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Abstract.  Automatic trajectory re-planning is an integral part of unmanned aerial vehicle mission 
planning. In order to be able to perform this task, it is necessary to dispose of formulas or tables to assess the 
flyability of various typical flight segments. Notwithstanding their importance, there exist such data only for 
some particularly simple segments such as rectilinear and circular sub-trajectories. This article presents an 
analysis of a new, very efficient, way for an airplane to fly on an inclined circular trajectory. When it flies 
this way, the only thrust required is that which cancels the drag. It is shown that, then, much more inclined 
trajectories are possible than when they fly at constant speed. The corresponding equations of motion are 
solved exactly for the position, the speed, the load factor, the bank angle, the lift coefficient and the thrust 
and power required for the motion. The results obtained apply to both types of airplanes: those with internal 
combustion engines and propellers, and those with jet engines. Conditions on the trajectory parameters are 
derived, which guarantee its flyability according to the dynamical properties of a given airplane. An 
analytical procedure is described that ensures that all these conditions are satisfied, and which can serve for 
producing tables from which the trajectory flyability can be read. Sample calculations are shown for the 
Cessna 182, a Silver Fox like unmanned aerial vehicle, and an F-16 jet airplane. 
 

Keywords:  automatic trajectory planning; airplane circular trajectory; inclined circular trajectories; 

inclined pendulum trajectories; Dubins 3D trajectories 

 
 
1. Introduction 

 

This work is part of a broader study of automatic mission planning for unmanned aerial 

vehicles (UAVs). Whereas the flight programs of commercial airplanes are normally fairly simple 

and are specified before the flight takes place, those of UAVs are generally more complex, and 

very often have to be adapted to unforeseen circumstances during the mission by on-board re-

planning the trajectory. For this to be possible, it is necessary to dispose of mathematical formulas 

or tables that provide information about trajectories that are flyable according to the airplane 

dynamics, together with other important parameters such as the fuel use and the time of flight. 

Furthermore, for mission optimization purposes, formulas are required to allow for assigning costs 

to alternative flyable trajectories. In this article, we present such formulas for a particular type of 

circular trajectories that lie in inclined planes.  

We point out the distinction that can be made between “path planning” and “trajectory 

                                           

Corresponding author, Emeritus Professor, E-mail: gilles.labonte@rmc.ca 



 

 

 

 

 

 

Gilles Labonté 

planning”. In the first process, it is only a “road” that is determined, which airplanes can travel. In 

the second process, on the other hand, the position and velocity of the airplane on this road are also 

determined as a function of time. Thus, for mission planning purposes, it is trajectory planning that 

has to be performed, although path planning would still be a preliminary step. 

A preferred approach to automatic path planning involves two stages. In a first stage a stick 

path is constructed, as a continuous sequence of rectilinear segments. In a second stage, the 

connections between these segments are smoothed so that the velocity of an airplane on the path 

would be continuous.  

Labonté (2011) and (2015a) analyzed the dynamics of airplanes on rectilinear trajectories, 

inclined at arbitrary angles, and derived necessary conditions for engine-propeller driven airplanes 

to be able to fly such trajectories. The formulas obtained allow calculating all the physical 

parameters involved. We note that the corresponding analysis has not yet been done for jet 

airplanes, but it would not be difficult to do, with the help of the same method used for propeller 

airplanes.  

There are two main approaches for connecting smoothly the rectilinear segments. The one that 

is most often used consists in connecting them with arcs of circles, in such a way that the tangent 

to the path is continuous. This method generalizes to three-dimensional space the well-known two-

dimensional paths of Dubins (1957). Thus, these circular arcs may lie in planes at various 

inclinations with respect to the horizontal. Many authors are concerned only with constructing 

such paths, without specifying the speed at which they would be flown. This is the case of 

Anderson (2002), Rathbun et al. (2002), Jun and D’Andrea (2003), Torroella (2004), Anderson et 

al. (2005), Jeyaraman et al. (2005), Bottasso (2008), Shanmugavel et al. (2010), Wang Zhong and 

Li Yan (2014), Lin and Saripalli (2014), Lugo-Cardenas et al. (2014). Some other authors, for 

reason of simplicity, propose trajectories that correspond to flying these paths at constant speed. 

This is the case of Chandler et al. (2000), Jia and Vagners (2004), Chitsaz and LaValle (2007), 

Hwangbo et al. (2007), Li Xia et al. (2009), Ambrosino et al. (2009), Babaei and Mortazavi 

(2010), Hota and Ghose (2010). We note however that none of these authors incorporate the 

rigorous formulas obtained in Labonté (2011) and (2015a) for the straight segments and those 

derived in Labonté (2015b) for the inclined circular segments. 

Another common path smoothing method employs splines, as described in, among others, Judd 

(2001), Nikolos et al. (2003), Singh and Padhi (2009) and Yang and Sukkarieh (2010). However, 

this method has the disadvantage of yielding curved connecting curves that are not easily analyzed 

for their flyability and, to our knowledge, no such analysis of them has yet been performed.  

Because they are simpler to analyze, we concentrated our efforts on the circular connections. 

There are, evidently, infinitely many variable speeds with which these sub-trajectories can be 

flown. However, at this stage of the study, we look for rather simple speed patterns that correspond 

to solvable equations of motion, from which appropriate control commands for the airplane can be 

determined. Even though such solvable systems may appear “oversimplified”, they have great 

value as a basis for further developments.  

