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Abstract.  The motion of propeller driven airplanes, flying at constant speed on ascending or descending 
helical trajectories is analyzed. The dynamical abilities of the airplane are shown to result in restrictions on 
the ranges of the geometrical parameters of the helical path. The physical quantities taken into account are 
the variation of air density with altitude, the airplane mass change due to fuel consumption, its load factor, its 
lift coefficient, and the thrust its engine can produce. Formulas are provided for determining all the airplane 
dynamical parameters on the trajectory. A procedure is proposed for the construction of tables from which 
the flyability of trajectories at a given angle of inclination and radius can be read, with the corresponding 
minimum and maximum speeds allowed, the final altitude reached and the amount of fuel burned. Sample 
calculations are shown for the Cessna 182, a Silver Fox like unmanned aerial vehicle, and the C-130 
Hercules. 
 

Keywords:  airplane helical trajectory; banked turn; airplane equation of motion; circular arc connection; 

automatic trajectory planning 

 
 
1. Introduction 
 

This work constitutes a contribution to the enterprise of endowing unmanned aerial vehicles 

(UAVs) with complete autonomy, i.e., the ability to conduct their mission without human 

intervention. A fundamental task they then have to be able to perform consists in automatically re-

planning their trajectory when unforeseen circumstances require them to modify their flight plan. 

Essential tools to perform this task are formulas or tables which indicate what trajectories are 

flyable, according to the airplane dynamics, and provide basic information such as the amount of 

fuel required, the time of flight, etc.  

It is important to remark that for producing optimal or very good trajectories, many factors 

have to be analyzed, not only properties of the mathematical curve itself but very much also those 

of the vehicle involved. Whereas the authors of the first studies on trajectory planning in 3D were 

mainly interested in finding the shortest curve between two points with departure and arrival 

directions (for example Dubins (1957), present studies now define optimality by taking into 

account many more factors than the length. Firstly, of course, the vehicle considered should have 
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the physical ability to travel the curve in question. Finding the optimal trajectory then becomes a 

multi-objective optimization problem. A cost function is usually defined that takes into account the 

relative importance of the amount of fuel used, of the travel time, of the altitude. The relative 

importance of each factor hast to be weighed according to the mission flown. Thus, finding 

optimal airplane trajectories involves analyzing the mathematical curves, the aerodynamic abilities 

of the airplane, and other factors that depend on the nature of the terrain. 

Frazzoli et al. (2005) have introduced an efficient approach for the solution of the trajectory 

planning problem. Namely, they proposed to construct trajectories by concatenating well-defined 

motion primitives, i.e., elementary trajectory segments, selected from a finite library. All the 

required properties of these elementary segments could be computed offline if necessary, and 

stored in the memory of the airplane controller. The appeal of this approach resides in that it would 

save much computing efforts because only the connections between the pieces of trajectory would 

have to be computed on-board. As far as airplanes are concerned, the most often considered 

elementary segments are rectilinear, circular and helical.  

A relatively similar technique for building feasible trajectories proceeds as follows. One starts 

by building a skeleton trajectory with connected rectilinear segments, and then smooths out the 

connections with arcs of circles so that the velocity can be continuous. This very popular method 

can be found described, for example, in Chandler et al. (2000), Jia and Vagners (2004), Chitsaz 

and LaValle (2007), Hwangbo et al. (2007), Li Xia et al. (2009), Ambrosino et al. (2009), Babaei 

and Mortazavi (2010), Hota and Ghose (2010). We note that, although such constructions, which 

use only straight lines and circles, are often sufficient to produce flyable trajectories, this method 

is incomplete because there are situations in which the transition to higher or lower altitudes could 

only be done with the help of helical trajectory segments, due of the narrowness of the space 

available for the motion. Furthermore, as demonstrated in Sussmann (1995), there are situations in 

which the inclusion of helical segments is necessary for obtaining the shortest path, which the 

optimal trajectory is often required to be. 

An approach, in which helical trajectories are included as elementary sub-trajectories should 

then be preferred. This was in fact used by many researchers such as Boukraa et al. (2006), 

Chitsaz and LaValle (2007), Narayan et al. (2008), Tsiotras et al. (2011) and Beard and McLain 

(2015). The helices usually considered are of the same type as those we analyze in the present 

study; that is, they are regular pitch curves wrapping around a cylinder with center along the 

vertical axis. There are however more general helices as defined for example in Sussmann (1995). 

We note that the vertical regular helices cannot start and end at arbitrary points with arbitrary 

direction of departure and approach. They can have arbitrary initial conditions, but these 

conditions leave no additional choice in selecting the helix parameters. Thus, if a final position is 

specified, the final direction of approach is uniquely determined. Therefore, an additional segment 

of curve, as an arc of circle, is necessary to connect the helix to the end point with the desired 

direction of approach, or the next segment of curve. 

Helical trajectories have also been considered in their own right. Crawford and Bowles (1975) 

argued that it may be advantageous for an airplane to follow a helical trajectory when landing in a 

densely populated district, from the standpoint of safety and noise. Indeed, such a flight path keeps 

the airplane at relatively high altitude except near the airport. Similarly, Tsiotras et al. (2011) 

presented a method for finding the time-optimal landing trajectory of an airplane that involved 

helical trajectories. Dai and Cochran (2009) considered the helical trajectory as starting point for 

constructing minimum-time-to-climb and minimum-fuel-to-climb trajectories for an airplane 

constrained in a vertical rectangular prism region. 
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The feasible constant speed helical trajectories for propeller driven airplanes 

Most studies on airplane trajectory planning adopt the airplane model described by Dubins 

(1957), according to which the airplane flies at constant speed, while it is constrained by bounds 

on the vertical component of its velocity and its turning radius. More sophisticated airplane models 

have also been used, which include to various degrees, more realistic airplane dynamics. In the 

present study, we have considered the realistic airplane dynamics model described in Anderson 

(2000).  

The motion of airplanes on straight line segments and circular segments has been analyzed in 

details in Labonté (2012), (2015), (2016). However, a corresponding analysis of helical trajectory 

has still not been done. Although banked turns or coordinated turns in the horizontal plane are 

discussed in most aeronautics manuals, only a few of them mention the case of bank turns 

accompanied by vertical motion. This can be found, for example, in Section 15 of Colwley and 

Levy (1920), in Section 10.4 of Etkin (1972), in Section 8.2 of Mair and Birdsall (1992) and in 

Chapter 3 of Phillips (2004). In all these discussions of helical trajectories, the speed and the 

vertical component of the velocity are considered constant. All the above mentioned authors, 

except for Colwley and Levy (1920), consider small elevation angles θH with respect to the 

horizontal, so that sin(θH)θH and cos(θH)1. However, UAVs come in a wide range of sizes and 

agilities, and they can fly much more daring maneuvers as inhabited airplanes. This is also the case 

for high performance fighter airplanes. There are therefore many circumstances in which the small 

elevation angle approximation is not justified. We note that many of the discussions involving 

helical trajectories use equations of motion, similar to those we used in our study. However, very 

rarely do they take into account the variation of the airplane dynamical parameters with altitude, as 

the air density varies, and only Dai and Cochran (2009) consider the amount of fuel used. The 

present study is more complete in that it determines the limits on the trajectory parameters that are 

a consequence of the limits on the airplane load factor, its lift coefficient, its available power, 

while taking into account the influence of altitude. It also presents a formula for calculating the 

amount of fuel required to fly on the helical trajectory.  

