
 

 

 

 

 

 

 

Advances in Aircraft and Spacecraft Science, Vol. 5, No. 2 (2018) 187-204 

DOI: https://doi.org/10.12989/aas.2018.5.2.187                                              187 

Copyright © 2018 Techno-Press, Ltd.  
http://www.techno-press.org/?journal=aas&subpage=7        ISSN: 2287-528X (Print), 2287-5271 (Online) 
 
 
 

 

 
 
 

Sine sweep effect on specimen modal parameters 
characterization 

 

Nicolas Roy1, Maxime Violin2a and Etienne Cavro3b 
 

1Top Modal, 130 rue Galilée, 31670 Labège, France 
2Airbus Defence & Space, 31 rue des Cosmonautes, 31500 Toulouse, France  

3Intespace, 2 rond-point Pierre Guillaumat, 31029 Toulouse, France  

 
(Received November 21, 2016, Revised February 3, 2017, Accepted March 27, 2017) 

 
Abstract.  The sine sweep base excitation test campaign is a major milestone in the process of mechanical 
qualification of space structures. The objectives of these vibration tests are to qualify the specimen with 
respect to the dynamic environment induced by the launcher and to demonstrate that the spacecraft FE 
model is sufficiently well correlated with the test specimen.  

Dynamic qualification constraints lead to performing base excitation sine tests using a sine sweep over a 
prescribed frequency range such that at each frequency the response levels at all accelerometers, load cells 
and strain gages is the same as the steady state response. However, in practice steady state conditions are not 
always satisfied. If the sweep rate is too high the response levels will be affected by the presence of 
transients which in turn will have a direct effect on the estimation of modal parameters.  

A study funded by ESA and AIRBUS D&S was recently carried out in order to investigate the influence 
of sine sweep rates in actual test conditions. This paper presents the results of this study along with 
recommendations concerning the choice of methods. 
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1. Introduction 
 

When performing sine vibration tests with high sweep rates, the response will no longer be 

stationary (steady state) resulting in a modification of the response envelope due to transient 

behavior. This could have a direct effect on the identification of the underlying modal parameters. 

The effect of the sine sweep rate on modal parameters was first studied analytically using the 

single degree of freedom (SDOF) model (Hawkes 1964, Cronin 1968, Lollock 2002, Girard and 

Bugeat 2004, Lalanne 2009, Roy and Girard 2012). From these studies the perturbations in natural 

frequency, damping and amplitude (modal effective parameters) as a function of the sweep rate 

could be quantified. 

However, these simulations do not take into account other important factors related to sine 
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vibration tests such as the actual characteristics of the sine sweep excitation generated by the 

vibration control system and the influence of notching. In addition, the use of more representative 

models is also necessary to better assess the influence of modal coupling and possible 

nonlinearities on the swept responses. 

Therefore, a study was funded by ESA and AIRBUS D&S (Violin 2015) in order to investigate 

the influence of sine sweep rates in actual test conditions. The work was organized in three parts: 

Creation of representative sine sweep inputs including simulated and measured profiles using 

the test facilities at INTESPACE. Various sweep rates with and without notching were considered. 

• Evaluation of FRF estimation methods on simple models including narrow band and wide 

band techniques as well as the influence of nonlinearities. 

• Evaluation of the FRF estimation methods with industrial cases using FE simulation and test 

measurements. 

This paper presents the work performed in each part of the study along with the findings and 

recommendations concerning the use of estimations methods to obtain the most reliable modal 

parameters in the context of sine sweep testing. 

 

 

2. Sine sweep excitation 
 

2.1 Numerical simulation procedure 
 

A sine sweep excitation )(tu of unitary amplitude can be defined using Eq. (1) where )(tf  is 

the instantaneous frequency which depends on the specific sweep type defined below. 












=
t

dftu

0

)(2sin)(   (1) 

The three most common sweep types are linear, exponential and hyperbolic. The corresponding 

frequency functions )(tf  are plotted and defined in Fig. 1. 