It is remarkable that, even for constant speed inclined circular flights, there existed no complete 

solution until the work of Labonté (2015b). Most airplane dynamics manuals discuss circular 

trajectories in the horizontal plane, under the heading of “banked turns”. Many also discuss 

circular trajectories in the the vertical plane as loops, pull-ups or pull-downs. A few have a section 

on aerobatics where they discuss inverted loops and spiral trajectories (see for example, Chapter 3 

of Phillips (2004), Chapter 8 of Mair and Birdsall (1992), and Section 15 of Cowley and Levy 

(1920)). In all the studies of climbing or descending flights that we found, except when vertical 
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Low thrust inclined circular trajectories for airplanes 

loops are discussed, the approximation is made that θH, the angle of the trajectory with the 

horizontal plane, is small so that cos(θH)≈I. Although it is true, for many airline airplanes, that θH 

is limited to such small values, it is not true for UAVs or high performance fighter airplanes. UAVs 

come in a wide range of sizes and agilities and they can fly much more daring maneuvers as 

inhabited airplanes. Thus, in the present study, we do not make the approximation of small 

inclinations; our analysis covers all angles of inclination.  

The present study of low thrust inclined circular trajectories was initiated after Labonté (2015b) 

clearly showed that the constant speed requirement considerably limits the trajectory inclination. It 

therefore seemed imperative to find some other analytically manageable way to fly. The one we 

describe in the present article is relatively simple in nature and involves only familiar 

mathematical formulas. On such trajectories, the airplane propulsion system only compensates for 

the aerodynamic drag so that the airplane follows gravity as a simple pendulum would move on an 

inclined plane. We will solve exactly the equation of motion to yield the position and velocity of 

the airplane as functions of time. We will derive constraints for the angle of inclination of the 

trajectories, their radii and the speeds, which correspond to the limits on the load factor, the lift 

coefficient and the thrust available. We believe that this particular method of flying has not been 

studied before, and the corresponding equations of motion have not already been solved. 

 

1.1 Simplifying assumptions 
 

In his Chapter XVII on “Nonuniform Flight”, Von Mises (1945) states: “the equation of motion 

for a rigid body with all the six degrees of freedom can be integrated only very seldom”. 

Furthermore, it would be very complicated to really take into account all the aerodynamic forces 

acting on the different parts of an airplane in nonuniform motion, because of the asymmetric 

attitude of the airplane with respect to its trajectory. In this same chapter, Von Mises (1945) 

discusses vertical loops and banked horizontal turns. In this discussion, he mentions that in curved 

trajectories, “the air reactions must supply, in addition to the centripetal force ..., a rolling, a 

pitching, and a yawing moment...” After some calculations, for the banked turn, he comments that, 

“the moments required for maintaining the steady rotation are unimportant under normal 

conditions”. Mair and Birdsall (1992) make a similar remark in their Chapter 8 that presents a 

detailed discussion of vertical loops, horizontal banked turns and helicoidal trajectories. In Section 

8.5), they state “that any increase of drag due to the angular velocity of the aircraft and the 

deflections of the control surfaces can be neglected in comparison with the dominant increase of 

the lift-dependent drag.” Section 15 of Cowley and Levy (1920) comments similarly that a 

rigorous treatment of curved flight trajectories would be extremely complicated because of the 

presence of imperfectly known factors related to the variation in aerodynamic forces along the 

wings, due to their non-symmetric role in the motion. They assume that “any increase of drag due 

to the angular velocity of the aircraft and the deflections of the control surfaces can be neglected in 

comparison with the dominant lift-dependent drag.”  

In the present study, we made the same assumptions to the effect that the dynamics involved in 

the rotations of the airplane about its center of mass are negligible when one is concerned with the 

motion of its center of mass. We also not take into account the perturbations of the atmosphere. We 

consider that the circular trajectories are small enough that the air density, the air temperature and 

the weight of the airplane can be considered constant during the motion. Finally, we make the 

same remark as that in the introduction to Chapter 3 on “Aircraft Performance” of Phillips (2004) 

to the effect that the material we present “should be thought of as only a preliminary study of 
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airplane performance. Here, emphasis is placed on obtaining closed-form analytic solutions 

suitable for preliminary design.” 

 

1.2 Organisation of the article 
 

This article starts with a presentation of the equations of motion for an airplane center of mass 

on an arbitrary inclined circular trajectory. It then describes a particular type of flight over such 

trajectories, which is akin to the motion of a pendulum on an inclined plane. The corresponding 

equations of motion are then solved for the position and speed of the airplane. The required angle 

of bank is calculated. So is the load factor, and the limits on the trajectory parameters that follow 

from its bounds are derived. A similar analysis is done to obtain the range of parameters for which 

the bounds on the lift coefficient are respected. For airplane with propellers, an analysis is made of 

the upper bound on the power available. For jet airplanes, a similar analysis is concerned with the 

upper bound on the thrust available.  

A procedure is explained that takes into account all the above limits in order to determine the 

parameters for which inclined circular trajectories are flyable by a given airplane. It is shown how 

tables of parameters can be constructed to sum up the results obtained. The application of the 

formulas derived is illustrated with airplanes that have similar properties as the following well 

known three different airplanes: 

• the Cessna 182 Skylane, which has a reciprocating engine with a constant speed propeller, 

• a Silver Fox like unmanned aerial vehicle (UAV) which has a reciprocating engine with a 

fixed pitch propeller, 

• the Lockheed-Martin F-16 fighter jet. 

We note that these are the same three airplanes that were used in Labonté (2015b), for the 

sample calculations that determine the flyability of inclined circular trajectories flown at constant 

speed. This will allow appreciating the improvement in flyability provided by the low thrust 

motion. 