 

1.1 Assumptions about the dynamics  
 

As was pointed out in Section 15 of Cowley and Levy (1920), a rigorous treatment of curved 

flight trajectories is extremely complicated because of the presence of imperfectly known factors 

related to the variation in aerodynamic forces along the wings, due to their non-symmetric role in 

the motion. These authors then assumed that “any increase of drag due to the angular velocity of 

the aircraft and the deflections of the control surfaces can be neglected in comparison with the 

dominant lift-dependent drag”. This was actually confirmed in Chapter XVIII of Von Mises 

(1945) where, after some calculations, for the banked turn, the comment is made that, “the 

moments required for maintaining the steady rotation are unimportant under normal conditions”. A 

similar remark can be found in Section 8.5 of Chapter 8 of Mair and Birdsall (1992), in the context 

of a detailed discussion of vertical loops, horizontal banked turns and helical trajectories.  

In the present study, we have made the same assumption that the effects of the rotations of the 

airplane about its center of mass are negligible compared to those of the motion of its center of 

mass. We have also not taken into account the perturbations of the atmosphere. Finally, we maker 

ours the remark made in Chapter 3 on “Aircraft Performance” of Phillips (2004), that the material 

we present “should be thought of as only a preliminary study of airplane performance. Here, 

emphasis is placed on obtaining closed-form analytic solutions suitable for preliminary design”.  
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1.2 Power available, power required and fuel consumption 
 

As explained in Chapter 9 of Anderson (2000), when an internal combustion engine produces 

the power PP to activate a propeller of efficiency η, the power available to move the airplane is 

PA=η(J)Pp. The efficiency of the propeller η is a function of the advance ratio J, defined as 

DN

V
J   

in which N is its number of revolution per second and D is its diameter. If Pmax is the maximum 

power that the engine can produce, the maximum power available PAmax to move the airplane is 

maxmaxA P)J(P   

If W represents the weight of the airplane, and c the specific fuel consumption, then the rate of 

fuel burned for producing the power PA is 

AP P
η

c
Pc

dt

dW
  

There is always an upper bound PA max to the power an engine can generate and a lower bound 

PAmin below which it shuts down. 

According to Classical Mechanics, the power required PR to move a body with velocity v, is 

PR=Fv, where F is the force acting on the body and “” denotes the scalar product of two vectors. 

If this body is an airplane with a propulsion system that produces a thrust T along the direction of 

its motion, i.e., T is parallel to v, then the power required for the motion is PR=T V where T and V 

are respectively the magnitudes of T and v. This airplane’s engine should then provide the power 

PA=PR. It is important to note that the power produced by a combustion engine varies with the 

altitude h, according to the equation 

)0(

)h(
)0(P)h(P AA



  

in which ρ(h) is the air density at altitude h.   
 

1.3 Organisation of the article 
 

The first section explains the mathematical description of the motion of an airplane on a helical 

trajectory, while its speed of rotation about the vertical axis and the vertical component of its 

velocity are constant. This description takes into account the weight change of the airplane as fuel 

is burned, and the variation of some parameters with the altitude. The equations of motion are then 

decomposed in terms of the Frenet-Serret unit vectors. The consequences of the bounds on the 

angle of bank, the load factor, the lift coefficient are analyzed. The formula that gives the weight 

of the airplane, as a function of time is given. The thrust required for the motion is examined. The 

consequences for a descending trajectory of the non-negativity of the thrust are obtained. The 

constraints on trajectories that result from the upper boundedness of the power available are 

derived. Finally, a procedure is proposed to take into account the limits imposed on the trajectory 

by the airplane dynamics, and determine the parameters for which this trajectory is flyable. It is 

shown how tables of parameters can be constructed to sum up the results obtained. This procedure  
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The feasible constant speed helical trajectories for propeller driven airplanes 

  
(a) Geometry (b) Frenet-Serret unit vectors 

Fig. 1 Ascending helical trajectory 

 

 

is illustrated, for both cases of ascending and descending trajectories, with airplanes that have 

similar properties as the following well known three different airplanes, the required 

characteristics of which are listed in Appendix A: 

• the Cessna 182 Skylane, which has a constant speed propeller, 

• a Silver Fox like unmanned aerial vehicle (UAV) which has a fixed pitch propeller, 

• the C-130 Hercules, which has a constant speed propeller. 

 

 

2. Description of constant speed helical trajectories 
 

Let us consider an airplane that flies on a vertical axis helical trajectory at the constant speed 

V, with constant vertical speed v3. We select the coordinate system such that the helix is centered 

on the z-axis, and passes through the point (R, 0, 0) at t=0. The position of the center of mass of 

the airplane is then described by 

 tv),tsin(R),tcos(R)t( 3x  

in which ε=+1 if the trajectory turns about the z-axis in the counterclockwise direction and ε=-1 if 

it turns in the other direction. R and ω are respectively the constant radius and the constant 

frequency of rotation of the circular section of the trajectory. Fig. 1(a) shows such a trajectory with 

ε=+1, and v3>0. When the airplane is descending on the trajectory, v3 will be negative. 

The velocity on this trajectory is 

 3v),tcos(R),tsin(R)t( v  

and the constant speed V∞ is, 

2
3

22 vRV   

If θ is the angle of ascension of the helix, measured from an horizontal plane, then 0≤|θ|<π/2 

and v3=V∞sin(θ) and Rω=V∞cos(θ). θ is positive when the airplane is ascending and negative when 

it is descending. The Frenet-Serret frame of reference {τ, N, B} is particularly useful in the 

description of such trajectories. Fig. 1(b) 
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Fig. 2 The angle of bank in relation to the unit vectors N and B 

 

 

shows the three unit vectors, τ, N and B with respect to the helix shown in Fig. 1(a). τ is the unit 

tangent vector that is in the direction of the velocity 

 )sin(),tcos()cos(),tsin()cos(   

Since  V
dt

ds
, the arc length s, that is the distance traveled between times ts and tf is simply 

∞ (tf - ts). 

The difference of altitude between these two instants of time is 

)tt(vh if3   

The unit normal vector N is defined such that 

N
ds

d

 
with 

cR

1
  

in which κ is the curvature and Rc is the radius of curvature. Thus 

Rc = 
2cos

R
 and N = - [ cos(ωt), εsin(ωt), 0 ] 

The acceleration of the airplane on this trajectory is 

a(t) = v'(t) = 
c

2

R

V  N(t) 

The unit binormal vector B, which is defined as τN, is 

B = [ε sin(θ) sin(ωt), -sin(θ) cos(ωt), εcos(θ)]. 

Note that for a trajectory that rotates in the clockwise direction with respect to the z-axis, B is 

pointing downward. 
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The feasible constant speed helical trajectories for propeller driven airplanes 

3. The forces at play 
 

The physical forces at play are  

• the lift L,  

• the gravitational force W=-W k, with k=(0, 0, 1),  

• the longitudinal force that is composed of the thrust produced by the propulsion system T, and 

the drag D; its value is (T−D)τ.  