 

 

 

Fig. 1 Sine Sweep Types 

 

 

The exponential sweep is often used for spacecraft vibration testing.  The exponential sweep 

188



 

 

 

 

 

 

Sine sweep effect on specimen modal parameters characterization 

rate is usually expressed through the parameter R given in oct/min and which indicates that after 

each minute the excitation frequency is multiplied by R2 . The value of R is obtained by the 

following expression. 

T

ff
R

60

)2ln(

)/ln( 12=  (2) 

When a SDOF system is excited by a sine sweep, the response amplitude envelope will deviate 

more or less from the steady state amplitude due to the effects of transients. This is illustrated in 

Fig. 2 for a mode having natural frequency 20 Hz and 1% damping ratio and a positive sweep rate 

of 4 oct/min. 

 

 

 

Fig. 2 Effect of Sine Sweep on SDOF Response 

 

 

We see that the shape and position of the resonant peak are altered as a function of the sweep 

rate and direction. Moreover, a beat pattern or "ringing" following the main peak occurs. This 

ringing is a result of the system responding at two frequencies of nearly the same value comprising 

the transient response at the natural frequency and the harmonic response at the swept excitation 

frequency. 

In general, a sine sweep will decrease the amplitude of the peak, shift the position of the peak 

(along the direction of the sweep), broaden the peak width and distort the shape of the peak. The 

higher the sweep rate, the more these effects are accentuated. 

The non-dimensional parameter   can be used to quantify the deviation of the sine sweep 

response from the steady state response. It is defined as follows where Q is the quality factor 

)2/(1   and N the number of cycles of excitation within the half-power points of the steady state 

response. 

NQ /=  (3) 

As   increases in value the sine sweep response deviates from the steady state response. The 

ratio of the swept amplitude to the steady state amplitude versus   obtained by Roy and Girard 

(2012) is plotted in Fig. 3. For small values of   ( 1.0 ) the swept response level is very close 

to steady state. 
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Fig. 3 Fraction of Steady State Amplitude 

 

 

For an exponential sweep, the value of   is defined as follows (Lalanne 2009). 

kf

RQ

60

)2ln(2

=  (4) 

Using Eq. (4) for the example of Fig. 2, we obtain 8.5  which confirms the strong 

deviation from steady state. 

Further examining Eq. (4) we notice that   is proportional to 2Q  and inversely proportional 

to the natural frequency kf . This means that for a given sweep rate, the low frequency modes 

with low damping will be more influenced by the sine sweep. 

It is interesting to note that the dependence on the natural frequency kf  in Eq. (4) can be 

eliminated by considering a hyperbolic sweep instead of an exponential sweep. The expression for 

  for a hyperbolic sweep is provided below. 
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ff
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
−

=
21

2 11

  
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The hyperbolic sweep will therefore produce the same deviation from steady state response at 

all frequencies for modes with a given damping. This could be a useful alternative to the 

exponential sweep especially when the first modes are close to the lower frequency limit f1. 

 

2.2 Sine sweep inputs 
 

Measured sine sweep inputs were obtained at INTESPACE using a 80 kN shaker in an 

unloaded configuration with a tri-axial accelerometer installed directly at the free interface. 

Two control systems were used-LMS and Spectral Dynamics. The characteristics of each 

system are summarized in Fig. 4. The Nicolet acquisition system was used because the Spectral 

Dynamics console was not able to acquire time histories. 

The following test parameters were considered: 

Sweep type: exponential from 5 to 100 Hz 

Sweep rate: 1, 2 and 4 octaves/min 
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 LMS Spectral Dynamics 

Piloting LMS Spectral Dynamics 

Acquisition LMS Nicolet (32 channels) 

Sampling frequency 12 800 Hz 10 000 Hz 
 

Fig. 4 Description of Control Systems 

 

 

Sweep direction: ascending and descending 

Sweep profile: constant (1 g) and notched 

The notched profile specification is shown in Fig. 5. 