The required characteristics of these airplanes are listed in Appendix A. There may be small 

differences between the values we use and the actual values for a particular model of these 

airplanes. We used values that were readily available on the internet and those that were not, were 

estimated from the values for similar airplanes. This is adequate for our purpose which is to 

illustrate the calculations involved in the formulas we derive. In all the calculations shown, the 

load carried by the airplane is taken to be one quarter of its maximum load. 

 

 

2. The equations of motion 
 

We shall use the same formalism for the equations of motion as in Labonté (2015b). We 

consider an airplane that flies on a circular trajectory that lies in a plane inclined by an angle 

with respect to the vertical (or H with the horizontal). Such a trajectory is represented in Fig. 1, 

where we have chosen the coordinate axes so that its horizontal diameter is along the x-axis. We 

represent by n the unit vector that is normal to the plane of the trajectory:  

n = [0, -cos(), sin()]. 

The position of the center of mass of the airplane, at time t, is represented by x(t): 

x(t) = C+R r 
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Low thrust inclined circular trajectories for airplanes 

 

 

(a) Cartesian coordinate system (b) The three Frenet-Serret unit vectors , N, B, the 

angle of bank  and the lift vector L 

Fig. 1 Parameters used in the description of circular trajectories inclined by and angle  with respect to the 

vertical 

 

 

in which  

• r = [ cos(), sin() sin(), cos() sin() ] is the unit radial vector 

• C = [C1, C2, C3] is the position of the center of the circle, 

• R is its radius,  

•  is the angle, in the plane of the circular trajectory, which the airplane position vector makes 

with the x-axis.  

If the trajectory is traversed in the counterclockwise direction around the normal n,  is a 

monotonically increasing function of t. Otherwise, it is monotonically decreasing. It is such that 

(0)=0 and (P)=2, when P is the period, i.e., the time required to fly around the trajectory. For 

counterclockwise motion, the airplane is ascending when ∈[π/2, π/2] and it is descending when 

∈[π/2, 3π/2]. For a constant speed trajectory, =t, in which =2/P is a constant. The airplane 

velocity is v(t):  

v(t)=x’(t)=V∞

where 

V∞R ’ 

and 

 =[-sin(), sin() cos(), cos() cos() ]. 

 is the unit vector tangent to the trajectory. For constant speed trajectories, V∞=Rω. For the 

sake of clarity, we shall hereafter consider that the trajectory is in the counterclockwise direction, 

so that ’>0 at all times. We shall use the Frenet-Serret frame of reference that is particularly well 

adapted for the description of such trajectories. Fig. 1(b) shows its basis vectors. The unit principal 

normal vector N is directed toward the center of the circle with N=-r. 

The acceleration of the airplane is: a(t)=v’(t)= N
R

V
''R

2
 . The unit binormal vector B is 

simply the vector n. 
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2.1 The forces involved 
 

The physical forces at play are  

• the lift L,  

• the gravitational force W=-W k, with k=[0, 0, 1],  

• the longitudinal force that corresponds to the thrust produced by the propulsion system T 

minus the drag D; its value is then (T−D)τ.  

The lift L is perpendicular to the velocity of the airplane. The bank angle , is measured with 

respect to the normal to the plane of the trajectory, L can be written as: 

L=Lcos() n+L sin()N(t) 

Fig. 1(a) shows how the bank angle is defined; it can take any value, corresponding to the 

airplane flying in any possible attitude on the trajectory. Newton’s equation of motion is: 

g

W
a = L + W + (T-D) (1)

The n, N and  components of this equation are respectively 

)sin(W)cos(L                                
(2)  

)sin()cos(W
Rg

WV
)sin(L

2

   ,                       (3)  

)cos()cos(W''
g

WR
DT  

                        

(4)  

We define Ac, the centripetal acceleration in units of g as  

)sin()cos(
Rg

V
A

2

c   .                         (5)  

Eq. (3) can then be written as 

L sin() = W Ac.                               (6) 

We note that, for non-vertical trajectories, the lift L cannot change sign on the trajectory, since 

then there would have to be a position  at which L=0, but this cannot happen since the RHS of 

Eq. (2) is a positive constant. The same argument holds for cos(). Thus, L and cos() must keep 

the same sign, either positive or negative, at every point of the trajectory, and this sign has to be 

the same one for both of them. In particular, this means that the lift coefficient CL must keep the 

same sign on the whole trajectory.  

We further note that in the upper section of the trajectory, i.e., when ∈ π, the gravitational 

force acting on the airplane has a component toward the center of the trajectory. As can be seen in 

Eq. (3), this force cancels part of the centrifugal force. It may actually happen that, near the top of 

the trajectory about =/2, this force is stronger than the centrifugal force. In that case, it will be 

necessary for the angle of bank to be negative in this region, in order for the lift to prevent the 

airplane from falling toward the center of the circle. 
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Low thrust inclined circular trajectories for airplanes 

3. Low thrust trajectories 
 

When considering Eq. (4) for the thrust required, one can see that if the last two terms 

cancelled out, then the only thrust required would be that to cancel the drag, since then T=D. In 

that sense, this way of flying could be considered optimal in terms of thrust or power 

requirements. An advantage of such trajectories is that the requirement for positivity of the thrust 

does not impose constraints on the trajectory parameters, as was the case for those flown at 

constant speed, as shown in Labonté (2015b). 