The lift L is perpendicular to the velocity of the airplane and the airplane bank angle, is 

measured with respect to the binormal of the trajectory. Thus, L can be written as 

L = L cos(β ) B(t) + L sin(β )N(t) 

Fig. 2 shows the bank angle relative to the Frenet-Serret unit vectors.  

The mass of the airplane changes as fuel is burned by its engines. It increases as the motors 

intake air that is at rest, in order to burn its fuel, and it decreases as the hot gases of combustion are 

ejected with a speed essentially equal to the airplane speed. The mass of air Mair required for 

combustion is proportional to the mass of fuel burned Mfuel, as Mair=AFR·Mfuel, in which “AFR” 

denotes the air to fuel ratio, which is about 14.7 for gasoline or diesel fuel (Kamm 2002). Labonté 

(2012) discussed how to allow for these processes in Newton’s equation of motion, and showed 

that the proper form to use for that equation is then 

)DT(
dt

dW

g

)AFR(

g

W









 WLva  (1) 

The B, N and τ components of this equation are respectively  

)cos(W)cos(L   (2) 

cWA)sin(L   
with 

c

2

c
Rg

V
A  , 

 (3) 









 

dt

dW

g

V)AFR(
)sin(WDT

 
(4) 

the variable Ac has been defined as the centripetal acceleration in units of g.  
 

 

4. The bank angle 
 

Upon dividing Eq. (3) by Eq. (2), the following equation is obtained for the bank angle 

)cos(

Aε
)tan( c


  

This equation indicates that all airplanes must bank with the same angle in order to travel with 

the same speed V on this helical trajectory, a fact that generalises a well-known property of 

horizontal circular trajectories. Furthermore, the bank angle is constant on the whole trajectory. 

Given the signs of sin(β) and cos(β), according to Eqs. (2) and (3), if the trajectory is counter-
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clockwise, ε=+1 and 0 <β<π/2; and if it is clockwise ε=-1 and π/2<β<π. Thus 

2
c

2

c

A)(cos

A
)sin(




2
c

2 A)(cos

)cos(
)cos(




  (5) 

 

 

5. The load factor 
 

According to Eq. (2), the load factor is  

2
c

2 A)(cos
W

L
n   (6) 

It is constant on the trajectory. In order to ensure the integrity of the airplane structure, its value 

has to be limited such that 

nmin ≤ n ≤ nmax, 

Since n is always non-negative, this inequality implies that 

1UBVV 

 
)cos(

)(cosnRg
V

4/122
max

1UB



  (7) 

For a Cessna 182, on an helix with θ=15
0
, and R=750 m, this inequality implies that V∞≤170.2 

m/s. 
 

 

6. The lift coefficient 
 

Upon replacing L by its expression in Eq. (6), the following expression for the lift coefficient 

CL can be derived 

2
c

2

2L A)(cos
SV

W2
C 






 (8) 

CL changes in time because W and ρ∞ do. It must satisfy the constraint CL≤CLmax. This 

constraint on CL is respected if and only if it is respected at the instant at which CL has its 

maximum value, which is at the time at which W/ρ∞ is maximum. For descending flights, W/ρ∞ 
is 

a monotonically decreasing function of time since W is monotonically decreasing while ρ∞
 
is 

monotonically increasing. Thus, W/ρ∞ is maximum at the beginning of the descent, when t=ti. The 

constraint CL≤CLmax is then satisfied if and only if 

maxL
2
c

2

2
i

i CA)(cos
SV)h(

W2


 

 (9) 

in which Wi=W(ti) and hi is the initial altitude. For ascending flights, the time at which the 

maximum of CL occurs is less evident because then, both W and ρ∞ are monotonically decreasing 

with time. Determining where the maximum of CL occurs would require solving for W(t), but 

solving for W requires knowing the trajectory parameters, which satisfy the bound CL≤CLmax.  
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The feasible constant speed helical trajectories for propeller driven airplanes 

  
(a) Lower bound surface for V∞ (θ in radians) (b) Lower bound line for V∞ at θ=15

0 

Fig. 3 Bound on the speed V∞ due to the bound on the lift coefficient for the Cessna 182 

 

 

Nevertheless, a sufficient condition can be derived by using the absolute upper bound on
 
W/ρ∞ in 

Ineq. (8). Indeed, if Ineq. (8) is satisfied with Wi/ρ∞(hc), where hc is the service ceiling of the 

airplane, it will necessarily be satisfied with any value of W/ρ∞. Upon substituting the value of Ac 

in Ineq. (9) and rearranging the terms, this necessary condition can be written as 

 
)(cosV

gR

)(cos

W2

S)h(C 24

222

i

xmaxL 



















 








 


  (10) 

in which hx=hi or hc according to whether the trajectory is descending or ascending. This inequality 

can hold only if the first factor on the LHS is positive, which requires the following condition on R 

maxLx

2
i

CS)h(

)(cosW2
R




  (11) 

Ineq. (10) then implies the following inequality for V∞ 

1LBVV   with 
 

     4/122
i

2

maxLx

2/1

i
1LB

)(cosW2CS)h(Rg

)cos(RWg2
),R(V








 (12) 

For the Cessna 182, the speeds V∞ for which Ineq. (12) holds are those in the region above the 

surface, shown in Fig. 2(a). Fig. 3(b) shows the slice of this graph, at 15
0
. One can see from these 

graphs that the lower bound on V∞ does not vary much with R; in Fig. 3(b), the speed varies 

approximately between 27.62 and 27.69 m/s, as R varies from 800 to 2000 m. On a helix with 

θ=15
0
, and R=750 m, Ineq. (12) implies that V∞≥27.7 m/s. 

 

 

7. The airplane weight 
 

For the sake of clarity, we shall hereafter consider counter-clockwise turning trajectories so that 

ε=+1; the case with ε=-1 can be dealt with in the same way. Since the power required for the 
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motion is PR=V∞TR, we multiply Eq. (4) by 



 V

c  and use Eq. (10) to obtain the following 

equation for the weight of the airplane  

 )sin(WD
cV

dt

Wd

g

V)AFR(c
1

2






















   (13) 

We will consider here flights below 11 km, so that the rate of variation of the temperature with 

the altitude a1 is constant, and 

T(h) = Ts - a1 h with a1 = 6.5  10
-3

 K/m. 

In a flight at a constant speed, the rate of climb is constant and the altitude is simply a linear 

function of time 

h(t) = hi + v3 (t - ti) with v3 = V sin(θ).  

So the time to change altitude from hi to hf is simply tf=(hf-hi)/v3. The results we shall obtain 

can be straightforwardly extended to airplanes traversing zones of the atmosphere with different 

temperature gradients by interconnecting the solutions obtained in the separate zones, so that the 

parameters are continuous at the boundary layers between the zones.  

Upon letting Wf=W(tf) and upon using Eq. (8), Eq. (13) becomes the Riccatti equation 

 22433.42433.4 WTWT
dt

dW   (14) 

in which α, β and δ are the following constants 

G

V3

1
 , 

G

V
1

 , 
G

V

GV

1
3

21




  with 

2433.4
s

0Ds
1

T2

CSgc 
 , )sin(gc1  , 

SARe

)(cosTgc2

s

22433.4
s

1



 , 

22

2
1

2
Rg

)(cos 
 , 

 2V)AFR(cg)V()V(G   . 

