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Abstract. A particular type of constant speed helical trajectory, with variable ascension rate, is proposed. 
Such trajectories are candidates of choice as motion primitives in automatic airplane trajectory planning; 
they can also be used by airplanes taking off or landing in limited space. The equations of motion for 
airplanes flying on such trajectories are exactly solvable. Their solution is presented, together with an 
analysis of the restrictions imposed on the geometrical parameters of the helical paths by the dynamical 
abilities of an airplane. The physical quantities taken into account are the airplane load factor, its lift 
coefficient, and the thrust its engines can produce. Formulas are provided for determining all the parameters 
of trajectories that would be flyable by a particular airplane, the final altitude reached, and the duration of the 
trajectory. It is shown how to construct speed interval tables, which would appreciably reduce the 
calculations to be done on board the airplane. Trajectories are characterized by their angle of inclination, 
their radius, and the rate of change of their inclination. Sample calculations are shown for the Cessna 182, a 
Silver Fox like unmanned aerial vehicle, and the F-16 Fighting Falcon.  
 
 

Keywords airplane helical trajectory; automatic trajectory planning; banked turn; airplane equation of 

motion; helical arc connection 

 
 
1. Introduction 
 

The work reported in this article is a contribution to the enterprise of endowing unmanned 

aerial vehicles (UAVs) with the ability to accomplish missions without human intervention. It is 

concerned in particular with providing airplanes with the means to re-plan their trajectory when 

unforeseen circumstances require them to modify their flight plan.  

An efficient approach to constructing trajectories was introduced by Frazzoli et al. (2005). It 

consists in concatenating elementary trajectory segments, called motion primitives, taken from a 

finite library. The most often used segments are rectilinear, circular and helical. The properties of 

these segments could have been determined beforehand, and stored in the memory of the airplane 

computing device. The main advantage of this approach lies in its minimizing of the calculations 

since then only the connection between the segments and a few adjustments to the motion 
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primitives have to be calculated. A somewhat similar, often used, approach consists in firstly 

building a skeleton trajectory from connected rectilinear segments, and secondly smoothing out 

the connections in order to keep the velocity continuous. Geometrically speaking, this smoothing 

can be easily done with splines. This approach is described in, among others, Judd (2001), Zheng 

et al. (2003), Nikolos et al. (2003) and Yang and Sukkarieh (2010). Smoothing with splines has the 

disadvantage of producing final trajectories that may deviate considerably from the initial stick 

trajectories. Furthermore, the splines are not easily analysed for their flyability by airplanes, and, 

to our knowledge, no such analysis has yet been performed.  Another popular path smoothing 

method uses arcs of circles. It is more manageable in terms of determining the flyability of the 

trajectory. This approach was described by Chandler et al. (2000), Jia and Vagners (2004), Chitsaz 

and LaValle (2007), Hwangbo et al. (2007), Li Xia et al. (2009), Ambrosino et al. (2009), Babaei 

and Mortazavi (2010), Hota and Ghose (2010). It was noted that in certain situations, in which the 

space is restrained, helical segments would also have to be used. Such segments have been 

included in the elementary trajectory set by Boukraa et al. (2006), Chitsaz and LaValle (2007), 

Narayan et al. (2008), Tsiotras et al. (2011) and Beard and McLain (2015). It is sometimes 

possible to connect the two successive rectilinear segments of the path with a single circular arc. 

However, most of the time the dynamics of the airplane does not allow for such a simple 

connection, and the two rectilinear segments have to be connected with three or more circular arcs 

as mentioned in Roberge et al. (2012). 

In the present article, we propose a new type of motion primitive that consists in a constant 

speed helical trajectory with varying ascension angle. It could be used advantageously to replace 

the above mentioned smoothing arcs in that the calculations required are much simpler. It can 

directly link two trajectory segments of any type, with different inclinations and directions, while 

keeping the velocity continuous.  Fig. 1 shows an example of such a helical trajectory. In this 

example, the airplane arrives from below, on a rectilinear segment, inclined at an angle of 100. At 

one point, it starts flying on the helical trajectory, on which it ascends until it reaches the desired 

inclination angle of 250, direction and altitude. At this point, it leaves the helical trajectory to 

pursue its course on a rectilinear segment, in a different direction. A similar helical segment can, of 

course, be used for descending instead of ascending trajectories. In the following analysis, we 

consider separately ascending and descending trajectories. Trajectories in which the inclination 

angle changes sign would then simply be considered as a concatenation of two such trajectories, 

connected in a continuous fashion, with a continuous tangent. Note that circles can be considered 

as helix with an angle of ascension of 00, and straight lines, when R→∞. 

Helical trajectories are also interesting by themselves. Crawford and Bowles (1975) pointed out 

the advantages of such trajectories, for airplanes taking off or landing in a densely populated area 

with respect to safety and noise reduction. Tsiotras et al. (2011) and Dai and Cochran (2009) also 

discussed helical trajectories as time optimal climbing and landing trajectories.   

In most studies on trajectory planning, the airplane is modeled as a Dubins (1957) vehicle that 

flies at constant speed, and that has a bounded ascension rate and turning radius. Relatively few 

studies use more sophisticated models that include to various degrees, more realistic airplane 

dynamics. In the present study, we have considered the realistic airplane dynamics model 

described in Anderson (2000).  

The flyability of inclined rectilinear trajectories, circular segments, and helical trajectories with 

constant ascension angle has been analyzed in Labonté (2012, 2015, 2016, 2017). Formulas for the 

amount of fuel, required for the longer segments of trajectory, were provided in these studies. 

Helical trajectories are rarely discussed in airplane dynamics manual; a few make some remarks  
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Constant speed, variable ascension rate, helical trajectories for airplanes 

 

Fig. 1 Connection of two rectilinear segments of velocities V1 and V2 with a helical trajectory of varying 

ascension angle 
 

 

about bank turns accompanied with vertical motion, such as in Section 15 of Colwley and Levy 

(1920), in Section 10.4 of Etkin (1972), in Section 8.2 of Mair and Birdsall (1992) and in Chapter 

3 of Phillips (2004). In all these discussions of helical trajectories, the speed as well as the vertical 

component of the velocity are considered constant. Furthermore, all these authors, except for 

Colwley and Levy (1920), consider small elevation angles θ with respect to the horizontal, so that 

sin(θ)  θ and cos(θ)  1.  Goman et al. (2008) distinguish themselves by considering realistic 

equations of motion for an airplane on a constant speed, constant ascension rate, helical trajectory, 

which includes the rotational as well as the translational dynamics of the airplane. They examined 

the airplane limitations and showed how to obtain attainable equilibrium states. Since most UAVs 

and fighter airplanes can fly steep trajectories, for which the small ascension angle approximation 

is not justified, arbitrary ascension angles are considered in the present study. 

 

1.1 Assumptions about the airplane dynamics  
 

Cowley and Levy, in Section 15 of their book (1920) point out that a rigorous treatment of 

curved trajectories is extremely complicated because of the imperfectly known influences of the 

variations in aerodynamic forces along the wings, due to their non-symmetric role in the motion. 