 

 

 

Fig. 5 Notched Profile 

 

 

A total of 24 test runs were performed using various combinations of the control systems and 

test parameters. The tests are itemized below in Fig. 6. 

The measured sine sweep inputs are plotted in Fig. 7 for the test pair T9/T21. The other inputs 

show similar characteristics. Measurements from the LMS system appear to better reproduce the 

specified profile compared to the Spectral Dynamics inputs. 

We notice that the Spectral Dynamics measurements do not start at time zero. This is because 

the system needs a certain amount of time to reach the specified level and that the acquisition had 

to be triggered manually. 

Also, perturbations in the signal due to electrical interference were present in some of the 

Spectral Dynamics measurements. However, these perturbations concentrated at 50 Hz and its 

harmonics had little impact on subsequent analyses. 
 

 

3. FRF estimation methods 
  

3.1 Introduction 
   

Two types of methods were considered for estimating the FRF from sine sweep responses: 

1. Narrow Band (or Local) methods which determine the FRF at a given frequency (time) 

by considering only the portion of the measurements near the frequency (time) in question. 

2. Wide Band (or Global) methods which determine the FRF at all frequencies by  
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TEST Control system Profile 
Sweep rate 

(oct/min) 
Sweep direction 

T1 

LMS 

Constant 1 + 

T2 Constant 1 - 

T3 Constant 2 + 

T4 Constant 2 - 

T5 Constant 4 + 

T6 Constant 4 - 

T7 Notched 1 + 

T8 Notched 1 - 

T9 Notched 2 + 

T10 Notched 2 - 

T11 Notched 4 + 

T12 Notched 4 - 

T13 

 

SD 

Constant 1 + 

T14 Constant 1 - 

T15 Constant 2 + 

T16 Constant 2 - 

T17 Constant 4 + 

T18 Constant 4 - 

T19 Notched 1 + 

T20 Notched 1 - 

T21 Notched 2 + 

T22 Notched 2 - 

T23 Notched 4 + 

T24 Notched 4 - 
 

Fig. 6 Test Runs for Sine Sweep Inputs 

 

  
T9 (Notched, +2 oct/min) T21 (Notched, +2 oct/min) 

Fig. 7 Comparison of Sine Sweep Inputs 

 

 

considering the entire time history of measurements. 
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3.2 Narrow band methods 
 

Narrow band methods such as the Co-Quad analyzer, Tracking filter and Hilbert transform are 

simple to implement and in some cases can be performed in real-time during the vibration test. As 

illustrated in Fig. 8, the general idea behind these methods is to compare the response to the 

excitation near a given frequency f  in order to determine the amplitudes X and Y and phase shift 

 . This leads directly to the FRF expressed as ie
X

Y
fH =)( . In practice the measurements are 

filtered beforehand to remove unwanted harmonics. 

 

 

 

Fig. 8 Illustration of Narrow Band Methods 

 

 

The principal drawback with narrow band methods is that they all assume steady-state 

conditions for the response at each given frequency. As shown previously, this assumption is valid 

only for very slow sweep rates (i.e. small values of  ), and therefore narrow band methods will 

produce FRF with the same errors described in Section 2.1. 

 

3.3 Wide band methods 
 

Wide band methods do not rely on the steady-state assumption since the FRF are determined by 

means of the Fourier Transform applied to the entire excitation and response time histories. For 

short duration transients with zero starting and ending values, the FRF can be obtained using the 

Discrete Fourier Transform (DFT) or Fast Fourier Transform (FFT) of the excitation and response 

as shown below. 

)(

)(

))((

))((
)(






X

Y

txFT

tyFT
H ==  (6) 

However, sine sweep signals have relatively long durations with initial and final conditions 

which are not necessarily zero. In this case it is better to estimate the FRF from the spectral density 
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functions )(xxS , )(xyS  and )(yyS . This leads to the following expressions for the FRF 

estimators )(1 H  and )(2 H  and the coherence function )(2  . 
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To minimize the effect of noise, averaging of the spectra is performed before computing the 

FRF using Eq. (7). Two types of spectral averaging techniques can be employed: time averaging 

and frequency averaging. 