(15) 

We have written the constants, in such a way as to factor out their dependence on V∞, as this 

will prove useful in our analysis. For the three representative airplanes considered as examples, 

G(V∞) is positive for all V∞; this is expected to be the case for all airplanes.  

We remark that Eq. (14) is the same one as obtained in Labonté (2012) for an airplane that 

moves at constant speed on an inclined rectilinear trajectory with the inclination angle θ. The only 

difference resides in the parameter δ, which contains here the additional radial acceleration term 

Ac
2
. The solution of Eq. (14) is therefore the same combination of confluent hypergeometric 

functions as described in Labonté (2012). Labonté (2015) has showed that a one-step Runge-Kutta 

approximation of order four produces essentially the exact value of W(t). This is this solution that 

we shall use hereafter. 
 

7.1 Calculating the weight 
 

According to the one-step Runge-Kutta approximation of order four, the weight of the airplane 

is given by W(t) 
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(a) Weight W(t) (b) Normalized weigh )t(W

~
 

Fig. 4 Weight variation in time for a Cessna 182 ascending on a helix with θ=15
0
, R=750 m and V∞=30 m/s 

 

  
(a) θ=15

0
, R=750 m, V∞=30 m/s (b) θ=−5

0
, R=800 m, V∞=30 m/s 

Fig. 5 Power required PR (solid line) and the maximum power available PAmax (dotted line), for the Cessna 

182 

 

 

 D(t)C(t)22B(t)A(t)
6

1
W(t) iW   

in which A(t)=t F(ti, Wi ), B(t)=t F(tm, Wi+A(t)/2), C(t)=t F(tm, Wi+B(t)/2), D(t)=t F(tm, Wi+C(t)) 









 


24.24334.2433
WT[h(t)]δβWT[h(t)]αW)F(t, and t = t - ti , tm = ti + t/2. (16) 

Fig. 4(a) shows how W varies with time, as the Cessna 182, ascends on a helical trajectory 

inclined at 15
0
, with radius R=750 m and speed V∞=30 m/s, to the maximum altitude it can attain. 

One can see that for such a trajectory, W is essentially a linear function of time; thus the linear 

approximation for W(t), discussed in Labonté (2015) could very well be used. We shall hereafter 

use the variable
2433.4)h(T/WW

~
 ; Fig. 4(b) shows how W

~
varies with time, for the same 

trajectory as in Fig. 4(a). 
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Fig. 6 )W
~

(Q i as a function of V∞ for the Cessna 182, when θ=-5
0
 and R=800 m 

 

 

8. The power required 
 

Eq. (1) states that  

 22433.42433.4
R WTWT

c
P 


  (17) 

Fig. 5(a) shows how the power required PR and the power available PAmax vary with time, as the 

Cessna 182, ascends on a helical trajectory with R=750 m, θ=15
0
 to the maximum altitude hf=3246 

m, that it reaches at tf=418 s. After this altitude the power required to ascend is greater than the 

maximum power available PAmax from its engine-propeller system. Fig. 5(b) shows how PR and 

PAmax vary when the Cessna 182 is descending with θ=−5
0
, R=800 m and V∞=30 m/s. 

 

8.1 Non-negativity of the power required 
 

The power required for the motion of the airplane PR should obviously be non-negative. When 

the airplane is not descending, the constants α and δ are positive and β is non-negative. Thus the 

right-hand side (RHS) of Eq. (14) is negative and the weight of the airplane is decreasing. Thus, 

according to the RHS of Eq. (17), the power required is positive. However, when the airplane is 

descending, β is negative so that some conditions are required to ensure that PR≥0. PR can then be 

written as 

)W
~

(QT
c

P 2433.4
R




 
with

2W
~

W
~

)W
~

(Q   (18) 

Since PR, and thus Q, must be non-negative for all values of W
~

on the trajectory, this must 

definitely be the case for its initial value iW
~

. Upon replacing, α, β and δ by their value, given in 

Eq. (15), this necessary condition 0)W
~

(Q i  can be written as 

      0W
~

VW
~

VW
~ 2

i1
2

i1
42

i21    (19) 
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Fig. 7 Llift induced drag (full line) and parasite drag (dotted line) for the Cessna 182 

 

 

Fig. 6 shows how )W
~

(Q i varies in term of the speed V∞ for the Cessna 182, when θ=-5
0
 and 

R=800 m. The left-hand side (LHS) of Ineq. (19) is a quadratic expression in V∞
2
. Its discriminant 

Δ0 is 

  2
i1

2
i21

2
i

2
10 W

~
W
~

4W
~

  (20) 

If the parameters R and θ are such that Δ0<0, then the expression on the LHS of Ineq. (19) does 

not have real roots, and therefore Ineq. (19) is satisfied for all V∞. If they are otherwise such that 

Δ0>0, then the LHS of Ineq. (19) has two positive real roots r0- and r0+ 

 
 0i12

i21

0 W
~

W
~

2

1
r 


  (21) 

and the LHS of Ineq. (19) is non-negative for all V∞ except those in the forbidden interval 

  00V r,rI  where 0)W
~

(Q i  . For the flight shown in Fig. 6,  9.53,0.41IV  m/s. 

As can be seen in Eqs. (5)-(7), the lift cancels the component of gravity that is perpendicular to 

the velocity, and the drag cancels its component along the velocity. Thus, the drag must be strong 

enough to cancel this effect of the force of gravity for the speed to remain constant. It is interesting 

to note that the two separate domains   0rV  and   0rV  correspond respectively to the 

regions in which it is the lift induced drag and the parasite drag that dominates the force of gravity. 

In Fig. 7 the full line and the dotted line represent respectively the lift induced drag and the 

parasite drag. These forces dominate respectively at low and large speeds. However, this ceases to 

be the case in the interval VI , in which the airplane would therefore accelerate. 

Once it has been ensured, by selecting a speed outside of VI , that PR is non-negative at the 

initial time t=ti, some conditions must still be imposed for it to remain non-negative at all later 

times. In order to find these conditions, we shall examine the properties of Q, considered as a 

second degree polynomial in W
~

. It corresponds to a convex parabola, with minimum at  
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Fig. 8 )W
~

(Q in terms of W
~

, for the Cessna 182, with V∞=30 m/s, =-5
0
 and R=800 m 

 

 






2
W
~

and positive intercept on the ordinate axis. This parabola does not change in time. The 

discriminant of Q is  42
1 , and two cases should be distinguished according to the sign of 

Δ1. 

Case 1: Δ1<0
 

Then )W
~

(Q does not have real roots and it is positive for all W
~

, without additional conditions 

being required. 
 

Case 2: Δ1≥0 

)W
~

(Q  has two positive real roots 1W
~

and 1W
~

  

 11
2

1
W
~




  (22) 

which do not change with time. )W
~

(Q is non-negative everywhere except when W
~

is in the 

interval   11W
~ W

~
,W

~
I . Fig. 8 shows how )W

~
(Q varies with W

~
 for the Cessna 182, with 

V∞=30 m/s, θ=-5
0
 and R=800 m.  

Consequently, we shall distinguish two sub-cases, which correspond to the position of iW
~

relative to this interval. 

Case 2a:  1i W
~

W
~

 

Since PR is non-negative at iW
~

, it will remain non-negative for all times after ti since )t(W
~

is a 

monotonically decreasing function of t.  