They then mention that “any increase of drag due to the angular velocity of the aircraft and the 

deflections of the control surfaces can be neglected in comparison with the dominant lift-

dependent drag”. Von Mises in Chapter XVIII of his book (1945) confirms this statement by 

performing some calculations; he further makes the comment concerning bank turns: “the 

moments required for maintaining the steady rotation are unimportant under normal conditions”. 

Mair and Birdsall in Chapter 8 of their book (1992) make the same comment. In the present work, 

we therefore also assume that, on the trajectories considered, the motion of rotation of the airplane 

about its center of mass does not affect appreciably the motion of its center of mass. Because the 

helical trajectories studied here are destined to serve as connections between other segments of 
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trajectory, we consider that they will not last very long, and thus, the change in mass due to fuel 

consumption can be neglected. This assumption is corroborated by the calculations done in 

Labonté (2017), of the amount of fuel required to fly on constant inclination helical trajectories 

that extend all the way from sea level to the service ceiling of the airplanes. As stated in this 

article, “The change in weight over the longest possible (helical) trajectory is rather small. For 

descending flight, in particular, it is always below 2.5% of the total amount of fuel. For ascending 

flights, it reaches up to 8.5% for the Cessna 182, 6% for the Silver Fox and 2% for the Hercules”. 

Therefore, we can very accurately approximate the amount of fuel used by that used on a constant 

ascension rate helical trajectory of the same length. The amount of fuel used will be particularly 

small when the helical trajectory is used for connecting two other segments of trajectory. We have 

also neglected the perturbations of the atmosphere. 

Finally, we reiterate the remark made in Chapter 3 on “Aircraft Performance” of Phillips 

(2004), to the effect that the material we present “should be thought of as only a preliminary study 

of airplane performance. In such a study, the emphasis is placed on obtaining closed-form analytic 

solutions suitable for preliminary design”. 

 

1.2 Organisation of the article 
 

The first section presents the geometrical description of constant speed helical curves with 

varying ascension rate. The position, velocity, acceleration and radius of curvature are written in 

terms of Frenet-Serret coordinates. The equation of motion is then presented, and decomposed 

along the Frenet-Serret axes. Formulas are given for the bank angle, the load factor, the lift 

coefficient and for the thrust and power required for the motion on such trajectories. The 

constraints imposed by the limitations of these airplane parameters are derived. A condition, called 

“continuability condition” is stated that guarantees that the helical trajectory segment considered 

can be connected to rectilinear segments or can be continued as helical trajectories with constant 

ascension rate.  

Non-descending trajectories and non-ascending trajectories are examined in turn. The possible 

ranges of speed, radius of the helix and ascension rate are derived from the dynamical constraints. 

Examples of tables of speed intervals for which trajectories are possible at specified angles of 

inclination are constructed, firstly for non-descending trajectories and then for non-ascending 

trajectories. This is done for airplanes that have similar properties as the following well known 

three different airplanes, the required characteristics of which are listed in Appendix A: 

• the Cessna 182 Skylane, with a constant speed propeller, 

• a Silver Fox like unmanned aerial vehicle (UAV) with a fixed pitch propeller, 

• the F-16 Fighting Falcon which is a jet propulsed airplane. 

 

 

2. Description of constant speed, variable ascension rate helical trajectories 
 

Let us consider an airplane that flies on a vertical axis helical trajectory at the constant speed 

V, with variable vertical component and variable rotational speed. We select the coordinate 

system such that the helix is centered on the z-axis, and passes through the point [R, 0, 0] at t = 0, 

with an angle of inclination of q0 with respect to a horizontal plane. The position of the center of 

mass of the airplane is then described by 
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Constant speed, variable ascension rate, helical trajectories for airplanes 

 

Fig. 2 Ascending helical trajectory with increasing ascension rate, showing coordinates f, R, z and the 

Frenet-Serret unit vectors τ, B, N 
 

 

 zRRt ),sin(),cos()( =x , (1) 

in which R is the constant radius of the cylinder on which the trajectory unfolds. The angle of 

rotation about the cylinder axis Ф and the altitude z are both time dependent. ε = +1 if the 

trajectory turns about the z-axis in the counterclockwise direction and ε = -1 if it turns in the 

counterclockwise direction. For simplicity, we shall hereafter consider e to be +1; the formulas for 

ε = -1 would be derived in the same manner. Fig. 2 shows such a trajectory with ε = +1, and z' > 0. 

The velocity is 

 zvRRt ),cos('),sin(')( −=v , (2) 

and the constant speed V∞ is, 

22

zvvV +=    with  ' Rv =  and 'zvz =  

If θ is the angle of ascension of the helix, measured from an horizontal plane, then 

2/0   and  

)cos( =Vv   and )sin(=Vvz
 

θ is positive when the airplane is ascending and negative when it is descending. The Frenet-

Serret frame of reference {τ, N, B} is particularly useful in the description of such trajectories.  

Fig. 2 shows the three-unit vectors τ, N and B. τ is the unit tangent vector that is in the direction of 

the velocity 

 )sin(),cos()cos(),sin()cos( −= . 
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If s denotes the distance traveled on the helix, = V
dt

ds
, and the arc length Δs, that is the 

distance traveled between times ts and tf is simply Δs = V∞ (tf - ts). The unit normal vector N is 

defined such that 

N=
ds

d
 

in which K is the curvature; Rc = 1/K being the radius of curvature. Thus 

2/1
2

22
)(cos'

















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
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






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
 (3) 

And    0),sin(),cos(
)(cos

)cos(),cos()sin(),sin()sin(
'

2







RV 
−−


=



N . 

The acceleration of the airplane on this trajectory is 

a(t) = v'(t) = 
cR

V 2


N(t). (4) 

The unit binormal vector B, which is defined as T N, is 

   )cos(),cos()sin(),sin()sin(
)(cos

0),sin(),cos(
'

2







−


+


=
 RV

B . 

Note that if the trajectory turned in the clockwise direction with respect to the z-axis, B would 

be pointing downward. 

 

 

3. The forces at play 
 

The physical forces at play are  

• the lift L,  

• the gravitational force W = - W k, with k = [0, 0, 1],  

• the longitudinal force that is composed of the thrust produced by the propulsion system T, and 

the drag D; its value being )DT( − .  

The lift L is perpendicular to the velocity of the airplane and the airplane bank angle b, is 

measured with respect to the binormal of the trajectory. Thus, as shown in Fig. 3, L can be written 

as 

L = L cos(b) B(t) + L sin(b)N(t). 