In this study we considered Welch's method for time averaging of spectra. This technique is 

often used with stationary random processes in order to minimize the statistical error (variance). 

However, in the context of sine sweep excitations, Welch's method can still be used to reduce noise 

as shown by Orlando, Peeters and Coppotelli (2008). Time averaging consists of decomposing the 

excitation and response time histories into overlapping segments as depicted in Fig. 9. Each time 

segment is weighted (convolved) with a window function (Hamming, Han, Welch, etc.) to 

minimize leakage. The spectra are then calculated for each weighted segment and then averaged 

together. 

 

 

 

Fig. 9 Time averaging using Window Segments 

 

 

Frequency averaging is performed by averaging groups of frequency points of the spectral 

density functions according to Otnes and Enochson (1978). The idea is to introduce a spectral 

density expressed over a reduced number of frequency values )(kS  where each frequency value 

represents the average value of the neighboring points of the initial spectrum. For example, if we 

wish to reduce the number of frequency points by a factor of 2N then the following averaging 

formula can be used. 
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This technique is illustrated in Fig. 10 for the case of N=2 (reduction by a factor of 4). 
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Fig. 10 Frequency Averaging of Spectral Density Functions 

 

 

3.4 Evaluation strategy 
 

FRF estimators using narrow band (local) and wide band (global) methods were considered. 

The work was carried out according to the steps shown below in Fig. 11 and is described hereafter. 

 

 

 

Fig. 11 Flowchart for Evaluation of FRF Estimators 

 

 

Measured sine sweep inputs (Section 2.2) as well as simulated excitations were considered. 

The time history responses were computed analytically using simple models via mode 

superposition techniques. Numerical integration was performed using recurrence formulas based 

on Duhamel's integral (Craig 1981) assuming a piecewise-linear excitation and a constant time 

step equal to the inverse of sampling frequency. All calculations were performed with MATLAB®. 

Two types of models were considered: 

1. DIRECT INPUT - the modal parameters (natural frequency, damping and effective 

transmissibilities) are defined directly for any number of modes. 

SPOT 6 - The modal parameters are obtained from a Craig-Bampton (condensed) model of the 

SPOT 6 S/C provided by Airbus D&S. The model comprises 22 modes from 0.25 to 36 Hz with 

modal damping in the range of 12.002.0  k  ( 254  kQ ). 

The FRF were computed using standard codes available at INTESPACE (DynaWorks® and 

LMS) and using wide band methods developed in MATLAB. 

The comparison of the FRF obtained from the different inputs, models and methods are 

presented hereafter. 

3.5 FRF using narrow band methods 
 

FRF computation using DynaWorks and LMS was performed for various sine sweeps and 

models. The algorithm used by DynaWorks is based on a narrow band (local) approach. The 

principal computational steps are described below. 

1. Computation of the frequency table. This function uses Prony analysis to determine the 

excitation frequencies from the input measurement. 
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2. Signal resampling. This function uses a cubic spline technique to resample the output 

measurements at the frequencies of the frequency table. 

3. Computation of the FRF. From the resampled input and output time histories, this 

function computes either the harmonic (fundamental) FRF by DFT filtering or the global FRF by 

time averaging. The harmonic FRF provide both amplitude and phase whereas the global FRF are 

amplitude only. 

Information concerning the algorithm used by LMS was not available. However the FRF 

obtained with LMS were consistent with a narrow band approach. 

As an example, the FRF shown in Fig. 12 were computed using the SDOF model with a mode 

at 20 Hz with 1% damping. The FRF computed using the LMS constant profile with a sweep rate 

of 1 oct/min are shown at left whereas the FRF using the LMS notched profile with a negative 

sweep rate of -2 oct/min are shown at right. The FRF obtained from DynaWorks and LMS are 

compared with the steady state response. 