Case 2b:  1i W
~

W
~

 

PR is then non-negative at iW
~

. The value of PR then decreases as )t(W
~

decreases. This would be 

the situation for the trajectory shown in Fig. 8.1, for which 
7

i 106W
~  . Thus, in order for PR to  
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(a)  as a function of V∞ (b) Discriminant Δ2 as a function of V∞ 

Fig. 9 The variables  and Δ2 for the Cessna 182 

 

 

remain non-negative, it is necessary that tf be limited so that )t(W
~

f remains outside of
W
~I , i.e., 

 1f W
~

)t(W
~

 (23) 

 

8.2 Sufficiency of power available 
 

The airplane propelling system should be able to provide enough power for the motion to be 

possible. Thus, it is required that  

PR ≤ PAmax. (24) 

We recall that the available power varies with altitude as follows 

2433.4

s

AA
T

)h(T
)0(P)h(P 








  (25) 

Upon using Eqs. (17) and (25), Ineq. (24) can be written as 

    

0)W
~

(Q1  with 











2433.4
s

maxA2
1

T

)0(Pc
W
~

W
~

)W
~

(Q . (26) 

The function Q1 is identical to the function Q discussed in Section 8.1, except that its intercept 

on the ordinate axis is  instead of α, with  

2433.4
s

maxA

T

)0(Pc


  (27) 

Consequently, its discriminant Δ2 is identical to Δ1, except that the intercept is replaced by  . 

Fig. 9(a) shows how varies with V∞. If Δ2<0, Q1 has no real roots, and is therefore always  
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Fig. 10 )W
~

(Q i1 as a function of V∞, when R=800 m and θ=-5
0
 for the Cessna 182 

 

 

positive; Ineq. (24) is then never satisfied. It is therefore necessary that Δ2≥0. This inequality 

imposes a restriction on the speed V∞. Fig. 9(b) shows how Δ2 varies as a function of V∞, for the 

Cessna 182, when θ=-5
0
 and R=800 m.  

We remark that the value of Δ2 is independent of the sign of the inclination angle and of the 

weight W of the airplane. For the above mentioned trajectory, Δ2≥0 only when V∞<96.9 m/s. 

When Δ2≥0, the two roots are 

 22
2

1
W
~




  (28) 

)t(W
~

must always remain in the interval   22W
~ W

~
,W

~
I for Ineq. (24) to hold. A necessary 

condition for this to be the case is certainly that it must hold at the initial time ti, so that 

0)W
~

(Q i1   (29) 

This inequality imposes another constraint on the speed V∞. Fig. (10) shows how )W
~

(Q i1

varies with the speed V∞, for the Cessna 182, when R=800 m and θ=-5
0
. In that case, Ineq. (29) is 

satisfied only when V∞<93.3 m/s. Note that the fact that iW
~

satisfies Ineq. (26) means that it is in 

the interval 
W
~I . 

There now remains to ensure that Ineq. (26) is satisfied at all subsequent times. We shall 

distinguish the cases when the airplane is descending and when it is non-descending. 

Case 1: The airplane is descending 

β is then negative and the absolute minimum of )W
~

(Q1 is on the positive W
~

-axis. The 

following two different situations can occur. 

1(a) 0 : The root 2W
~

is then non-positive. The fact W
~

is monotonically decreasing and 

positive, implies that   2i2 W
~

W
~

)t(W
~

W
~

at all times and thus 0)W
~

(Q1  at all times. No 

additional condition is then required. 
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(a) V∞=85 m/s, θ=-5

0
 and R=800 m (b) V∞=30 m/s, θ=15

0
 and R=750 m 

Fig. 11 )t(W
~

and its lower bound 2W
~

and its upper bound 
2W

~
, for the Cessna 182 

 

 

1(b) 0 : The two roots 2W
~

and 2W
~

are positive. Ineq. (29) ensures that iW
~

is in the 

interval 
W
~I so that, since W

~
is monotonically decreasing, it remains in the interval 

W
~I if tf is 

limited such that  

)t(W
~

W
~

f2  . (30) 

Fig. 11(a) shows how )t(W
~

changes in time with respect to 2W
~

, for the Cessna 182 with θ=-5
0
, 

R=800 m, and V∞=85 m/s. In that case, Ineq. (30) is satisfied for all times until the airplane 

reaches sea level.  

Case 2: The airplane is non-descending 

In that case, β≥0, and since the first two terms in Q1 are positive, Ineq. (26) can only be 

satisfied if the third term of Q1 is negative, that is if 0 . This corresponds to a constraint on the 

values of V∞ that is independent on the values of the radius R, the angle θ and the weight of the 

airplane W. Its value is a fixed characteristic of the airplane parameters, and it can therefore be 

calculated once for all. Fig. 9(a) shows how  varies as a function of V∞, for the Cessna 182. In 

that case, one can determine that it is negative only when V∞<78.0 m/s. When 0 , the root

2W
~

of Q1 will be negative while its other root 2W
~

is positive. 0)W
~

(Q1  will then be true for 

all W
~

if and only if 

 2W
~

)t(W
~

 t. (31) 

This inequality was ensured to hold at t=ti; it will then determine the maximum value that tf can 

have, as the first instant at which this inequality does not hold. Fig. 11(b) shows how )t(W
~

 

changes with time with respect to 2W
~

, for the Cessna 182 with θ=15
0
, R=750 m, and V∞=30 m/s.  
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9. Flyability analysis for ascending flights 
 

We have derived the conditions under which helical trajectories are flyable in terms of the 

airplane dynamical abilities. We cannot solve all of them together in order to obtain explicit range 

formulas for each parameter. Nevertheless, our results can be used to devise a procedure for testing 

whether trajectories are flyable or not. We describe this procedure below and show how it can be 

used to produce tables of parameters for flyable trajectories.  

 

9.1 Procedure 
 

1. Select an angle of inclination θ.  

2. Compute the lower bound RLB on R for which Ineq. (11), which guarantees that the bound on 

the lift coefficient, is respected. Select a value for R. 

3. Compute the upper bound VUB1 on V∞ according to Ineq. (7), which is required by the bound 

on the load factor. 

4. Compute the lower bound VLB1 on V∞ according to Ineq. (12), which guarantees that the 

bound on the lift coefficient, is respected  

5. Calculate defined below Eq. (26), and determine the upper bound VUB2 on V∞ for which

0 . 

6. Calculate the discriminant Δ2 and determine the upper bound VUB3 on V∞ for which
 
Δ2≥0. 

7. Determine the upper bound VUB4 on V∞, for which 0)W
~

(Q i1  . 

8. Select V∞ according the upper bounds VUB1, VUB2, VUB3, VUB4, and the lower bound VLB1. 

9. Compute tf1, the time at which the airplane would arrive at sea level with h(tf1)=0. 

10. Compute W(t) and )t(W
~

.  

11. Calculate the roots 2W
~

, according to Eq. (28) and determine the instant of time tf2 at which 

the inequality  2W
~

)t(W
~

ceases to hold. 

12. Calculate tf3, the time at which all the fuel would be burned, i.e., Wi−W(tf3)=Wf. The 

longest time of flight tf is the smallest of tf1, tf2, tf3.  

Once this is done, one can calculate the amount of fuel used, and the final altitude reached on 

the helix. A table of allowed trajectory parameters can be produced for a particular airplane by 

successively performing the above procedure with various values of θ and R. We will show an 

example of this procedure in the next section. 