The Newton equation of motion for the airplane center of mass is 

)( DT
g

W
−++= WLa . (5) 

78



 

 

 

 

 

 

Constant speed, variable ascension rate, helical trajectories for airplanes 

 

Fig. 3 The angle of bank in relation to the unit vectors N and B 
 

 

The N, B and τ components of this equation are respectively  

WAL c=)sin(   with 









+


=





Vg

V
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)cos('
2


 (6) 

WBL c=)cos(  with 
R

B c 
=

)(cos 3 
,  (7) 

)sin(WDT += . (8) 

 

 

4. A new type of varying ascension rate trajectory  
 

Among the infinite possible ways of varying the vertical velocity on a helical trajectory, there 

are very few for which the equation of motion is exactly solvable. We present one that we found 

particularly interesting, in that it allows to manage rather easily the flyability conditions for an 

airplane on that trajectory. For these, the angle of inclination θ varies as  

)cos('  k=  where 


=
V

k


 and λ is a constant. (9) 

l and k have the sign of the rate of change of the angle of ascension θ. Eq. (9) is easily 

integrated to yield 

22

22

)sin(
Ce

Ce
k

k

+

−
=





  with t = (t - t0) and   
)sin(1

)cos(

0

0





+
=C , (10) 

where t0 is some initial instant of time, and θ0 the value of θ at this instant. Note that C is always 

positive. Eq. (10) implies 
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Fig. 4 Graph of h(t), with h0 = 0, k = 1 and C = 9 
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On this trajectory, the ascension angle θf is reached at the instant of time tf 
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4.1 Altitude 

 

The altitude varies according to the equation 

)sin(Vv
dt

dh
z == . (13) 

Upon integrating this equation, one obtains 

 )]cos(ln)cos(ln 0

2

0 


−+= V
hh . (14) 

We remark that the variation of h with time is almost linear, as can be seen in Fig. 4, in which 

h0 = 0, k = 1, and C = 9. 

 

4.2 Angle of rotation φ 
 

The tangential speed is )cos(V'Rv ==  . Eq. (9) implies that 

''
2





R

V= . (15) 
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The helix is considered to be traveled in a single rotating direction; thus Ф' keeps the same sign 

on the trajectory. Since λ is a constant, θ' must also keep the same sign on the whole trajectory. Eq. 

(15) is readily integrated to yield 

 0

2

0 


 −+= 

R

V
   t. (16) 

where f0 is the angular coordinate at t = t0.  

 

4.3 Curvature 
 

Eq. (3) for the curvature yields 
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2

2

4

2
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5. Bank angle 
 

Upon dividing Eq. (6) by Eq. (7), the following equation is obtained for the bank angle 

tan(β) =
c

c

B

A
. (18) 

The bank angle varies on the trajectory, and from Eq. (18), there follows 

22
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A straightforward calculation shows that 
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where g
~

+= .  

 

 

6. Load factor 
 

According to Eq. (2), the load factor is  

22

cc BA
W

L
n +== .  (21) 

In order to ensure the integrity of the airplane structure, its value has to be limited such that 

n ≤ nmax, 
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Upon using Eq. (20), this bound on n can be expressed as 

2

max~




V

ng
. (22) 

Upon squaring each side of this inequality, one obtains 

2
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   θ. (23) 

This inequality holds for all values of θ if and only if it holds when its left-hand-side (LHS) is 

maximum, which occurs when cos(θ) is maximum. We denote by the index “m” the smallest value 

of a variable and by the index “M” its largest value. Thus “cosm” and “cosM” represent respectively 

the smallest and the largest value that cos(θ)on the trajectory, and “sinm” and “sinM” the smallest 

and the largest value that sin(θ). (23) can then be written as 
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7. Lift coefficient 
 

Upon replacing L by its expression in Eq. (6), the following expression for the lift coefficient 

CL can be derived 

Sg

W
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W
C ccL
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22 22
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CL must satisfy the constraint CL ≤ CLmax, thus 
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Upon squaring each side of this inequality, there results 
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This inequality holds for all values of θ if and only if it holds when cos(θ) is maximum. Thus 
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(23) and (28) have the same LHS; they will therefore hold if and only if their LHS is smaller or 

equal to the smallest of their two right-hand-sides (RHS). This can be written as a single inequality 
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Fig. 5 Graph of )( V  

 

 

)cos,(
cos

~
2

2

2

4

2

M
M V

RV




+ 


,  (29) 

with 














=









c

M

c

M

M

VVif
V

ng

VVif

V

cos

cos
)cos,(

2

max



  with  


maxng
Vc = . (30) 

Fig. 5 shows how Γ varies with V∞, for a Cessna 182, with cosM = 1. 

 

 

8. Thrust and power required 
 

There are two constraints related to the thrust of the airplane; the first one is that it should be 

large enough for the airplane to be able to follow the trajectory. The second one is that it should be 

non-negative since a negative thrust corresponds to a deceleration of the airplane, while its speed 

should be constant. Upon substituting the value of the drag D and expanding the lift coefficient, 

according to Eqs. (25) and (20), the expression for the thrust required, given in Eq. (4), becomes 
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(a) Ascending trajectory with θ from 00 to 150 (b) Descending trajectory with θ from 00 to -150 

Fig. 6 Power required PR (solid line) and the maximum power available PAmax (dotted line), for the Cessna 

182 on an ascending trajectory in (a) and a descending trajectories in (b) 

 

 

The power required for the motion is
RR TVP = . The thrust is bounded above by the maximum 

amount that the airplane propulsion system can provide. For propeller airplanes, this bound is 

expressed in terms of the maximum power available PAmax as 

PR ≤ PAmax(V∞). (33) 

The dependence of PAmax on the speed is explained in Appendix A. For jet airplanes, the upper 

boundedness of the thrust is expressed as 

TR ≤ TAmax, (34) 

in which TAmax is the maximum thrust available, which can be considered as essentially 

independent of the speed. Fig. 6(a) shows how the power required PR and the power available 

PAmax vary with time, as the Cessna 182, ascends on a helical trajectory with inclination that varies 

from 00 to 150, R = 150 m, V∞ = 35 m/s, λ = 0.5 m/s2. Note that the curves are similar when the 

trajectory descends while the inclination increases. Fig. 6(b) shows the same variables on a 

trajectory with inclination that varies from 00 to -150, R = 70 m, V∞ = 45 m/s, λ = - 0.5 m/s2. Again, 

the curves are similar when the trajectory ascends but the inclination angle decreases. 

 

 

9. Continuability condition 
 

Since l is a constant, one can see from Eqs. (10) and (11) that, as time goes to infinity, the 

ascension angle θ increases all the way to p/2 or decreases to -π/2. However, for most airplanes, 

there is a limit imposed on the magnitude of θ by their dynamical abilities; the helical trajectory 

can then last only for a limited interval of time. Even if an airplane could fly vertically, as a jet 

fighter such as the F-16, the trajectory will necessarily also be bounded between the ground and its 

service ceiling. Thus, in all cases, the helical trajectory can only last for a finite time, and at its 

end, the airplane must be able to continue its course on a different flyable trajectory. In order to 
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ensure this, we impose a boundary condition that we call “continuability condition”. It requires 

that, at the end of the helical trajectory, the airplane should be in a state that allows it to keep on 

flying stably on another trajectory segment. We ask similarly that it arrives on the inclination 

varying helical trajectory in a state that corresponds to it flying on a stable trajectory segment. In 

practice, this means that all the constraints that are imposed on the inclination varying helical 

trajectory should also be satisfied at the initial and final angles θ0 and θf with l set equal to 0. This 

is necessary and sufficient for the airplane to continue its course on a constant inclination helical, 

or a rectilinear or circular segments, which are, respectively, helixes with R→∞ and θ = 0. This 

condition is required when concatenating motion primitives in trajectory planning and, it should be 

general enough since any flyable trajectory should behave locally as one of these trajectories. For 

example, this condition would require that (29) hold with λ = 0 and cos(θ) = cosM and cosm; for 

which it is actually sufficient to have 

4

2
2

2

2

)cos,(
cos



 −
V

g
V

R
M

M  .  (35) 

Note that the requirement that the RHS of (35) be positive, implies 

1LBVV 
  


M

LB

g
V

cos
1 = , (36) 

a lower bound on V∞ that is actually valid for both ascending and non-ascending trajectories. 