For such trajectories, the angle  changes in time according to the following equation 

0)cos()cos(
R

g
''                               (7) 

Note that for horizontal trajectories, θ=π/2; Eq. (7) then reduces to ′=0. This implies that 

φ′=constant
 
and thus that the speed V∞ is constant. It is noteworthy that for inclined trajectories, 

the rate of change of  is the same as for the angle of suspension of a pendulum that lies on the 

plane, inclined at the angle Correspondingly, the solution to Eq. (7) can be found in many 

textbooks on Classical Mechanics, such as in “Section 5.4 The Plane Pendulum” of Marion (1970). 

When Eq. (7) is multiplied by R
2
 ’, one obtains an equation that is readily integrated to yield 

  E)sin(1ZgV
2

1 2                              (8) 

in which we have defined the constant Z: Z=Rcos(θ), which is the altitude of the highest point of 

the trajectory, and in which E is a positive constant of integration. For a simple pendulum, E would 

be the total energy divided by the mass. When =-/2, i.e., at the bottom of the trajectory, 

2V
2

1
E 

 
and when =/2, i.e., at the top, Zg2V

2

1
E 2   . According to Eq. (8), the minimum 

and maximum values of the speed, Vm and VM are respectively such that: 

 Zg2E2V 2
m   at  = 2 

and 

E2V 2
M   at  = -/2.                            (9) 

For the airplane to travel the whole circular trajectory, we require that the speed be positive at 

all times so that it is required that 

Zg2E  .                                (10) 

According to Eqs. (8) and (5),  









  gZE

2

V3

gR

1
A

2

c .                           (11) 

 

3.1 Solution to the equations of motion 
 

Upon using the expression for V∞ given in Eq. (2.5) and solving Eq. (8) for ’, one obtains 
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 
dt

R

2

)sin(1ZgE

d


 


.                        (12) 

If we let the airplane be at the bottom of the trajectory, where =-/2, at t=0, then the 

integration of Eq. (12) yields 

 
t

R

2

)sin(1ZgE

d

2









 


.                      (13) 

The change of variable: x=ψ/2+π/4 transforms Eq. (13) into 

t
)x(sink1

dx
4/2/

0
22











                       (14) 

in which  

2R

E


 

and 

E

Zg2
k  .                               (15) 

Note that k<1 by virtue of Ineq. (10), which reflects the fact that the total energy should be 

larger than the maximum potential energy on the trajectory of the analogous pendulum. The value 

of the integral can be found in mathematical tables such as that of Gradshteyn and Ryzhik (1965), 

Section 8.111 and 8.14. Eq. (14) is seen to yield 

tk,
42

F 










 ,                            (16) 

where F is the Jacobi elliptic integral of the first kind. The airplane finishes a complete circle when 

ϕ=3π/2; which occurs at the time t3 such that 

 k,F
1

t 2/3 


  .                            (17) 

The function F has an inverse, called the Jacobi amplitude, which is denoted by “am”, so that if 

u=F(ϕ,k), then 

)k,u(am)k,u(F 1   .                         (18) 

Thus, Eq. (16) implies 

 
2

k,tam2


  .                           (19) 

Fig. 2(a) shows the position angle  as a function of time t, for the Cessna 182 on a trajectory  
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(a) Cessna 182 with H=10°, R=100 m, E=1250 m

2
/s

2
 (b) Silver Fox with θH=50°, R=40 m, E=680 m

2
/s

2
 

Fig. 2 Angle of rotation  as a function of time 

 

 

Fig. 3 Speed V∞ as a function of time for the Cessna 182 on the trajectory with H=10°, R=100 m 

and E=1250 m
2
/s

2
 

 

 

inclined with respect to the horizontal plane at an angle of θH=10°, with radius R=100 m  and 

E=1250 m
2
/s

2
. One can see that, in that case, H is small enough for  to vary almost linearly with 

t. Fig. 2(b) shows (t) for the Silver Fox, on a trajectory inclined at of H=50°, with R=40 m and 

E=680 m
2
/s

2
. At such an inclination, the non-linearity of (t) is more apparent. 

Fig. 3 shows the graph of V∞ as a function of time for the Cessna 182 on the trajectory 

mentioned above.  

245



 

 

 

 

 

 

Gilles Labonté 

4. Bank angle 

 
4.1 Vertical loops 
 

In a vertical loop, =0 and Eq. (2) then implies that cos()=0 so that the bank angle  is either 

π/2 or −π/2 everywhere on the trajectory. The first case corresponds to the loop that is usually 

performed in aerobatics shows, in which the airplane is upside up at the bottom of the loop and 

upside down at the top. The case with the angle of bank , corresponds to an inverted loop in 

which the airplane is upside down at the bottom of the loop and upside up at the top. 

 
4.2 Non-vertical loops 

 

When ≠, we divide Eq. (6) by Eq. (2) and obtain the following equation for the bank angle 

tan() =
)sin(

Ac


.                             (20) 

This equation indicates that all airplanes must bank by the same angle  in order to travel with 

the same speed V on this circular trajectory, as well as for vertical loops, a fact that generalizes a 

well-known property of horizontal circular trajectories, see for example in Chapter 2 of Stengel 

(2004). From Eq. (20), if follows that 

2
c

2

c

A)(sin

A
)sin(







 

2
c

2 A)(sin

)sin(
)cos(









                         

(21) 

with ε=±1. If the airplane is flying upside up at the bottom of the trajectory, where Ac is positive, 

then β∈[0, π/2] at this point so that ε=+1. The lift vector points toward the region above the 

circular trajectory. In that case cos()>0 on the whole trajectory. If the trajectory parameters are 

such that 2E−5gRcos(θ)<0, then Ac will be negative in the interval (ϕ0, π−ϕ0), centered on /2, 

where ϕ0 and π−ϕ0 are the angles at which Ac=0. In this region sin()<0 so that <0 and the lift 

vector points away from the region above the circular trajectory. How the bank then varies can be 

seen in the middle of Fig. 4. In the situation in which the airplane is flying upside down at the 

bottom of the trajectory, then ε=−1, and the above described situation prevails with the opposite 

sign everywhere for the bank angle . The bank angle is symmetric by reflection through the angle 

/2 and through the angle −/2 (or 3/2). Its minimum value occurs at =/2 and its maximum 

value is at =−/2 (or 3/2).  