 

9.2 Construction of flyability tables 
 

In order to illustrate the proposed method, we construct flyability tables for a few values of θ, 

these values increase discretely until the maximum possible inclination is reached. In all cases, the 

initial weight of the airplane is such that it carries half its maximum load, which includes a full 

tank of fuel. All ascending trajectories start at sea level so that h(ti)=0. 

The first line of the tables contains the value of θ, the minimum radius Rm and the minimum 

and maximum speeds Vm and VM. The tables normally contain the trajectory parameters for the 

two speeds: these are Vm and VM. However, a smaller value than VM is used when the trajectory 

with VM would last less than 3 seconds. For each selected speed, the parameters shown are: the 

maximum altitude that can be reached, the time and amount of fuel it takes to reach it. Although  
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The feasible constant speed helical trajectories for propeller driven airplanes 

Table 1 Cessna 182 trajectories ascending at 5
0 

θ = 5
0
 Rm = 784 m Vm = 28.2 m/s VM = 63.8 m/s  

 hf (m) tf (sec) Fuel (N) Fuel (%) 

Vm 5517 2245 145 8.3 

63.0 500 91 11.4 0.7 

 

Table 2 Cessna 182 trajectories ascending at 15
0 

 θ = 15
0
 Rm =737 m Vm = 27.7 m/s VM = 42.6 m/s  

 hf (m) tf (sec) Fuel (N) Fuel (%) 

Vm 3674 513 61 3.5 

42.0 m/s
 

195 18 2.6 0.15 

 

Table 3 Cessna 182 trajectories ascending at 25
0 

 θ = 25
0
 Rm = 370 m Vm = 20.3 m/s VM = 29.1 m/s  

 hf (m) tf (sec) Fuel (N) Fuel (%) 

Vm 2480 289 46 2.6 

29.0 m/s
 

56.4 4.6 0.8 0.05 

 
Table 4 Silver Fox like UAV trajectories ascending at 5

0 

 θ = 5
0
 Rm =233 m Vm = 15.4 m/s VM = 41.5 m/s  

 hf (m) tf (sec) Fuel (N) Fuel (%) 

Vm 3700 2757 1.14 5.95 

41.0 m/s 122 34 0.04 0.20 

 

Table 5 Silver Fox like UAV trajectories ascending at 25
0 

 θ = 25
0
 Rm = 193 m Vm =14.7 m/s VM = 25.0 m/s  

 hf (m) tf (sec) Fuel (N) Fuel (%) 

Vm 3700 596 0.73 3.81 

24 m/s 596 59 0.08 0.44 

 

Table 6 Silver Fox like UAV trajectories ascending at 45
0 

 θ = 45
0
 Rm = 118 m Vm = 13.0 m/s VM = 16.9 m/s  

 hf (m) tf (sec) Fuel (N) Fuel (%) 

Vm 2681 292 0.54 2.82 

16.0 m/s
 

615 54 0.10 0.55 

 

 

we have not proved it explicitly, we expect that solutions exist for all radii larger than Rm, and all 

speeds between Vm and VM.  

 

9.2.1 Cessna 182 
Tables 1-3 are constructed for the angles of climb θ=5

0
, 15

0
 and 25

0
, which is the steepest angle  
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Table 7 C-130 Hercules trajectories ascending at 5
0 

 θ = 5
0
 Rm = 3943 m Vm = 63.1 m/s VM =122.2 m/s  

 hf (m) tf (sec) Fuel (N) Fuel (%) 

Vm 5017 912 4153 1.56 

118.0 m/s 155 14.7 122 0.05 

 

Table 8 C-130 Hercules trajectories ascending at 10
0 

 θ = 10 
0
 Rm = 3854 m Vm = 62.8 m/s VM = 79.6 m/s  

 hf (m) tf (sec) Fuel (N) Fuel (%) 

Vm 1747 160 1114 0.42 

62.0 m/s
 

69 5 42 0.02 

 

 

for which a helical trajectory can be flown.  

 

9.2.2 Silver fox like UAV 
Tables 4-6 are constructed for the angles of climb θ=5

0
, 25

0
 and 45

0
, which is the steepest angle 

for which a helical trajectory can be flown.  
 

9.2.3 C-130 hercules 
Tables 7-8 are constructed for the angles of climb θ=5

0
 and 10

0
, which is the steepest angle for 

which a helical trajectory can be flown.  
 

 

10. Flyability analysis for descending flights 
 

Descending flights differ from ascending ones in that conditions have to be imposed to 

guarantee that the power required remains positive. Beside having to ensure the satisfaction of 

these additional constraints, the procedure is similar to that for ascending flights. 

 
10.1 Procedure 

 

1. Select an angle of inclination θ.  

2. Compute the lower bound RLB on R for which Ineq. (11), which guarantees that the bound on 

the lift coefficient, is respected. Select a value for R. 

3. Compute the upper bound VUB1 on V∞ according to Ineq. (7), which is required by the bound 

on the load factor. 

4. Compute the lower bound VLB1 on V∞ according to Ineq. (12), which guarantees that the 

bound on the lift coefficient, is respected  

5. Calculate the discriminant Δ0, given in Eq. (20). If Δ0≤0
 
then the power required is always 

non-negative; continue the procedure at Step 7 below. 

6. If Δ0>0, calculate the forbidden interval   00V r,rI  for the speed V∞, according to 

Eq. (21). V∞ has to be outside of this interval for PR to be non-negative at the initial time ti. 

7. Determine the upper bound VUB2 on V∞ for which
 
Δ2≥0. 

8. Determine the upper bound VUB3 on V∞, for which 0)W
~

(Q i1  . 

390



 

 

 

 

 

 

The feasible constant speed helical trajectories for propeller driven airplanes 

Table 9 Cessna 182 trajectories descending at 5
0 

θ =-5
0
 Rm=784 m 

Vm1=28.2 m/s 

VM1=41.1 m/s 

Vm2=78.0 m/s 

VM2=53.7 m/s 
 

 hf (m) tf (sec) Fuel (N) Fuel (%) 

Vm1 0 2245 18.2 1.0 

VM1 5499 5 0.0 0.0 

Vm2 0 1179 3.8 0.2 

VM2 0 812 38.2 2.2 

 

Table 10 Cessna 182 trajectories descending at 10
0
 

θ = -10
0
 Rm = 766 m Vm = 92.6 m/s VM = 112.1 m/s  

 hf (m) tf (sec) Fuel (N) Fuel (%) 

Vm 0 343 10.5 0.6 

111 m/s 5090 22 1.6 0.1 

 

 

9. Select V∞ according the upper bounds VUB1, VUB2, VUB3, the lower bound VLB1 and, if
 
Δ0>0, 

ensure that V∞ is outside the forbidden interval VI . 

10. Compute tf1, the time at which the airplane would arrive at sea level with h(tf1) = 0. 

11. Compute W(t) and )t(W
~

.  

12. If Δ0>0, the following steps are required. 

• Calculate Δ1=β
2
−4αδ, the discriminant of Q. If Δ1>0 then Step 12 is finished. 

• If Δ1≥0, calculate the roots 1W
~

and 1W
~

, according to Eq. (2). If  1i W
~

W
~

, then Step 12 is 

finished. 