 

 

10. Non-descending trajectories 
 

In non-descending trajectories, all the terms in TR are non-negative and therefore TR is always 

non-negative. The inequalities (29) and (33) or (34) still have to be satisfied. Upon substituting the 

expression for TR, from Eq. (31), into (33), the latter inequality can be written in a similar form as 

(29), namely 
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

 (37) 

with  
 

)1(

)(
),(
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2

s
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g
sVF

−

−


= 



    and   








−= 







2

0

max )(
)( VC

V

VP
VU D

A , 

in which s = sin(θ). For jet airplanes, the same inequality holds with 
 VVPA /)(max

 replaced by 

TAmax. It should be noted that, in both (29) and (37),
~

 and R appear solely as two separate terms 

on the LHS of the inequality.  Clearly if
~

is increased, 1/R must be decreased and reciprocally; 

this feature provides some freedom in determining the values of these parameters. The 

continuability condition requires that (29) and (37) hold with g=
~

, i.e., λ = 0, at θ = θ m and θ M.  

We shall illustrate the analysis procedure by determining a trajectory for a Cessna 182, which 

starts at the altitude h0 = 0 m, with θ 0 = 0, Ф0 =0 and terminates with the ascension angle θf = π/9.  
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(a) 42)sin,( −

 − VgVF m
 (b) 42)sin,( −

 − VgVF M
 

Fig. 7 Graph of 42),( −

 − VgsVF  as a function of V∞, in (a): when s = sinm and in (b) when s = sinM 

 

 

10.1 Constraints on V∞ 
 

For the sample trajectory Eq. (36) yields VLB 1 = 20.2 m/s. Since the LHS of (37) is always 

positive, it is necessary that 0)( − WsVU   s  [sinm, sinM]. This will be the case if and only 

if it holds with sin(θ) is at its maximum value, which is sinM. Thus, this inequality holds if and 

only if 0sin)( − MWVU . However, the continuability condition requires even more in that it 

requires that (37) hold with 
22~

g= , when s = sinm and s = sinM. Thus ),( sVF 
must be larger 

than
4

2

V

g
at these values of s. Fig. 7 shows how these quantities vary with V∞, for the present 

sample trajectory. It can be determined that their positivity require that V∞ ≤ VUB, which for the 

present sample trajectory is 26.9 m/s. The interval of allowed speeds is (VLB, VUB); for our sample 

trajectory this is (20.3, 26.9) m/s; and therefore, we can select the speed V∞ = 23 m/s for the 

trajectory being constructed as example. 
 

10.2 Constraints on 2~
  

 

(29) and (37) respectively require that 

2

1

2 ~~
UB   with  )cos,(

~ 242

1 MUB VV =  .  (38) 

and   

2

2

2 ~~
UB   with  ),(

~ 42

2 cUB sVFV = , (39) 

in which sc is the value of s at which F(V∞, s) is minimum. We note that, if these inequalities hold, 

it will always be possible to select values of R large enough for (29) and (37) to be satisfied. For 

the current example 
2

1

~
UB =162.6 m/s2. The minimum value of F occurs either at one of the end 
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points of its s-domain, which are sinm and sinM, or at a critical point, at which its derivative is null. 

Its derivative is 

22

1

2

2

)1(

),(),(

s

sVF

V

g

s

sVF

−
=



 



   with  WUsWssVF −+−= 2),( 2

1 . (40) 

The critical points are then the zeros of F1. As a function of s, F1 corresponds to a downward 

concave parabola, with determinant ΔF = 4(U2-W2). Its maximum is at s = U/W, which, according 

to the discussion at the beginning of Section 10.1, is larger than sinM. Therefore, if ΔF ≤ 0, F1 is 

always negative in the interval  Mm sin,sin , thus F is a monotonically decreasing function of s in 

this domain, and its minimum value is at sc = sinM. If ΔF > 0, only the smallest root of F1, s-, can be 

in the domain of s; if this is the case, then F is minimum at sc = s-. The lower bound of 2~
 is then 

)
~

,
~

(
~ 2

2

2

1

2

UBUBUB Min  = . (41) 

For the current example 7.119
~2

2 =UB m/s2, and this is also the value of 
2~
UB . We then select λ 

= 0.5 m/s2 for our example trajectory. 

 

10.3 Constraints on R 
 

Again, (29) and (37) respectively require that 
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and 
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and in which sd is the value of s at which ),,
~

( sVH   is minimum. In the present example, RLB1 

= 70.3 m. The minimum of H is either one of the end points sinm and sinM, or a critical point, at 

which its derivative with respect to s is null. This derivative is 
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(a) λ = 0.5 m/s2 (b) λ = 0.1 m/s2 

Fig. 8 Two helical trajectory for the Cessna 182, with radius R = 150m, and speed 23 m/s. that starts with θ0 

= 00 and terminates with θf = 200 

 

 

If 0
~
= , H1 is a quadratic function of s that corresponds to a concave downward parabola. Its 

minimum value is therefore either at s = sinm or sinM. If 0
~
 , H1 is a cubic function of s. If it 

has no real roots in the interval [sinm, sinM], then the minimum value of ),,
~

( sVH   is either at 

sd = sinm or sinM. If it has real roots in that range, then the minimum of ),,
~

( sVH   can occur at 

one of these real roots or at sinm or sinM.  In the current example, the only positive real root of H1 

is at s = 14.38, which is not in the interval [sinm, sinM] and the minimum of H is at s = sinM, with 

RLB2 = 134.8 m. The continuability condition requires that (43) hold with s = sinm and s = sinM, 

however, this is already guaranteed to be true since H is minimum at s = sd. The lower bound on R 

is RLB = Max{RLB1, Rlb2}, so, in the present example, RLB = 134.8 m. We select R = 150 m. The 

resulting trajectory is shown in Fig. 8(a); it last for 16.4 s and, starting at the altitude h0 = 0 m, it 

terminates at the altitude hf = 65.8 m. Fig. 8(b) shows another trajectory with λ = 0.1 m/s2, with the 

same speed and radius. It lasts for 40.3 s and terminates at hf = 81.0 m. 

 

 

11. Non-ascending trajectories 
 

Whereas the expression for the thrust required is necessarily non-negative in non-descending 

trajectories, when the airplane is descending, sin(θ) is negative and conditions have to be imposed 

on the trajectory parameters in order for TR to remain non-negative. Upon using the expression for 

TR given in Eq. (31), the condition TR ≥ 0 becomes 
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Obviously, if   02

0 + VCWs D , then (47) is satisfied without any additional requirement on 

the trajectory parameters. We shall then examine more in details the situation in which this is not 

the case, and write the two conditions that TR must satisfy as 




V

VP
T A

R

)(
0 max

. (48) 
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If the airplane were a jet instead of a propeller airplane, the RHS of (48) would be replaced by 

TAmax. The two (48) can be written in the form 
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
, (49) 

The analysis of (49) is made easier by the fact that both of its sides are monotonically 

decreasing functions of s. Indeed, the derivative of G is 

 WsVCWs
sV

g

s

sVG
D ++

−
−=
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 2
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2

222

2

2
)1(

),(
. 