We note that, as mentioned in our introduction, we have not taken into account the dynamic 

constraints ruling the rolling motion of the airplane. However, it could happen that the change in 

the bank angle requires the roll to be rapid, as can be seen on the RHS of Fig. 4. In such a 

situation, it may then happen that the force required to move the ailerons or the stress on the 

airframe would be too large for that motion to be possible. A simple way of taking this situation 

into account would be to impose à limit on the rate of variation of  with respect to , such as 

ttanconssome







. We have not implemented such a bound in the present exploratory study. 

246



 

 

 

 

 

 

Low thrust inclined circular trajectories for airplanes 

   
(a) Cessna 182 with H=10°, 

R=100 m, E=1250 m
2
/s

2
 

(b) Silver Fox with H=50°, 

R=40 m, E=680 m
2
/s

2
 

(c) F16 with H=85°, R=400 m, 

E=10 000 m
2
/s

2
 

Fig. 4 Graph of the bank angle as functions of that varies from −/2 to 3/2 

 

 

Fig. 4(a) shows how the bank angle  varies as  varies from −/2 to 3/2 for the Cessna 182 

on a circular trajectory inclined with H=10°, R=100 m and E=1250 m
2
/s

2
. Fig. 4(b) shows the 

corresponding curve for the Silver Fox when H=50°, with R=40 m and E=680 m
2
/s

2
. In that case, 

Ac and thus  are negative when(1.00, 2.14). Fig. 4(c) shows the bank angle for the F−16 on a 

trajectory with H=85°, R=400 m and E=10 000 m
2
/s

2
.  

 

 

5. Load factor 
 

For vertical loops, in which =0, Eq. (6) gives the load factor as 

cA
W

L
n  .                               (22) 

In a right-side-up loop, if the parameters are such that Ac becomes negative for certain angles  

about /2, i.e., at the top of the loop, then the load factor will be negative at these positions. 

For non-vertical loops, as discussed after Eq. (6), the load factor keeps the same sign on the 

whole trajectory. According to Eq. (2) the load factor is 

2
c

2 A)(sin
W

L
n   ,                           (23) 

with  as in Eq. (21), and, as is the case for L, the load factor keeps the same sign on the whole 

trajectory, which is the same one as the bank angle. The structural integrity of the airplane requires 

that the load factor n be bounded such that  

nmin ≤ n ≤ nmax.                               (24) 

Thus, from Eqs. (11), (23) and (24), one can deduce that 

 )(sinnRggZEV
2

3 22
lim

22

2

2 







 , with 










1ifn

1ifn
n

min

max
lim 


 .       (25) 
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(a) Cessna 182 with H=10°, R=100 m, E=1250 m

2
/s

2
 (b) Silver Fox with H=50°, R=40 m, E=680 m

2
/s

2
 

Fig. 5 Graph of the load factor n as a function of the position angle , together with nmax 

 

 

Again, for the sake of clarity, we shall hereafter consider trajectories on which =+1; the case 

with =−1 can be dealt with in the same way. We note that Ineq. (25) hold V∞ if and only if it 

holds when its LHS is maximum. After a brief study of this LHS one can determine that this 

occurs at V∞=Vm. Upon evaluating Ineq. (25) at this point, one obtains  

 )(sinnRZ
2

g
E 22

max  .                       (26) 

Because of Ineq. (10), when Ineq. (26) holds, it is required that 

24

1n
)cos(

2

max                              (27) 

Fig. 5(a) shows how the load factor varies as a function of the angle  along the trajectory, for 

the Cessna 182 on a circular trajectory inclined with H=10°, R=100 m and E=1250 m
2
/s

2
. The 

maximum allowed value nmax is also shown on the graph. As can be seen, Ineq. (24) is satisfied in 

this situation. Fig. 5(b) shows the corresponding curve for the Silver Fox, when H=50° and R=40 

m and E=680 m
2
/s

2
.  

 

 

6. Lift coefficient 
 

The lift coefficient has to be bounded as follows 

maxLLminL CCC  .                            (28) 

Upon replacing L in Eq. (6) by its expression, and using Eqs. (21) and (11), one obtains  


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2

2
L gZE

2

V3
)(sinRg

VSRg
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(a) Cessna 182 with H=10°, 

R=100 m, E=1250 m
2
/s

2
 

(b) Silver Fox with H=50°, 

R=40 m, E=680 m
2
/s

2
 

(c) F16 with H=85°, R=400 m, 

E=10 000 m
2
/s

2
 

Fig. 6 Graph of the lift coefficient CL as a function of the angle , together with CLmax 

 

 

Fig. 6(a) shows how the lift coefficient CL varies as a function of the angle  along the 

trajectory, for the Cessna 182 on a circular trajectory inclined with H=10°, R=100 m and E=1250 

m
2
/s

2
. The maximum allowed value CLmax is also shown on the graph. Fig. 6(b) shows the 

corresponding curve, for the Silver Fox, on a trajectory inclined at of H=50°, with R=40 m and 

E=680 m
2
/s

2
. Fig. 6(c) shows the corresponding graph for the F-16 on a trajectory inclined with 

H=85°, R=400 m and E=10 000 m
2
/s

2
.  