•  1i W
~

W
~

, determine the last instant of time tf2 at which the inequality  1W
~

)t(W
~

holds. 

13. Calculate : if 0 , then no further steps are required. Continue to Step 16. 

14. If 0 , calculate the roots 2W
~

, according to Eq. (28). Determine the last instant of time 

tf3 at which the inequality )t(W
~

W
~

2  holds. 

15. Calculate tf4, the time at which all the fuel would be burned, i.e., Wi−W(tf4)=Wf. 

16. The smallest of tf1, tf2, tf3, tf4 is the latest instant of time at which all the required conditions 

for the flyability of the trajectory are met. 

Once this is done, one can calculate the amount of fuel used, and the final altitude reached on 

the helix. A table of allowed trajectory parameters can be produced for a particular airplane by 

successively performing the above procedure with various values of θ and R. We will show an 

example of this procedure in the next section. 
 

10.2 Construction of flyability tables 
 

Tables are constructed for a few values of θ, these values decrease until the maximum possible 

inclination is reached. In all cases, the initial weight of the airplane is such that it carries half its 

maximum load, comprising a full tank of fuel. All trajectories start at the service ceiling so that 

h(ti)=hc. 
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Table 11 Silver Fox like UAV trajectories descending at 5
0
 

 θ = -5
0
 Rm = 233 m Vm = 27.6 m/s VM = 53.1 m/s  

 hf (m) tf (sec) Fuel (N) Fuel (%) 

Vm 0 1538 0.04 0.2 

VM 3576 27 0.02 0.1 

 

Table 12 Silver Fox like UAV trajectories descending at 10
0
 

θ = -10
0
 Rm = 228 m Vm = 43.4 m/s VM = 60.0 m/s  

 hf (m) tf (sec) Fuel (N) Fuel (%) 

Vm 0 491 0.05 0.3 

59.0 m/s 2797 88 0.10 0.5 

 

Table 13 Silver Fox like UAV trajectories descending at 15
0
 

θ = -15
0
 Rm = 219 m Vm = 53.8 m/s VM = 65.0 m/s  

 hf (m) tf (sec) Fuel (N) Fuel (%) 

Vm 0 266 0.06 0.3 

VM 3072 37 0.2 1.1 

 
Table 14 C-130 Hercules trajectories descending at 2.5

0
 

θ = -2.5
0
 Rm = 3966 m Vm = 63.2 m/s VM = 217.1 m/s  

 hf (m) tf (sec) Fuel (N) Fuel (%) 

Vm 0 2543 2454 0.9 

VM 6846 17.3 70.3 0.03 

 

Table 15 C-130 Hercules trajectories descending at 5
0
 

θ = -5
0
 Rm = 3943 m 

Vm1 = 63.1 m/s 

VM1 = 67.5 m/s 

Vm2 = 229.0 m/s VM2 

= 268.6 m/s 
 

 hf (m) tf (sec) Fuel (N) Fuel (%) 

Vm1 5827 215 39.7 0.01 

66.5 m/s 6743 46 2.0 0.00 

Vm2 0 351 870 0.3 

267 m/s 6659 15 59.8 0.02 

 

 

The first line of the tables contains the value of θ, the minimum radius Rm, the minimum and 

maximum speeds Vm and VM. When two ranges of speeds are possible, their respective lower 

limits will be denoted Vm1 and Vm2 and their upper limits VM1 and VM2. Recall that this possibility 

of two separate domains of speeds was discussed in Section 8.1. All tables contain the trajectory 

parameters for only the speeds at the extremities of the possible ranges. A somewhat smaller speed 

than VM1 or VM2 is used when the trajectory with these speeds lasts less than 3 seconds. The 

content of the tables is the same as that in the tables for ascending trajectories. Again, we have not 

proved it explicitly, but we expect that solutions exist for all radii larger than Rm, and all speeds 

between the two extremities of speed ranges.  
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10.2.1 Cessna 182 
Tables 9-10 are constructed for the angles of descent θ=-5

0
, and -10

0
, which is the steepest 

angle for which a helical trajectory can be flown.  
 

10.2.2 Silver fox like UAV 
Tables 11-13 are constructed for the angles of descent θ=-5

0
, -10

0
 and -15

0
, which is the 

steepest angle for which a helical trajectory can be flown.  
 

10.2.3 C-130 hercules 
Tables 14-15 are constructed for the angles of descent, θ=-2.5

0
, and -5

0
, which is the steepest 

angle for which a helical trajectory can be flown.  
 
 

11. Conclusions  
 

We have obtained general formulas that express the necessary and sufficient conditions for an 

airplane to be able to follow an ascending or a descending helical trajectory. These formulas allow 

the determination of the possible angles of inclination of the trajectory, its minimum radius, the 

minimum and maximum speeds that the airplane can have on this trajectory, the fuel required, the 

time required to fly it, and the maximum and minimum altitude difference between the starting and 

the finishing points. We believe that these formulas are original in that no such results have been 

published before. They will find a definite usefulness in the construction of airplane trajectories 

that contain helical segments. They also constitute, in themselves, an important tool for the 

analysis of airplane performances.  

In Section 9, we have demonstrated a procedure that allows for the production of tables of 

parameters for which ascending helical trajectories are possible. In Section 10, we have done the 

same for descending trajectories. We have presented sample applications of these procedures for 

three very different airplanes, namely the Cessna 182 Skylane, the Silver Fox UAV and the C-130 

Hercules.  

Here are some remarkable facts that are exhibited by the tables we have produced.  

• In ascending trajectories, the maximum altitude reachable decreases as the angle of ascend 

increases and/or the speed increases. This is due to the fact that the power required to fly on these 

trajectories increases with these parameters, and thus the maximum power available is then 

reached earlier.  

• When the airplane is ascending, its angle of inclination can be steeper than when it is 

descending. What limits the possibility of descending at constant speed is the force of gravity that 

tends to accelerate the fall of the airplane while it has no other mean of resisting the speed increase 

other than its drag. 

• The range of possible values for V∞ becomes narrower as the angle of inclination increases.  

• The change in weight over the longest possible trajectory is rather small. For descending 

flights, in particular, it is always below 2.5% of the total amount of fuel. For ascending flights, it 

reaches up to 8.5% for the Cessna 182, 6% for the Silver Fox and 2% for the Hercules. As to be 

expected, the largest amount of fuel is required on trajectories with smaller inclination angles that 

are typically longer and last longer. Nevertheless, there would be many applications for which a 

reasonable approximation could consist in considering the weight of the airplane to be constant on 

the helical trajectory. This would certainly be valid in all cases, when only a short segment of the 

helical trajectory is flown. Such an approximation would entail a worthwhile simplification of the 
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computation requirements. 

There are two important results presented in this article. The first one consists in new 

theoretical formulas that describe all dynamical aspects of an airplane flying on a helical 

trajectory. The second one is a method for constructing flyability tables for helical trajectories. 

Such tables would be very valuable in situations where it is not possible to perform, on-board the 

airplane, the calculations required for evaluating the mathematical expressions we derived. Once 

constructed, these tables could easily be stored in a memory on-board the airplane, from which the 

required parameters could be read when the need arises. This approach would clearly be 

appropriate for automatic trajectory planning even with small microcontrollers. 
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Appendix A: Reference airplanes 
 

We note that there could be small differences between the values we list here and the actual 

values for a particular model of these airplanes. We used values that were available on the internet 

or were estimated from the values for similar airplanes. These data are quite adequate for our 

purpose that is to illustrate the calculations involved in the formulas we have derived.  