 

 

 

Fig. 12 Comparison of FRF obtained from DynaWorks and LMS 

 

 

The shifts in frequency and decrease in amplitude are consistent with predictions based on 

narrow band methods. The deviation from the steady state response is more pronounced using the 

higher sweep rate of -2 oct/min. The FRF computed with LMS are somewhat noisy. This is 

because the pilot accelerometer was used for the reference signal instead of the DRIVE or COLA 

signals. 

 

3.6 FRF using wide band methods 
 

The first comparison was carried out using a SDOF model with a natural frequency of 26=kf  

Hz and a damping of 50=kQ . The natural frequency of 26 Hz was chosen such that the resonant 

peak is located in the slope of the notching profile. The following positive and negative sweep 

rates with and without notching were considered: 

+1 oct/min, without notching, simulated with MATLAB 

-2 oct/min, without notching, simulated with MATLAB 

+4 oct/min, notched, using LMS system 

-4 oct/min, notched, using Spectral Dynamics system 

No averaging techniques were used to compute the FRF. The FRF for the -4 oct/min sweep rate 

is shown in Fig. 13 alongside the corresponding response time history. The FRF for the other cases 
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are nearly identical and display very little noise even with no averaging. The error between the 

computed FRF and the theoretically FRF of the model is negligible. Therefore, for this 

comparison, the use of the wide band method preserves the modes of the model even when using 

high sweep rates with or without notching. 

 

 

 

Fig. 13 FRF using Wide Band Method on SDOF Model 

 

 

 

Fig. 14 FRF using Wide Band Method on Closely Spaced Modes 

 

 

In order to evaluate the effect of coupling between modes on the FRF, 2 models with 4 modes 

were considered with different modal densities: 

Model 1: widely spaced natural frequencies at 20, 40, 60 and 80 Hz 

Model 2: closely spaced natural frequencies at 20, 22, 24,and 26 Hz 

For both models a constant damping of 20=kQ  was used along with unit effective 

transmissibilities. No averaging techniques were used. The Spectral Dynamics notched sine sweep 

at -4 oct/min was used for the excitation. 

The results are presented below in Fig. 14. The theoretical FRF (red curve) are plotted on top of 

the calculated FRF (blue curve). The rms error between the two curves is shown at the top of the 

plots and is shown to be less than or equal to 1%. 
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FRF were computed using the SPOT 6 condensed model at the following response points: 

Node 11314 along the x-axis 

Node 4330003 along the x-axis 

A simulated sine sweep rate of -4 oct/min without notching was used as the excitation. Again 

no averaging was performed on the FRF. The response time histories and corresponding FRF are 

plotted in Fig. 15. Here again we see very little differences between the calculated and theoretical 

FRF (< 1% rms)-even near the anti-resonances. 

 

 

 

Fig. 15 FRF using Wide Band Method on SPOT 6 Condensed Model 

 

 

In the previous cases, averaging was not required when computing the FRF due to the absence 

of noise in the simulated responses. In the presence of noise, averaging techniques will smooth out 

the FRF, but will also perturb the shape of the FRF and therefore the associated modal terms. 

To evaluate the averaging techniques noise was added to the responses. The FRF were then 

recomputed using time domain and frequency domain averaging techniques. The following 

observations were formulated based on the results. 

When no averaging is performed, noise is present at all frequencies of the FRF, however the 

calculated FRF shows no visible biased error with respect to the theoretical FRF. 

Using Welch's method, the calculated FRF are smoother, however the averaging reduces the 

amplitude of the peak and therefore alters the modal properties, and in particular the damping and 

effective parameters. The degree to which the FRF and modal properties are modified depends on 

the choice of segments, window type and overlap. 

Using frequency averaging, the calculated FRF are smoother and appear to be less altered 

compared to Welch's method. 

 

3.7 Influence of nonlinearities 
 

The above FRF comparison was carried out using a linear model with mode superposition 

techniques. In reality, structures often exhibit nonlinear behavior to one degree or another. Sources 
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of nonlinearities are wide ranging and include boundary (contacts), geometry (large 

displacements) and material (plastic and viscoelastic) nonlinearities. 