For flights in which the airplane is flying upside up, Ineq. (28) requires that CL≤CLmax. Upon 

squaring each of its sides and expanding CL, this inequality can be written as 

0)V(F 2   

with 

  AUgZE3U)U(F 2                         (30) 

in which 

2
maxLKC

4

9
 , 

2

W2

SRg
K 








   and 222 RgZgE2EA  .          (31) 

Note that Ineq. (30) holds if and only if it holds at the maximum value of F.  

If =0, the function F corresponds to a straight line with a negative slope. It is then maximum 

at 2
mV  

and Ineq. (30) is therefore satisfied if and only if it holds for 2
mV . 

If ≠0, the function F corresponds to a parabola, with summit at US: 

 
2

ZgE3
U S


 . 

If <0, the parabola is concave downward and its maximum occurs at a point on the negative 

U-axis. It is therefore decreasing along the positive U-axis, and its maximum value again occurs at
2

mV , so that Ineq. (30) will be satisfied if and only if it holds at that point. 
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If >0, the parabola is concave upward and its minimum is on the positive U-axis. F is 

maximum at either 2
mV or 2

MV .  

Therefore, in all cases, Ineq. (30) will hold if and only if it holds at both 2
mV  and 2

MV . This 

condition requires that 

0RgEgZ4E)54( 222                          (32) 

and 

  0RgZg)34(4EZg)1(16E)54( 22222   .            (33) 

Clearly, (4-5) has to be negative, otherwise the left-hand-side (LHS) of Ineq. (32) would 

always be positive. This condition on  implies that 

maxLCSg

W2
R






.                             (34) 

The two expressions on the LHS of Ineqs. (32) and (33) then correspond to downward concave 

parabolas. The maximum of the parabola corresponding to the LHS of Ineq. (32) is on the positive 

axis, and its intercept on the vertical axis is positive. Therefore, Ineq. (32) will be satisfied when E 

larger or equal to the largest root of the LHS, that is 

 22 R)45(Z4Z2
)45(

g
E 





 .                    (35) 

The maximum of the parabola that corresponds to the LHS of Ineq. (33) has its maximum at  

)45(

Zg)1(8
Ec








 . 

But because of Ineq. (10), E>Ec so that Ineq. (33) is satisfied if and only if and only if E≥the 

largest root of the LHS, that is 

 22 R)45(Z4Z)1(8
)45(

g
E 





 .                (36) 

 

 

7. Power for propeller airplanes 
 

7.1 Power available 
 

The power available with an engine-propeller propulsion system is bounded above, thus a given 

trajectory will be possible only if the power required by the airplane to travel this trajectory PR 

always remains below the maximum power available PAmax. Therefore, the inequality PR≤PAmax 

must hold at all points of the trajectory. For airplanes with propellers, the power available PA is 

given by 

P)J(PA  ,                                  (37) 

in which  is the propeller efficiency and P is the brake power produced by the engine.  generally 
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depends on the advance ratio J, which is defined as 

PP Dn

V
J  .                               (38) 

nP is the number of revolution per second that the propeller makes and DP is its diameter. Thus the 

maximum power available PAmax will be 

maxmaxA P)J(P                              (39) 

in which Pmax is the maximum power the engine can produce.  

Some methods have been proposed to determine  theoretically; see, for example, the survey in 

Korkan et al. (1980). However, these authors mention the difficulties of constructing accurate 

models. They compared theoretical predictions of various models with experimental data and 

found that some of the theoretical models produce good results, but many have relatively large 

discrepancies in some range of J. In all of these analyses, the algebraic expressions for  would be 

too complex to allow for an analytical treatment of the power sufficiency condition. Thus, not 

being able to obtain a general solution to the inequalities involved, we propose an analysis 

procedure based solely on the possibility of computing the value of  whatever the method used. 

In particular, this procedure would be straightforward to apply if the values of  were obtained 

experimentally and then  were represented by a spline.  

 
7.2 Power required 

 

Upon multiplying Eq. (4) by the speed V∞, one obtains the following expression for the power 

PR that the airplane power plant must provide for the airplane to follow this trajectory 

3
2
L

0D
3

DR V
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C
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2
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
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 .               (40) 

When CL is replaced by its value from Eq. (29), one obtains 
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in which 

0D0D SC
2

1
C   , 

22 Rg


 

 

and 

SeAR

W2 2




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 .                              (42) 

Upon rearranging its terms, PR can be written in a somewhat simplified form as 
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  13
R VAVZgE3CVP 

    

with 


4

9
CC 0D  ,                             (43) 

and A is the same variable as defined in Eq. (31). Some important characteristics of the power 

required PR as a function of V∞ are readily obtained by computing its first and second derivatives. 