The thrust of the Cessna 182 and that of the C-130 Hercules is provided by a reciprocating 

engine with constant speed propeller; that of the Silver Fox by a reciprocating engine with a fixed 

pitch propeller. We recall that the efficiency of the propeller is a function of the advance ratio J, 

defined as 

DN

V
J   

in which N is its number of revolution per second and D is its diameter. Thus the maximum power 

available PAmax will depend on the speed, according to the equation 

maxmaxA P)J(P   

The dependence of η on J for a constant speed propeller has the general features shown in Fig. 

12(a). This curve approximates that given in Cavcar (2004) by the following quadratic expressions 

  8.08.0J
640.0

663.0
)J(

2
 








  J ≤ 0.8. 8.0)J( 

 
 J > 0.8. 

The dependence of η on J for a fixed pitch propeller has the general features shown in Fig. 

12(b). This curve approximates that given in the Aeronautics Learning Laboratory for Science 

Technology and Research (ALLSTAR) of the Florida International University (2011) by the 

following quadratic expressions 

               
  83.070.0J

49.0

83.0
)J(

2
 







   J ≤ 0.7.   

  83.070.0J
06.0

83.0
)J(

2
 







   J > 0.7. 

Note that the propeller efficiency of this fixed pitch propellers goes to 0 at V∞=66.1 m/s and 

becomes negative after that. Although a negative propeller efficiency might be desirable to slow 

down the airplane when it descends, it is not recommended to let this happens. When this happens, 

the propeller drives the engine and damage to the engine may result (see for example the 

Commercial Aviation Safety Team document 2011). We shall therefore not allow speeds larger 

than that value.  
 

A.1 Cessna 182 skylane  
 

The parameters listed are W1=the weight of the empty airplane, W0=the maximum take-off 

weight, WF=the maximum weight of fuel, b=the wingspan, S=the wing area, e=Oswald’s 

efficiency factor, CLmax=the maximum global lift coefficient, CD0=the global drag coefficient at 

zero lift, nmax and nmin are respectively the maximum and minimum value of the load factor, 
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(a) Constant speed propeller (b) Constant pitch propeller 

Fig. 12 Typical efficiency factor as a function of the advance ratio J 

 
Table 16 Characteristic parameters of the cessna 182  

W1 = 7,562 N W0 = 11,121 N WF =1737 N 

b = 11.02 m S = 16.1653 m
2
 e = 0.75 

CLmax = 2.10 CD0 = 0.029 nmax = 3.8, nmin = -1.52 

VNE = 90 m/s hc = 5517 m  

PAmax = 171.511 kW RPM = 2,600 c = 7.447510
-7

 

Const. speed propeller Diameter = 2.08 m  ηmax = 0.80 

 
Table 17 Characteristic parameters of the silver fox-like airplane 

W1 = 72.35 N W0 = 119.6 N WF = 19.1 N 

b = 2.4 m S = 0.768 m
2
 e = 0.8 

CLmax = 1.26 CD0 = 0. 0251 nmax = 5.0, nmin = -2.0 

VNE = 56.4 m/s hc = 3700 m  

PAmax = 1.491 kW RPM = 7,500 c = 7.447510
-7

 

Fixed pitch propeller Diameter = 0.56 m  ηmax = 0.83 

 
 

VNE=maximum speed allowed, hc=the service ceiling, PAmax=maximum breaking power at sea 

level, RPM=number of revolution per minute, c=the specific fuel consumption, 

Diameter=diameter of the propeller, ηmax=maximum value of the propeller efficiency. 

The characteristic parameters for the Cessna 182 can be found in Airliners.net (2015), Roud 

and Bruckert (2006) and McIver (2003). Some of the parameters, which were not readily available, 

were estimated from those of the very similar Cessna 172.  
 

A.2 Silver fox like UAV  
 

The Silver Fox UAV is presently produced by Raytheon. Some specifications for the Silver 

Fox can be found at UAVGLOBAL Unmanned Systems and Manufacturers (2016). The power 

available PA(0) for the Silver Fox is only about 370 W, which allows it to climb only at low 
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Table 18 Characteristic parameters of the C-130 hercules 

W1 = 337,120 N W0 =689,009 N WF = 266,717 N 

b = 40.4 m S = 162.1 m
2
 e = 0.92 

CLmax = 2.7 (2) CD0 = 0.0138 (1) nmax = 3.0, nmin = -1.0 

VNE = 186.4 m/s hc = 7010 m  

PAmax = 11,113 kW RPM =1020 c = 7.447510
-7

 

Const. speed propeller propeller Diameter = 4.11 m  ηmax = 0.81 

 

 

angles. Meanwhile, it is common for Radio Controlled (RC) airplanes to climb at very steep angles 

(See for example Granelli (2007)). Thus, upon taking advantage of motors that have been 

developed in this domain, a Silver Fox-like airplane could be endowed with much more power in 

order to improve considerably its manoeuvre envelope. One such motor is the O.S. 120AX 20cc 

that outputs 3.1 hp, i.e., 2312 W, and weights only 650 g; so we shall consider a Silver Fox-like 

UAV with this particular motor. 

 

A.3 Lockheed C-130 Hercules  
 

Some of its specifications are those of the Hercules itself, as can be found in Lockheed Martin 

(2013), Stewart Air Force Base (2005) and Sadraey (2013) and some parameters have been set at 

plausible values, by comparison with other available transport airplanes Filippone (2000). 
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Nomenclature 
 

a speed of sound in air. At altitude h, a(h)= )h(TR . At sea level, a(0)=340.3029 m/s 

a1 
absolute value of the slope of the temperature as a function of altitude, below 11 km, a1=6.510

-3
 

K/m 

AFR air fuel ratio (about 14.7) 

AR aspect ratio=b
2
/S 

b wingspan 

c specific fuel consumption in Newton per Watt-second, that is in m
-1

 

CD global drag coefficient for the aircraft=
eAR

C
C

2
L

0D


  (Drag polar) 

CD0 global drag coefficient at zero lift 

CL global lift coefficient for the aircraft 

D drag =
2

DVCS
2

1


 

e Oswald’s efficiency factor 

g gravitational constant=9.8 m/s
2
 

h altitude of airplane 

hc service ceiling 

L lift=
2

LVCS
2

1


 

P power of the engine in Watt 

R specific gas constant for air=287.058 J/(kg K) 

S wing area 

t time variable 

Ts temperature at sea level=288.16 K 

T(h) temperature at altitude h 

v3 vertical component of airplane velocity 

V airplane speed with respect to the undisturbed air in front of it 

VNE speed never to be exceeded 

W weight of the airplane 

W1 weight of the empty airplane 

Wf maximum weight of fuel 

W0 maximum take-off weight (MTOW) 

γ ratio of the constant pressure specific heat to the constant volume specific heat=cP/cV=1.4 for air 

η propeller efficiency 

ρs air density at sea level=1.225 kg/m
3
 

ρ(h) density of undisturbed air in front of airplane, at altitude h, 
2433,4

s

s
T

)h(T








  
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