The presence of nonlinearities can have a strong influence on the dynamic response of a 

structure including changes in resonance, occurrence of harmonics, instabilities and even chaotic 

behavior. It is therefore of interest to examine the influence of nonlinearities in the estimation of 

FRF. 

To do so, the SDOF model shown in Fig. 16 with a nonlinear restoring force 

xxkx )1()( 2 +=  was considered. Although this model is fairly simple and limited to a 

particular type of nonlinearity it does illustrate the various effects on the dynamic responses and 

FRF estimation methods. 

 

 

 

Fig. 16 Nonlinear SDOF Model 

 

 

The corresponding equation of motion known as the Duffing equation is shown below in Eq. 

(9). 

Fxxkxcxm =+++ )1( 2  (9) 

The effect of the nonlinear stiffness on the frequency response of the model is illustrated in Fig. 

17 for the case of a hardening spring )0(  . We see a significant change in the position, 

amplitude and shape of the resonance. 

Another major difference between the linear and nonlinear systems is that the latter are multi-

valued at certain frequencies. In the region between the two arrows there are three different 

response levels at a given excitation frequency. This is a consequence of the cubic nature of the 

stiffness. In the case of a sine sweep excitation this leads to a jump phenomenon or instability as 

the response amplitude changes (jumps) suddenly from one value to another for an incremental 

change in excitation frequency. 

In addition to the primary resonance, secondary resonances particular to the nonlinear model 

can appear. These resonances referred to as nonlinear resonances or harmonics occur at odd 

multiples of the excitation frequency. Fig. 18 shows the steady state behavior of the above 

nonlinear system (but with c = 0.02) excited at 3/13/0 == . The time history shows a higher 

harmonic “rider” on top of the forcing frequency which is about three times the excitation. In other 

words an excitation far from resonance appears to excite resonance. 
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Fig. 17 Frequency Response Behavior on Nonlinear Model 

 

 

Fig. 18 Response away from Resonance 

 

 

Fig. 19 Nonlinear Response (left) and FRF (right) 

 

 

The responses of the nonlinear SDOF model to a sine sweep excitation were computed using 

numerical integration. Several cases were investigated with different sweep rates and directions, 

damping and levels of nonlinearity. One case with significant nonlinear behavior is shown below 

in Fig. 19. The FRF shows significant rippling to the left of the peak and reproduces the jump to 

the right of the peak. The contribution of the harmonics appears to be spread over a higher 

frequency range with increased amplitude. 
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3.8 Conclusions on FRF methods 
 

Based on the above comparison of FRF using different sine sweep inputs, models and FRF 

extraction techniques the following conclusions and recommendations can be made. 

Narrow band (local) methods should not be used to estimate FRF from sine sweep tests unless 

the sweep rate is small enough to ensure steady-state behavior. 

Wide band (global) methods based on the Fourier Transform provide a reliable estimation of 

FRF and are insensitive to sweep rate and notching. 

Averaging methods (Welch and frequency averaging) can be used to reduce the influence of 

noise. However, averaging can modify the shape of the FRF peaks and the associated modal 

parameters. In many cases, frequency averaging seems to better preserve the shape of the FRF 

peaks compared to time averaging (Welch). 

In the presence nonlinearities, global methods can lead to significantly degraded FRF 

estimations due to the presence of instabilities and harmonics which can produce peaks that are not 

associated with modes. In this case the use of local methods may be more robust despite the 

limitations regarding steady state conditions. 

 

 

4. Industrial test cases 
  

4.1 Introduction 
 

The FEM of the SPOT6/ASTROTERRA spacecraft shown in Fig. 20 was used as an industrial 

test case for this study. The S/C is in sine test configuration (empty tanks, stowed solar arrays) and 

is clamped at the launcher/spacecraft interface. The Z axis is the longitudinal axis of the S/C. 