The term in bracket in the numerator of the RHS is a quadratic polynomial in s; its determinant 

is  222

0 )(4 WVCD − , which is always negative because   02

0 + VCWs D . This polynomial 

then has no real roots and is always positive; thus, the derivative of G is negative  s and G is 

monotonically decreasing. The derivative of F is given in Eq. (40), and is clearly negative when s 

≤ 0. Similarly, the derivative of 
2

2 )1(

R

s−
−  is negative for negative values of s. Thus, the two 

sides of (49) are monotonically decreasing functions of s. This fact implies that the LHS of this 

inequality holds if and only if it holds at s = sinm and its RHS holds if and only if it holds at s = 

sinM. The following two inequalities then need to be satisfied 
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We shall illustrate the trajectory construction process with an example trajectory that starts at θ0 

= 00 and terminates at θf = -150. 

 

11.1 Conditions on V∞  
 

Upon comparing (29) and (51), with (50), one can see that it is necessary to have enough space 

between the RHS of (29) and (51) and the LHS of (50) to insert 
2

2

4

2 cos
~

RV

m+



and

2

2

4

2 cos
~

RV

M+
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

between them. This will always be possible whenever 

0)sin,()cos,(2 −  mM VGV  (52) 

and    

0)sin,()sin,( −  mM VGVF , (53) 

because l and R can always be adjusted appropriately. (52) determines the value of the 

89



 

 

 

 

 

 

Gilles Labonté 

 

 

(a) LHS of (52) (b) LHS of (53) 

Fig. 9 Determination of the bounds VLB2 and VUB2 for the Cessna 182 on a trajectory with θM = 00 and θm =  

-150 

 

 

lower bound VLB2, which for our sample trajectory is 30.3 m/s, and possibly of an upper bound 

VUB1, which is undefined for the present sample trajectory. Fig. 9(a) shows how the LHS of (52) 

varies with V∞. (53) determines the value of the upper bound VUB2, which for our sample trajectory 

is 58.8 m/s. Fig. 9(b) shows how the LHS of (53) varies with V∞. The continuability condition is 

satisfied for (29) whenever V∞ ≥ VLB1. It requires that (50) and (51) be satisfied with 2~
 replaced 

by g2. The first inequality will result in a constraint on the value of R and the second in the 

following inequality 

 
4
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2

)sin,(
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0


 −
V

g
VF

R
M

M . (54) 

(54) determines VUB3, which for our sample trajectory is 77.1 m/s. The LHS of (54) behaves 

very much as shown in Fig. 9(b). The interval of possible speeds is then (VLB, VUB), with VLB = 

Max(VLB1, VLB2) and VUB = Min((VUB1, VUB2, VUB3). For our sample trajectory this interval is (30.3, 

58.8) m/s. 

 

11.2 Conditions on R 
 

The continuability condition applied to (29) and (51) implies that 

R ≥ RLB1 with 
2

422

2

1 cos

)cos,(1

M

M

LB

VgV
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−
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. (55) 

and  

R ≥ RLB2 with 
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Note that, when 
22~

g the bounds on R should be strictly R > RLB1 and R > RLB2. Upon 

comparing (50) and (51), with 2~
 replaced by g2, when cosM ≠ cosm, there results the inequality 

  3LBRR   with 
222

3 coscos

)sin,()sin,(1

mM
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R −

−
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, (57) 

The continuability condition for (50), yields the following condition on R 
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
. (58) 

If the LHS of (58) is non-positive, this inequality is satisfied, but if it is positive, it imposes the 

following constraint on R 

R ≤ RUB  with  
42

2

2

)sin,(

cos
−

 −
=

VgVG
R

m

m

UB . (59) 

The bounds on R are then RLB = Max(RLB1, RLB2, RLB3) and RUB. For the Cessna 182, with the 

speed V∞ = 45 m/s, RLB = 66.5 m and RUB = 72.6 m. We shall select R = 70 m/s for our sample 

trajectory. 

 

11.3 Conditions on λ 
 

We shall treat separately the two cases in which 
22~

g and 
22~

g . 

22~
gCase   

In this case, (35) implies that (29) is satisfied and (51), with g2 instead of
2~

 , implies that (51) 

is satisfied. There then remains only to ensure that (50) holds, that is 

224
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)sin,( gV
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




−   . (60) 

If the LHS of (60) is non-positive, then this inequality holds for all values of λ such that 
22~

g .  If it is positive, then the LHS of (60) is a lower bound 
2~
LB  on

2~
 , and (60) becomes 

222 ~~
gLB   . For the sample trajectory considered, the LHS of (60) is positive, and 

55.40
~2 =LB m2/s4. We can then select λ = -0.5 m/s2. Fig. 10(a) shows the trajectory that 

corresponds to the selected values of the parameters. This trajectory starts at the altitude h0 = 500 

m, finishes at hf = 359.6 m, and lasts 23.8 s. When λ = -1.5 m/s2 is selected, the trajectory ends at 

hf = 453.2 m and lasts 7.9 s. Fig. 10(b) shows this trajectory. 
22~

gCase   

 (29) and (51) can be written as 
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(a) With λ = -0.5 m/s2 (b) With λ = -1.5 m/s2 

Fig. 10 Two descending trajectories for the Cessna 182, which start at q0 = and end at qf = -150, with V∞ = 45 

m/s, R= 70 m, and two different rates of inclination change 
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Since the LHS of (61) and (62) are larger than those of (35) and (54), it is necessary to require 

that R be strictly larger than the two bounds RLB1 and RLB2. This requirement ensures that there 

will be a gap between 
2

2cos

R

M and the RHS of (61) and (62). It will then always be possible to 

select )
~

( 22 g− small enough that adding the term 
4

22~



−

V

g
to 

2

2cos

R

M will yield a value smaller 

than the RHS of (61) and (62). We note that, since in the present case,
22~

g , 50) will always be 

satisfied if it is satisfied with 2~
  replaced by g2, i.e., when in Eq. (58) is satisfied. (61) and (62) 

can be written as 
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Thus, λ must be selected such that 
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(a) With λ = 0.5 m/s2 (b) With λ = 1.5 m/s2 

Fig. 11 Two descending trajectories for the Cessna 182, which start at q0 = -150 and terminate at qf=0, with 

V∞ = 45 m/s, R= 70, and two different inclination change rates 

 

 

For the sample trajectory with q0 = -150, qf = 00, R = 70 m, and V∞ = 45 m/s, 
2~
UB =40.55 m2/s4.  

Thus, a possibility would be λ = 0.5 m/s2, which yields the trajectory shown in Fig. 11(a). It starts 

at an altitude of 500 m, lasts 23.8 s and ends at the altitude of 359.6 m. Another possibility would 

be λ = 1.5 m/s2, which yield the trajectory shown in Fig. 11(b). It lasts 7.9 s and terminates at the 

altitude of 453.2 m. 

