.10 

5.70 

91.0 

92.3 

88.3 

83.5 

91.5 

83.5 

-91.3 

-91.0 

-91.3 

450 

354 

204 

435 

353 

200 

-3.46 

-0.27 

-1.95 

2 

1 

2 

3 

79.6 

64.8 

53.5 

-121.2 

-122.6 

-124.9 

23.9 

0.08 

0.21 

-121.2 

-114.3 

69.0 

38.2 

37.7 

38.2 

104.2 

-104.8 

104.2 

89.4 

84.2 

77.8 

96.9 

91.9 

84.9 

+8.34 

+9.18 

+9.16 

3 

1 

2 

3 

191 

15.5 

275 

-90.8 

97.7 

90.2 

8.44 

1.95 

11.2 

89.3 

-90.2 

-89.8 

6.79 

6.79 

6.81 

92.4 

92.4 

92.4 

195 

20.3 

281 

187 

18.7 

270 

-4.31 

-7.50 

-3.98 

266



 

 

 

 

 

 

Static and dynamic load superposition in spacecraft structural analysis 

  
Fig. 8 Plot over one period of the FEM dynamic stress tensors and Von Mises stress 

 
 
3.4 Discussion on the dynamic load combination 

 

Both analytical and benchmark examples prove that ignoring the phase information of the 

responses has a high impact in the resultant force and Von Mises stress calculation. Example 2 

demonstrates that neglecting the phase is always conservative when calculating resultant forces 

although the degree of conservatism can be very high. 

In the benchmark example, errors up to 9% in Von Mises stress are achieved but the analytical 

example shows that even much higher errors can be made (e.g., Example 1 with an error of -33%). 

Table 7 provides evidence that in some cases the Von Mises calculation is conservative whereas in 

other cases it is non-conservative. This uncertainty in the results can be critical when sizing 

structures. Depending on the component and its degree of optimisation, an under-estimated Von 

Mises stress may lead to positive margins of safety in the analysis but to failure of the component 

during environmental tests. 
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Hence, despite the complexity of the structure and the size of the mathematical models, it is 

recommended to use exact methodologies of dynamic load combination which take into account 

the phase of the responses. 

 

 

4. Superposition of static and dynamic loads 
 

As already stated in sec. 1, there are situations where spacecraft structures are simultaneously 

submitted to static and dynamic environments. As an example, pointing mechanisms are required 

to be fixed in stowed configuration during the launch phase. Usually, this requirement is satisfied 

by the introduction of a static preload in the structure. Such preload may reach values of tens of 

kN and therefore have a strong impact in the dimensioning of the structure. 

Consider the following stress tensor derived from applying a static preload 

  
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The Von Mises stress of this static tensor would be as in Eq. (12) 
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xyyxyxstaticvm  +−+=  (12) 

Assume that static loads must be applied in combination with dynamic environmental loads. In 

that case, the stress tensor in Eq. (11) and the dynamic stress tensor displayed in Eq. (1) have to be 

superposed 
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(13) 

At this point, one can observe that the static and dynamic superposition shown in Eq. (13) is 

not straightforward. FE based dynamic solutions cannot include static loads in the solution 

sequence and therefore the superposition must be done as a post-processing task. 

Consider that we desire to compute the exact Von Mises stress of the static and dynamic 

superposed tensor of Eq. (13). The exact procedure is presented in Eqs. (14) and (15) 

 )  )(max2,0,, ttelements vm →=  (14) 

with   the frequency range of analysis and 

        222
)(ˆ3)(ˆ)(ˆ)(ˆ)(ˆ)( tttttt xyxyyyxxyyxxvm  ++++−+++=  (15) 

Given circular frequency  , one needs to calculate the superposed stress tensor for each 

element. Then, the Von Mises stress over a period of  ) 2,0= t  must be calculated and the 

maximum value for each element stored. This operation has to be repeated over the frequency  
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Table 8 Example of Von Mises stress with static and dynamic superposition results and errors 

Method 
Exact Method Method Method C |)|||||( xyyx    

Max A B (+ + +) (+ + -) (+ - +) (+ - -) (- + +) (- + -) (- - +) (- - -) 

vm  [MPa] 414 353 471 212 160 353 325 444 421 342 312 

 %vme  --- -14.7 13.8 -48.8 -61.3 -14.6 -21.4 7.3 1.9 -17.4 -24.5 

 

 
Fig. 9 View of the Von Mises stress with static and dynamic superposition calculation 

 

 

range of analysis yielding the maximum Von Mises stress. This method, although expensive in 

matter of time and computation costs, gives the exact value of Von Mises stress. 

 

4.1 Simplified methodologies and analytical example 
 

Since the implementation and use of Eqs. (14) and (15) is very expensive, it is common to 

make assumptions and simplify the calculation of the Von Mises stress. Several simplified 

possibilities are evaluated in this section and described in Eqs. (16), (17) and (18). The aim of this 

section is to evaluate the error in the Von Mises stress calculation when using these simplified 

methods with respect to the exact Von Mises using Eq. (15). 