Its first derivative is 

)V(QV
dV

dP 2R










 

with 

  AVZgE3CV3)V(Q 24    .                    (44) 

There are two values of 2
V  

at which this derivative is null, which are the two roots of Q. Only 

one of these is positive at V∞=Vc with 

   




  AC12ZgE9ZgE3

C6

1
V

222
c  .               (45) 

The second derivative of PR is 







 CV6AV2
dV

Pd 3

2

R
2

 .                        (46) 

It is positive everywhere so that PR is a function that is concave upward everywhere with a 

single minimum at Vc. The RHS of Fig. 8 shows the maximum power available PAmax and the 

 

 

 

Fig. 7 Efficiency factor  as a function of the speed V∞ for the Cessna 182 
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Fig. 8 Maximum power available PAmax and power required PR, as functions of the speed V∞, for the Cessna 

182, on a trajectory with H=10°, R=100 m, E=1250 m
2
/s

2
. PR and PAmaxhave been divided by 1000 

 

 

power required PR, as functions of the speed V∞ for the Cessna 182 on a circular trajectory inclined 

with H=10°, R=100 m and E=1250 m
2
/s

2
.  

 
7.3 Upper bound on PR for airplanes with constant speed propellers 

 

We use the Cessna 182 Skylane as representative of airplanes with a constant speed propeller. 

The efficiency of its propeller, as a function of the speed V∞, has the general features shown in Fig. 

7. This figure has been produced by approximating the curve given in Cavcar (2004) by the 

following quadratics 

  8.08.0J036.1)J(
2
  

 J ≤ 0.8. 

8.0)J(   

 J > 0.8.                                (47) 

Fig. 8 shows both the maximum power available PAmax and the power required PR, as functions 

of the speed V∞, for a trajectory with H=10°, R=100 m and E=1250 m
2
/s

2
. Note that both PR and 

PAmax have been divided by 1000. As can be seen in this figure, the Cessna 182 can follow the 

circular trajectory considered because the power it requires is smaller than the power that its 

propulsion system can provide.  

 

7.4 Upper bound on PR for airplanes with fixed pitch propellers 
 

We use the Silver Fox like UAV to illustrate the calculations for airplanes with fixed pitch 

propellers. The efficiency of its propeller , as a function of V∞, has the general features shown in  
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Fig. 9 Efficiency factor  as a function of the speed V∞, for the Silver Fox 

 

 
Fig. 10 Maximum power available PAmax and power required PR, as functions of the speed V∞ for 

the Silver Fox on a circular trajectory inclined with H=50°, R=40 m, E=680 m
2
/s

2
. Both PR and 

PAmax have been divided by 10 

 

 

Fig. 9. This figure has been produced by approximating with quadratics the curve given in the 

Aeronautics Learning Laboratory for Science Technology and Research (ALLSTAR) of the 

Florida International University (2011). Thus, we consider 

  83.070.0J694.1)J(
2
  

 J ≤ 0.7 
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  83.070.0J833.13)J(
2
  

 J > 0.7.                                (48) 

Fig. 10 shows both the maximum power available PAmax and the power required PR, as 

functions of the speed V∞, for the Silver Fox on a circular trajectory inclined with H=50°, R=40 m 

and E=680 m
2
/s

2
. Both PR and PAmax have been divided by 10. As this graph shows, the Silver Fox 

like UAV has enough power to follow the circular trajectory considered because the power it 

requires is lower than the power its engine-propeller system can provide. 

 

7.5 Testing for power sufficiency 
 

We have proven in Section 8.1 that the power required for the circular trajectories is a function 

of V∞ that is concave upward. On the other hand, the curve of maximum power available for 

airplanes with propellers is concave downward. These facts imply that if and only if the constraint 

PR≤PAmax holds for Vm and for VM, it will hold for all other V∞ along the trajectory.  

At VM, PR can be written in terms of E as 

 222
0D

2/1
MR RgEZg2E)C(4)E2()V(P   

              
(49) 

with 

 222
0D

2/3MR RgEZg4E)C(12)E2(
Ed

)V(Pd
   . 

The second derivative of PR(VM) is positive everywhere, and thus it is an upward concave 

function of E. Since its first derivative has a zero on the positive E-axis, it has a minimum at this 

point. It may then meet PAmax(VM) at most at two values of E, with PR(VM)≤PAmax(VM) for all E 

between these two values. Fig. 11(a) shows the curves of PR(VM) and PA(VM) as a function of E for 

the Cessna 182. This graph indicates that PR(VM)≤PAmax(VM) is satisfied for all values of E between 

500 and 1700 m
2
/s

2
. 

At Vm, PR can be written in terms of E as 

 222
0D

2/1
mR RgYZg2Y)C(4)Y2()V(P     with gZ2EY   

 222
0D

2/3mR RgYZg4Y)C(12)Y2(
Yd

)V(Pd
   .            (50) 

The second derivative of PR(Vm) with respect to Y is positive everywhere and thus, PR(Vm) is an 

upward concave function of Y, and of E. Since the first derivative has a zero on the positive Y-axis, 

PR(Vm) is minimum at this point. It may then meet PAmax(Vm) at most at two values of E, with 

PR(VM)≤PAmax(VM) for all E between these two values. Fig. 11(b) shows the curves of PR(Vm) and 

PAmax(Vm) as a function of E. This graph indicates that PR(VM)≤PAmax(VM) is satisfied for all values 

of E between 500 and 1700 m
2
/s

2
. The fact that PR is also below PAmax at VM indicates that 

trajectories with H=10° and R=100 m are flyable by the Cessna 182 for all values of E[500, 

1700] m
2
/s

2
.  

Fig. 12 shows the equivalent data for the Silver Fox, on a trajectory with H=50° and R=40 m. 