 

 

 

Fig. 20 SPOT6/ASTROTERRA FEM 

 

 

The first step was to compute reference FRF using MSC/NASTRAN with modes up to 400 Hz 

in order to be representative in the 5-100 Hz frequency range. Modal damping consistent with test 

predictions was used. A constant base acceleration of 1 m/s2 was imposed along the lateral Y-axis. 

A response point located on the avionic unit mounted on the PY panel was chosen since it 
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provided two modes below 50 Hz: a global S/C mode near 30 Hz and a local mode near 45 Hz. 

The next step was to compute transient responses in NASTRAN (SOL 112) using the sine 

sweep inputs presented in Section 2.2 with constant and notched profiles and various sweep rates 

up to ± 4 oct/min. 

Finally, the FRF were computed using DynaWorks (narrow band method) and wide band 

methods based on Fourier transform. The two main modes were identified using a SDOF method 

to evaluate the quality of the FRF. 

To complete the industrial application, an additional evaluation of the impact nonlinearities on 

wide and narrow band methods was performed using test data of a telecom S/C. 

 

4.2 FRF evaluation 
 

The FRF were computed with the narrow band method in DynaWorks for the different sine 

sweep inputs and compared to the reference (steady state) FRF. The results are shown in Fig. 21 

for the case of a high sweep rate (ascending and descending directions). 

 

 

 

Fig. 21 FRF using DynaWorks Method 

 

 

Concerning the two main modes, the frequency shift reaches 2% for a sweep rate of -4 oct/min. 

A 1 Hz shift exists between the ascending sweep of +4 oct/min and the descending sweep of -4 

oct/min. This variation can be a concern for the extraction of the modal parameters of S/C main 

modes found in the low frequency range. A decrease in amplitude occurs up to 20% for a sweep 

rate of +4 oct/min. As a consequence, the identified modal damping values are higher than the 

reference values. 

The FRF obtained using the wide band methods were nearly identical to the reference FRF for 

all sweep rates and profiles considered. This is consistent with the findings using the simple 

models. 

 

4.3 Impact of nonlinearities 
 

The above results do not take into account nonlinear behavior of the S/C such as presence of 

harmonics coming from a nonlinear joint stiffness. In order to evaluate the impact of nonlinearities 

on wide and narrow band methods, test data from an Airbus S&D telecom S/C was studied. 

Two runs of the test campaign were studied: a low-level constant 0.1g profile with a descending 

sweep of -2 oct/min between 5 and 150 Hz, and a qualification level notched profile with a 

descending sweep of -3 oct/min between 5 and 100 Hz. 
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The FRF were computed for sensors likely to show nonlinear effects using narrow band 

(DynaWorks) and wide band methods. For the low level run where nonlinear effects are weak, 

narrow and wide band methods produced similar FRF as shown in Fig. 22. However, for the 

qualification level run containing strong nonlinearities, the wide band method produces perturbed 

FRF around resonances. The narrow band method is less sensitive to these nonlinear phenomena. 

 

 

 

Fig. 22 FRF from Nonlinear Test Data 

 

 

5. Conclusions 
 

This comparative study of FRF extraction techniques on theoretical models and industrial cases 

leads to the following conclusions. 

Narrow band (local) methods available in Dynaworks or LMS are sensitive to the sine sweep 

rate and may alter the modal parameters identified from the FRF. 

Wide band (global) methods based on the Fourier Transform are insensitive to sweep rate and 

notching. 

In the case of a linear system, wide band methods provide a reliable estimation of the FRF but 

they may lead to disturbed FRF on sensors with strong nonlinear behavior. During future test 

campaigns, both wide-band and narrow band methods could be of use to estimate FRF. 

Nevertheless, current practice using narrow band methods should be sufficient to fulfill the 

objectives of industrial sine test campaigns. 

The use of the wide band methods could help to improve several post-processing tasks such as 

modal identification, FEM updating, and check of the integrity of the structure by comparing two 

low level test runs. 

The narrow band methods should be retained in order to deal with specific sensors with strong 

nonlinear effects. 

The development of a hybrid method based on the wide band method but not sensitive to 

nonlinearities could be considered for the future. 
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