A The superposed Von Mises stress is the result of the sum of the static Von Mises stress 

(Eq. (12)) and the dynamic Von Mises stress. The latter does not include the phase information 

(Eq. (4)) 

ampvmstaticvmAvm  += ˆ  (16) 
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B The superposed Von Mises stress is calculated as the sum of the static Von Mises stress 

(Eq. (12)) and the maximum dynamic Von Mises stress making use of the phase information (Eqs. 

(2) and (3)) 

( )max
ˆ  vmstaticvmBvm +=  (17) 

C The superposed Von Mises stress is calculated as in Eq. (15) but neglecting the phase 

information of the dynamic responses 

222 |)|ˆ(3|)|ˆ|)(|ˆ(|)|ˆ(|)|ˆ( xyxyyyxxyyxxCvm  ++−+=  (18) 

Note that as mentioned in ECSS (2013), Eq. (18) has multiple combinations depending on the 

sign of the dynamic stresses. 

The error is computed as in Eq. (19)  

  100%
max

max,,


−
=

exactvm

exactvmCBAvm

vme



 (19) 

As an example, consider the dynamic stress tensor presented in Table 2 and the static stress 

tensor in Eq. (20) 
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

−

+−
=

60

20120
̂ MPa (20) 

If one calculates the Von Mises stress considering static and dynamic loads for all the 

methodologies presented in Eqs. (15) to (18) and calculates the error, one yields the results 

presented in Table 8. A plot of the Von Mises stress over one period is shown in Fig. 9. Note that 

for Method C (Eq. (18)), only the combination |)|||||( xyyx  +++  is depicted. 

 

4.2 Benchmark example 
 

Consider the tube benchmark example presented in sec. 2. The model is statically loaded with a 

force of 10 kN applied on the tip mass element. The load is applied in Y direction as depicted in 

Fig. 10. The Von Mises stress distribution which results after application of the static load case is 

also shown in Fig. 10. 
 

 

 
Fig. 10 Overview of the FEM benchmark model static load case and Von Mises stress 
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Tables 9, 10 and 11 present the results of the Von Mises stress after static and dynamic 

superposition using the methodologies described in Eqs. (14) to (18) and the errors made using Eq. 

(19). The superposition is performed with the dynamic stress tensors of the three modes calculated 

in sec. 3. 

 

 
Table 9 Element 1 benchmark example static and dynamic Von Mises stress superposition results & errors 

Element 1 

Mode Method / Exact Method Method Method C |)|||||( xyyx    

 Value Max A B (+ + +) (+ + -) (+ - +) (+ - -) (- + +) (- + -) (- - +) (- - -) 

1 
vm  [MPa] 901 899 915 135 262 159 275 872 901 861 889 

 %vme  --- -0.20 1.53 -85.0 -71.0 -82.4 -69.5 -3.14 0.003 -4.46 -1.28 

2 
vm  [MPa] 528 561 554 386 414 378 407 540 561 527 548 

 %vme  --- 6.17 4.76 -27.0 -21.6 -28.5 -23.0 2.18 6.12 -0.24 3.80 

3 
vm  [MPa] 648 651 660 289 296 289 296 648 651 643 646 

 %vme  --- 0.52 1.82 -55.3 -54.2 -55.4 -54.3 0.001 0.49 -0.80 -0.31 

 
Table 10 Element 2 benchmark example static and dynamic Von Mises stress superposition results & errors 

Element 2 

Mode Method / Exact Method Method Method C |)|||||( xyyx    

 Value Max A B (+ + +) (+ + -) (+ - +) (+ - -) (- + +) (- + -) (- - +) (- - -) 

1 
vm  [MPa] 645 645 646 67.5 270 68.2 270 590 645 589 644 

 %vme  --- -0.06 0.09 -89.5 -58.2 -89.4 -58.2 -8.56 0.003 -8.72 -0.15 

2 
vm  [MPa] 343 384 376 211 269 211 269 339 378 339 378 

 %vme  --- 12.0 9.71 -38.5 -21.4 -38.5 -21.4 -1.17 10.3 -1.20 10.3 

3 
vm  [MPa] 311 311 312 274 283 272 281 303 311 301 310 

 %vme  --- -0.29 0.20 -12.0 -9.08 -12.6 -9.64 -2.64 0.007 -3.23 -0.57 

 
 

4.3 Discussion on the static and dynamic load superposition 
 

The results of both analytical and benchmark examples show that the simplified methodologies 

for static and dynamic superposition of Von Mises stresses can produce very conservative or non-

conservative results. It is proven that simplified superposition methods are completely case 

dependent. 

The complexity of the structure and its dynamic behaviour together with the way the static and 

dynamic load are applied are key factors which increase the uncertainty of simplified methods. 