 

 

12. Speed interval tables for non-descending trajectories 
 

In trajectory planning, the problem is most often posed as that of constructing flyable 

trajectories with given initial and a final angles of inclination for the helix. In non-descending 

trajectories, both of these angles are non-negative and in non-ascending trajectories, both are non-

positive. We note that, for airplanes with propellers, the flyability analysis requires a 

representation of the function PAmax in terms of V∞, possibly as splines or as a table of values. All 

the calculations are performed with algebraic formulas, except for the determination of the range 

of allowed speeds, which requires a numerical solution with PAmax. Consequently, disposing of 

tables of allowed speed values, would appreciably accelerate the calculations. Such tables are 

easily constructed, as we will show below, for our selected sample planes, which are the Cessna 

182, the Silver Fox like unmanned UAV and the F-16 Fighting Falcon. The characteristics that we 

use for these three airplanes are given in Appendix A.  

These tables provide the intervals of speeds for which helical trajectories, of the type discussed 

in this report, are flyable. The first two lines of the table give the value of the lower bound on the 

speed: VLB, for various smallest angles θm. The last two lines of the table give the value of the 

upper bound on the speed: VUB, for various largest angles θM. Thus, for example, if a trajectory 

should have inclination that vary between θm = 00, and θM = 200, the interval of allowed speeds 

would be (20.2, 26.9) m/s. It is remarkable that VLB does not vary much as θm varies from 0 to 20 

degrees; this is due to the fact that VLB depends on cos(θ) which is close to 1 for all these angles. 

We note that if a trajectory is flyable with starting inclination of θm and final inclination of θM, the 

trajectory that starts with the inclination θM and terminates with inclination θm is also flyable. We 

note that a simple linear extrapolation between the values given in the table would give excellent 

results. Flyable trajectories exist for all the speeds in the intervals shown in the tables.  
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Table 1 Speed intervals of flyable trajectories for the Cessna 182; θm is the smallest angle and VLB the lower 

bound on the speed for this angle, θM is the largest angle and VUB is the upper bound of the speed for that 

angle 

θm (deg) 0 5 10 15 20 

VLB (m/s) 20.2 20.2 20.1 19.9 19.6 

 

θM (deg) 0 5 10 15 20 

VUB (m/s) 77.1 65.8 53.6 40.7 26.9 

 

 

 

(a) Cessna 182 trajectory, from 00 to 200 (b) Cessna 182 trajectory, from 200 to 00 

Fig. 12 Trajectories of the Cessna 182 that correspond to the examples in the text 

 
 
12.1 Speed interval table for the Cessna 182 

 

For example, according to this table, a trajectory can be constructed with θ0 = 00 and θf = 200, 

with speed V∞ = 24 m/s. Eq. (38) yields 8.192
~2

1 =UB m2/s4. The determinant ΔF, defined after Eq. 

(40) is negative, and thus, F is minimum at s = sinM. (39) then yields 6.115
~2

2 =UB m2/s4. 

Therefore, 8.192
~2   m2/s4, and we can take λ = 0.5 m/s2. Eq. (42) yields RLB1 = 58.2 m. The 

real root of H1 is 5.8, which is not in the interval [sinm, sinM]; a verification shows that H is 

minimum at s = sinM, yielding RLB2 = 174.9 m. Thus R ≤ 174.9 m and a possible choice is R = 200 

m. The resulting trajectory lasts 17.1 s; it starts at h0 = 0 m and terminates at hf = 71.7 m. It is 

shown in Fig. 12(a). The reciprocal trajectory in which the initial angle of inclination is 200, and 

the final angle is 00, with l = -0.5 m/s2, and the same speed and radius, lasts the same amount of 

time and has the same length. It is shown in Fig. 12(b). 

 

12.2 Speed interval table for the silver fox like UAV 
 
Table 2 Speed intervals of flyable trajectories for the Silver Fox-like UAV; qm is the smallest angle and VLB 

the lower bound on the speed for this angle, qM is the largest angle and VUB is the upper bound of the speed 

for that angle 

θM (deg) 0 10 20 30 40 50 

VUB (m/s) 13.8 13.7 13.4 12.8 12.1 11.1 

 

θM (deg) 0 10 20 30 40 50 

VUB (m/s) 56.3 50.9 42.5 33.5 24.2 14.4 
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(a) Silver Fox-like trajectory, from 00 to 500 (b) Silver Fox-like trajectory, from 500 to 00 

Fig. 13 Trajectories of the Silver Fox-like UAV that correspond to the examples in the text 

 
Table 3 Speed intervals of flyable trajectories for the F-16 Fighting Falcon; θm is the smallest angle and VLB 

the lower bound on the speed for this angle, θM is the largest angle and VUB is the upper bound of the speed 

for that angle 

θm (deg) 0 20 40 60 80 

VLB (m/s) 62.8 60.9 55.0 44.4 26.2 

 

θM (deg) 0 20 40 60 80 

VUB (m/s) 543.0 448.8 345.4 242.0 163.9 

 

 

For example, according to this table, a trajectory can be constructed with θ0 = 00 and θf = 500 

and V∞ = 14 m/s. Eq. (38) then yields 3.103
~2

1 =UB m2/s4. The determinant ΔF, is negative, and 

thus, F is minimum at s = sinM. (39) then yields 3.110
~2

2 =UB m2/s4, so that 3.103
~2   m2/s4 

and a possible choice is λ = 0.3 m/s2. Eq. (42) yields RLB1 = 109.9 m. The real root of H1 is 6.8, 

which is not in the interval [sinm, sinM]; a verification shows that H is minimum at s = sinM, 

yielding RLB2 = 43.6 m. Thus RLB = 109.9 m and a possible choice is R = 120 m. The resulting 

trajectory lasts 47.2 s, it starts at h0 = 0 m and terminates at hf = 288.7 m. It is shown in Fig. 13(a). 

The reciprocal trajectory in which the angle of inclination varies from 500 to 00, with λ = -0.3 m/s2, 

and the same speed and radius, lasts the same amount of time and has the same length. It is shown 

in Fig. 13(b). 

 

12.3 Speed interval table for the Lockeed-Martin F-16 
 

For example, according to this table, a trajectory can be constructed with θ0 = 00 and θf = 800 

and V∞ = 100 m/s. Eq. (38) then yields 1.619
~2

1 =UB m2/s4. The determinant ΔF, defined after Eq. 