Therefore, it is recommended to use the exact approach for the static and dynamic superposed 

Von Mises stress calculation despite the expensive costs of computation. 
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Table 11 Element 3 benchmark example static and dynamic Von Mises stress superposition results & errors 

Element 3 

Mode Method / Exact Method Method Method C |)|||||( xyyx    

 Value Max A B (+ + +) (+ + -) (+ - +) (+ - -) (- + +) (- + -) (- - +) (- - -) 

1 
vm  [MPa] 274 287 291 148 268 153 271 158 274 152 271 

 %vme  --- 4.76 6.22 -46.0 -2.02 -44.2 -1.01 -42.4 0.001 -44.5 -1.16 

2 
vm  [MPa] 157 172 165 55.1 161 55.3 161 59.9 163 59.7 163 

 %vme  --- 9.52 4.98 -64.9 2.71 -64.8 2.75 -61.8 3.79 -62.0 3.74 

3 
vm  [MPa] 301 357 368 278 285 289 296 294 301 283 290 

 %vme  --- 18.9 22.6 -7.47 -5.05 -3.98 -1.65 -2.29 0.001 -6.0 -3.61 

 
 
5. Application in spacecraft programmes 
 

Mechanisms are structures which are usually preloaded during launch to keep them in stowed 

position. In some cases, this preload can be very high and requires to be correctly taken into 

account in combination with the launch dynamic environment. Also, tubing assemblies often 

require the addition of internal pressure effects and static enforced displacements to the dynamic 

motion. In the Structural Engineering department of Airbus DS GmbH Friedrichshafen, we have 

applied static and dynamic superposition methodologies in several programmes. 

A first case of application is the tubing assembly of the MTG propulsion system which requires 

taking into account internal pressure effects and enforced displacement load cases (see Fig. 11). 

 

 

 
Fig. 11 MTG propulsion system and FEM of the tubing assembly 

 

 

The most recent application of static and dynamic load superposition within Airbus DS GmbH 

Friedrichshafen is for a Scan Mechanism (SCM) of the MetOp Second Generation programme 

(see Fig. 12). 
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Fig. 12 View of the MetOp Second Generation Scan Mechanism design and FE Model 

 

 

The methodology followed for the extraction of Von Mises stresses taking into account 

simultaneously static and dynamic load cases is depicted in Fig. 13. The exact methodology 

described in Eqs. (14) and (15) was applied. The result was the maximum Von Mises stress after 

static and dynamic superposition for all elements in the SCM FE model. This procedure, although 

expensive in matter of computation costs, provided exact Von Mises stress values and hence 

suppressed the risk of producing very conservative or non-conservative results due to 

simplifications. 

 

 

 
Fig. 13 MetOp SG SCM static and dynamic superposition process followed in Airbus DS GmbH 
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6. Future perspectives 
 

This paper focused only in harmonic environment. However, in many cases, static loads need to 

be applied in a random environment. Superposition methodologies for static and stochastic loads 

require a greater degree of study. 

In addition, this study has mainly referred to the calculation of Von Mises stresses and resultant 

forces. Nevertheless, there are many other situations where the impact of the phase of the 

responses and of methods for static and dynamic load superposition need to be studied and 

derived. Table 12 highlights some of these situations. 
 

 

Table 12 Overview of potential situations for static and dynamic superposition studies 

Analysis Case Context Application 

Stress Analysis Metallic 
Von Mises Stress 

Principal Stress 

 Composite 

Failure Indexes 

Wrinkling 

Dimpling 

Crimping 

Core rupture 

Joints Analysis Bolted Joints 

Shear failure 

Bearing failure 

Slippage 

 Inserts 
Tensile failure 

Shear-out failure 

Notching Forces Combined forces 

 Accelerations Combined accelerations 

 

 

7. Conclusions 
 

In this paper, methodologies for static and dynamic load superposition have been discussed in 

the framework of harmonic environment. Analytical and FE based examples have been provided 

for the calculation of Von Mises stress. The results of the comparison between exact and simplified 

methodologies show that simplified methodologies lead to very conservative and non-conservative 

results. Besides, it is difficult to know the degree of conservatism or non-conservatism without 

knowing the exact value beforehand.  

The importance of the phase of the responses in dynamic analysis has been discussed. It has 

been proven that ignoring the phase information in the calculation of Von Mises stresses leads to 

very conservative or non-conservative results. It has also been demonstrated that in the calculation 

of resultant forces, one always yields conservative results if the phase information is ignored.  

To conclude, in order to obtain accurate results in dynamic response combination, exact 

methodologies which take into account the phase of the responses should be used. In addition, for 

static and dynamic load superposition cases, it is essential to use an exact methodology since 

simplified methodologies may lead to very conservative or non-conservative results.  

There are many scenarios where dynamic load combination and static and dynamic load 

superposition may be necessary. Some of these potential scenarios have been identified in this 
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paper. It is important to keep in mind these scenarios and evaluate the risks/impact when using 

methods which ignore the phase of responses.  

For simplification, 2D force vectors and stress tensors have been used in this study. The 

superposition methodologies and the conclusions presented in this paper are also applicable in a 

3D environment. 
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