(40) is positive and F has its minimum at its smallest root s- = 0.735. (39) then yields 6.830
~2

2 =UB

m2/s4 and therefore, 1.619
~2   m2/s4, and we can then take λ = 5 m/s2. Eq. (42) yields RLB1 = 

86.9 m. H1 has three real roots; only one of them is in the interval [sinm, sinM]; it is at sd = 0.356, 

and H is minimum at this point. Eq. (43) then yields RLB2 = 342.6 m. Thus R ≥ 341.6 m and a 

possible choice is R = 350 m. The resulting trajectory lasts 48.7 s, it starts at h0 = 0 m and 

terminates at hf = 3501.4 m. It is shown in Fig. 14(a). The reciprocal trajectory in which the angle  
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(a) F-16 trajectory with θ0 = 00, θf = 800 (b) F-16 trajectory with θ0 = 800, θf = 00 

Fig. 14 Trajectories of the F-16 that correspond to the examples in the text 

 
Table 4 Speed intervals of flyable trajectories for the Cessna 182; initial angles are in the columns and final 

angles in the rows 

θf θ0 0 -5 -10 -15 -20 

0 20.7, 77.1     

-5 20.7, 77.1 20.6, 82.3    

-10 24.5, 77.1 24.3, 82.3 24.1, 99.0   

-15 30.3, 58.8 30.2, 82.3 30.0, 99.0 29.5, 109.0  

-20 X 35.6, 48.6 
35.3, 49.5 

87.3, 94.2 

34.7, 50.9 

86.5, 109.0 

33.8, 53.2 

85.0, 118.3 

 

 

of inclination varies from 800 to 00, with λ = -5 m/s2, and the same speed and radius, lasts the same 

amount of time and terminates at the same altitude hf. It is shown in Fig. 14(b). It should however 

be mentioned that with such a difference in altitude, the variation of the air density should be taken 

into account in the calculations. This was not done here, and therefore, the above results should be 

considered as an approximation of the real situation.  

 

 

13. Speed interval tables for non-ascending trajectories 
 

We now give examples of speed interval tables for non-ascending trajectories. They are in a 

different format than those of Section 12, because, for these trajectories, the lower bound and 

upper bound on speed do not depend only on θm and θM. Columns and rows correspond 

respectively to initial and final angles of inclination. The table is symmetric about the diagonal, 

and thus, we did not repeat the entries in the cells where they could be obtained by symmetry.  

 

13.1 Speed interval table for the Cessna 182 
 

It is worth remarking that for certain combination of angles, there are two disjoint speed 

intervals. This phenomenon was already mentioned in Section 8.1 of Labonté (2017). It was 

explained that at lower speeds, it is the lift induced drag that dominates and cancels gravity so that  
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Table 5 Speed intervals of flyable trajectories for the Silver Fox-like UAV; initial angles are in the columns 

and final angles in the rows 

θf θ0 0 -5 -10 -15 -20 -25 

0 14.1, 56.3      

-5 14.4, 56.3 14.2, 58.4     

-10 20.5, 56.3 20.4, 58.4 20.2, 60.4    

-15 25.3, 56.3 25.2, 58.4 25.0, 60.4 24.7, 62.2   

-20 29.7, 56.1 29.6, 58.4 29.4, 60.4 28.9, 62.2 28.4, 63.8  

-25 X X 56.8, 59.0 56.4, 61.8 55.8, 63.8 63.8, 65.3 

 

Table 6 Speed intervals of flyable trajectories for the F-16 Fighting Falcon; initial angles are in the columns 

and final angles in the rows. Colored cells contain speeds larger than that of sound 

θf θ0 0 -20 -40 -60 -80 

0 64.3, 543.0     

-20 87.9, 543.0 83.0, 623.2    

-40 144.8, 543.0 137.0, 623.2 113.8, 686.0   

-60 465.2, 543.0 461.6, 623.2 446.1, 686.0 132.1, 729.1  

-80 517.4, 543.0 516.1, 623.2 515.0, 686.0 510.4, 729.1 
140.7, 329.4 

400.0, 751.1 

 

 

the airplane can keep descending at constant speed. Then, at higher speeds, it is the parasite drag 

that dominates and cancels gravity so that the airplane can descend at constant speed. 

It might be found intriguing that, according to this table, the airplane can fly on a helical 

trajectory with an inclination that goes from 00 to -50 and on one that goes from -50 to -200, but 

cannot fly on one that varies from 00 to -200. The explanation of this apparent paradox is simply 

that the two first trajectories are possible separately, but they would not have the same radius nor 

the same speed, as can be seen in the table. 
 

13.2 Speed interval table for the silver fox-like UAV 
 

According to this table, an example of flyable trajectory would be one in which the inclination 

angle varies from -150 to 00. According to Table 5, a possible speed would be V∞ = 30 m/s. (55)-

(59) yield RLB = 20.8 m and RUB = 26.1 m; the interval of possible values for R is thus small, 

nevertheless a possible radius would be R = 24.0 m. (65) yields λUB = 23.9 m/s2 so that a possible 

choice is λ = 0.5 m/s2. The resulting trajectory takes 15.9 s, starts at 100 m and terminates at 37.6 

m. It is shown in Fig. 15(a).  
 

13.3 Speed interval table for the F-16 fighting falcon 
 

We note that many of the speeds intervals in this table contain speeds larger than the speed of 

sound (340.3 m/s). Thus, the formulas we have derived not very accurate at these speeds, because 

the dynamics of airplanes at supersonic speeds is quite different than those at subsonic speeds 

(Stengel 2016). Cells of the table containing only speeds larger than that of sound are colored in 

grey. 
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(a) Silver Fox-like UAV trajectory (b) F-16 trajectory 

Fig. 15 Trajectories of the Silver Fox like UAV and the F-16 given as examples in the text 

 

 

When flying on steep trajectories, the F-16 would travel long vertical distances during which 

the air density and temperature would vary considerably. In the present study, we did not take into 

account these changes. The values in the table therefore only give some indication of what can be 

expected to be possible, when all the relevant factors are taken into account. 

According to the table, an example of trajectory would have an angle of inclination varying 

from -100 to -300. A possible speed would then be V∞ = 200 m/s. (55)-(59) then yield RLB = 656.3 

m and RUB = 737.5 m, and a possible radius would be R = 700 m. (60) then imposes no constraint 

on l since its LHS is negative; a possible choice is λ = -9.6 m/s2. The resulting trajectory starts at h0 

= 2000 m and terminates at hf = 1464 m; it lasts 7.8 s. It is shown in Fig. 15(b).  

 

 

14. Conclusions 
 

There are three important results presented in this article.   

• The first one is the description of a new type of constant speed helical trajectory with varying 

ascension rate, for which the airplane equations of motion are exactly solvable. The altitude 

varies almost linearly on this trajectory. Such trajectories can be used very advantageously in 

trajectory planning, for connecting rectilinear, circular or helical segments; since it requires 

much less calculations than other smoothing connections. They are also valuable by themselves 

in situations in which an airplane has to land or take off in a limited space. 

• The second one is the derivation of the constraints on the geometrical parameters of the 

trajectory that result from the bounds on the dynamical abilities of the airplane. It takes into 

account its load factor, its lift coefficient, its thrust and power. Formulas are given for 

determining the possible angles of inclination of the trajectory, its minimum radius, the 

minimum and maximum speeds, the flight time required, and the altitude difference between 

the final and initial ascension angles. 

• The third one is the explanation of a method for constructing tables that list the intervals of 

speeds, for which helical trajectories with given initial and final angles of ascension are flyable. 

Such talbes, together with the formulas derived, will be very useful for on-board trajectory 

planning, even when small microcontrollers are used. They can be calculated beforehand, and 

stored in the memory of the processor, where they would not require much space. Examples of 
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such tables are given for three very different airplanes, namely the Cessna 182 Skylane, the 

Silver Fox UAV and the F-16 Fighting Falcon. 

We believe that the type of variable ascension angle helical trajectory, as well as the formulas 

related to it, are original in that they have never been published before. They will find a definite 

usefulness in airplane trajectory planning. They also constitute, in themselves, an important tool 

for the analysis of airplane performances.   
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Nomenclature 
 

a speed of sound in air. At altitude h, a(h) = )(hTR  . At sea level, a(0) = 340.3029 m/s 

a1 
absolute value of the slope of the temperature as a function of altitude, below 11 km, a1 = 6.5 10-3 

K/m 

AFR air fuel ratio (about 14.7) 

AR aspect ratio =b2/S 

b wingspan 

c specific fuel consumption in Newton per Watt-second, that is in m-1 

CD global drag coefficient for the aircraft = 
eAR

C
C L

D 

2

0 +
 (Drag polar) 

CD0 global drag coefficient at zero lift 

CL global lift coefficient for the aircraft 

D drag = 2

2

1
 VCS D  

e Oswald’s efficiency factor 

g gravitational constant = 9.8 m/s2 

h altitude of airplane 

hc service ceiling 

L lift = 2

2

1
 VCS L  

P power of the engine in Watt 

R specific gas constant for air = 287.058 J/(kg K) 
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S wing area 

t time variable 

Ts temperature at sea level = 288.16 K 

T(h) temperature at altitude h 

v3 vertical component of airplane velocity 

V airplane speed with respect to the undisturbed air in front of it 

VNE speed never to be exceeded 

W weight of the airplane 

W1 weight of the empty airplane 

Wf maximum weight of fuel 

W0 maximum take-off weight (MTOW) 

g ratio of the constant pressure specific heat to the constant volume specific heat =cP/cV = 1.4 for air 

h propeller efficiency 

rs air density at sea level = 1.225 kg/m3 

r(h) density of undisturbed air in front of airplane, at altitude h, 

2433,4
)(









s

s T

hT
  
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Appendix A: Reference airplanes 
 

We note that there could be small differences between the values we list here and the actual 

values for a particular model of these airplanes. We used values that were available on the internet 

or were estimated from the values for similar airplanes. These data are quite adequate for our 

purpose that is to illustrate the calculations involved in the formulas we have derived.  

The thrust of the Cessna 182 and that of the C-130 Hercules is provided by a reciprocating 

engine with constant speed propeller; that of the Silver Fox by a reciprocating engine with a fixed 

pitch propeller. We recall that the efficiency of the propeller is a function of the advance ratio J, 

defined as 

     
DN

V
J =      

in which N is its number of revolution per second and D is its diameter. Thus, the maximum power 

available PAmax will depend on the speed, according to the equation 

    maxmax )( PJPA =      

The dependence of h on J for a constant speed propeller has the general features shown in Fig. 

12(a). This curve approximates that given in Cavcar (2004) by the following quadratic expressions 

     8.08.0
640.0

663.0
)(

2
+−=







JJ   J ≤ 0.8.  

   8.0)( =J     J > 0.8.   

The dependence of h on J for a fixed pitch propeller has the general features shown in Fig. 

12(b). This curve approximates that given in the Aeronautics Learning Laboratory for Science 

Technology and Research (ALLSTAR) of the Florida International University (2011) by the 

following quadratic expressions 

     83.070.0
49.0

83.0
)(

2
+−−=







JJ   J ≤ 0.7.  

     83.070.0
06.0

83.0
)(

2
+−−=







JJ   J > 0.7.    

Note that the propeller efficiency of this fixed pitch propellers goes to 0 at V∞ = 66.1 m/s and 

becomes negative after that. Although a negative propeller efficiency might be desirable to slow 

down the airplane when it descends, it is not recommended to let this happens. When this happens, 

the propeller drives the engine and damage to the engine may result [see for example the 

Commercial Aviation Safety Team document (2011). We shall therefore not allow speeds larger 

than that value.  

 

A.1 Cessna 182 skylane  
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(a) Constant speed propeller (b) Constant pitch propeller 

Fig. 16 Typical efficiency factor h as a function of the advance ratio J 

 

 

The parameters listed are W1 = the weight of the empty airplane, W0 = the maximum take-off 

weight, WF = the maximum weight of fuel, b = the wingspan, S = the wing area, e = Oswald’s 

efficiency factor, CLmax = the maximum global lift coefficient, CD0 = the global drag coefficient at 

zero lift, nmax and nmin are respectively the maximum and minimum value of the load factor, PAmax 

= maximum breaking power at sea level, RPM = number of revolution per minute, Diameter = 

diameter of the propeller, hmax = maximum value of the propeller efficiency. 

The characteristic parameters for the Cessna 182 can be found in Airliners.net (2015), Roud 

and Bruckert (2006) and McIver (2003). Some of the parameters, which were not readily available, 

were estimated from those of the very similar Cessna 172.  

 

 
Table 7 Characteristic parameters of the Cessna 182  

W1 = 7,562 N W0 = 11,121 N WF =1737 N 

b = 11.02 m S = 16.1653 m2 e = 0.75 

CLmax = 2.10 CD0 = 0.029 nmax = 3.8, nmin = -1.52 

PAmax = 171.511 kW RPM = 2,600  

Const. speed propeller Diameter = 2.08 m hmax = 0.80 

 

 

A.2 Silver fox like UAV  
 

The Silver Fox UAV is presently produced by Raytheon. Some specifications for the Silver Fox 

can be found at UAVGLOBAL Unmanned Systems and Manufacturers (2016). The power 

available PA(0) for the Silver Fox is only about 370 W, which allows it to climb only at low 

angles. Meanwhile, it is common for Radio Controlled (RC) airplanes to climb at very steep angles 

(See for example Granelli 2007). Thus, upon taking advantage of motors that have been developed 

in this domain, a Silver Fox-like airplane could be endowed with much more power in order to 

improve considerably its manoeuvre envelope. One such motor is the Zenoah GT-80 Twin 
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Cylinder 80cc (ZENE80T). It weighs 34 N and outputs 4045 W at 7500 rpm. (Horizon Hobby 

2017). We shall consider a Silver Fox-like UAV with such a motor. 

 

 
Table 8 Characteristic parameters of the Silver Fox-Like airplane.  

W1 = 100.0 N W0 = 148.0 N WF = 19.1 N 

b = 2.4 m S = 0.768 m2 e = 0.8 

CLmax = 1.26 CD0 = 0. 0251 nmax = 5.0, nmin = -2.0 

PAmax = 4.413 kW RPM = 7500  

Fixed pitch propeller Diameter = 0.56 m hmax = 0.77 

 

 

A.3 Lockheed martin F-16 
 

The General Dynamics/Lockheed Martin F-16 Fighting Falcon is a single-engine fighter 

aircraft originally developed for the United States Air Force. Its characteristic parameters can be 

found in Lockheed-Martin (2015), Filippone (2000) and Sadraey (2009). The maximum value of 

the lift coefficient and the maximum negative load factor were estimated from those of other 

similar fighter airplanes. 

 

 
Table 9 Characteristic parameters of the F-16 fighter airplane 

W1 = 90,237.4 N W0 = 213,365.6 N Vmax = 605 m/s 

b = 10.0 m S = 27.87 m2 e = 0.8 

CLmax = 1.8 CD0 = 0. 026 nmax = 9.0, nmin = -3 

TAmax = 131,222.5 N 
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