In Fig. 12(a) are the curves of PR(VM) and PA(VM) as a function of E. It can be seen on this graph 

that PR(VM)≤PAmax(VM) is satisfied for all values of E between 651 and 706 m
2
/s

2
. Fig. 12(b) shows  
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(a) For Vx=VM (b) For Vx=Vm 

Fig. 11 PR(Vx) in full line, and PAmax(Vx) in dotted line, as a functions of E, for the Cessna 182, when E varies 

from 500 to 1700 m
2
/s

2
, and the value of PR and PAmax have been divided by 1000 

 

  
(a) For Vx=VM (b) For Vx=Vm 

Fig. 12 PR(Vx) in full line, and PAmax(Vx) in dotted line, as a functions of E, for the Silver Fox, when E varies 

from 650 to 820 m
2
/s

2
, and the value of PR and PAmax have been divided by 1000 

 

 

that PR(VM)≤PAmax(VM) everywhere in that range of E. Therefore, the Silver Fox can fly this 

trajectory for all E[651, 706] m
2
/s

2
. 

 

 

8. Thrust required for jet airplanes 
 

For jet airplanes, the maximum thrust available can be considered to be independent of the 

speed V∞. Therefore, the power sufficiency constraint can be stated as the inequality TR≤TAmax, in 
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which TR is the thrust required along the trajectory and TAmax is the maximum thrust that the engine 

can provide. Eq. (4) gives the thrust required as  

2
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2
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

 .                (51) 

When CL is replaced by its value from Eq. (3.21), one obtains 

  22
R AVgZE3CVT 

                           (52) 

in which the parameters C,  and A are the same ones as defined in Eqs. (42), (43) and (7.8). The 

constraint TR≤TAmax yields the following inequality 

0)V(G 2   

with 

  AUT)gZE(3CU)U(G maxA
2   .                  (53) 

The function G is quadratic and corresponds to a parabola that is concave upward. Thus, Ineq. 

(53) will hold for all V∞[Vm, VM] if and only if it holds at both points Vm and VM. Fig. 13(a) shows 

the thrust required TR and the maximum thrust available TAmax as functions of the speed V∞ for the 

F-16 on a circular trajectory inclined with H=85°, R=400 m and E=10 000 m
2
/s

2
. It is clear from 

this graph that TR≤TAmax at both Vm and VM. 

 

8.1 Condition at VM  
 

At VM, Ineq. (53) becomes 

  0RgETZg22E)C(4 22
maxA

2
0D   .                (54) 

We note that the second term on the LHS must be negative because all the other terms are 

positive. The quadratic expression in E, on the LHS, corresponds to a parabola that is concave 

upward. In Fig. 13(b), the full line represents TR(VM) and the dotted line TAmax(VM), as a functions 

of E that varies from 8 650 to 13 200 m
2
/s

2
 for the F-16. Ineq. (54) can hold only if the quadratic 

function on the LHS of this inequality has real roots, that is, if its discriminant  is positive, with 

  0Rg)C(16Zg2T4 22
0D

2

maxA1   .                (55) 

Ineq. (55) can be seen to be equivalent to 









 0DmaxA C

gR2

T
)cos( .                         (56) 

Because cos() must be non-negative, Ineq. (56) implies that 

0DmaxA C2T 
                             

(57) 

and 

0D
2
maxA C4Tg

2
R






 .                          (58) 
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Ineq. (54) is then satisfied either if and only if 

 rEr  

with 

  1maxA

0D

Zg2T2
)C(8

1
r 





 .                   (59) 

 

8.2 Condition at Vm  
 

At Vm, Ineq. (53) becomes 

  02R2gZgmaxAT42Z2g)30DC2(8EmaxATgZ)50DC4(222E)0DC(4 




    

(60) 

Since the LHS of Ineq. (60) corresponds to an upward concave parabola that has its minimum 

at a point on the positive axis and a positive intercept on the vertical axis. It must have two real 

roots for Ineq. (60) to be possible. Its discriminant is 2 

  0Rg)C(16gZ2T4 22
0D

2

maxA2   .                (61) 

Ineq. (55) implies that 2 is always positive. Ineq. (60) will then be satisfied if and only if 

 sEs  

with 

  20DmaxA

0D

gZ)5C4(2T2
)C(8

1
s 





 .              (62) 

In Fig. 13(c), the full line represents TR(Vm) and the dotted line TAmax(Vm), as functions of E that 

varies from 8 650 to 13 200 m
2
/s

2
 for the F-16.  

 

 

   
(a) TAmax and TR as functions of 

V∞ for E=10 000 m
2
/s

2
 

(b) TAmax(VM) and TR(VM) as a 

function of E that varies from 8 

650 to 13 200 m
2
/s

2
 

(c) TAmax(Vm) and TR(Vm) as a 

function of E that varies from 8 

650 to 13 200 m
2
/s

2
 

Fig. 13 Maximum thrust available TAmax (dotted line) and thrust required TR (full line) for the F-16 on a 

trajectory with H=85°, R=400 m. TR and TAmax have been divided by 1000 
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9. Flyability analysis 
 

We have obtained conditions for the flyability of inclined low thrust circular trajectories. We 

are not able to solve all of them together and obtain definite ranges of parameters that are suitable 

for a particular airplane. Nevertheless, it is straightforward to use our results to devise a procedure 

for testing whether trajectories are flyable or not. We describe this procedure below and show how 

it can be used to produce tables of parameters for flyable trajectories. In this discussion, we found 

it more natural to use the angle of inclination with the horizontal plane H as variable instead of 

that with the z-axis . Note that the only parameters required to completely specify a circular low 

thrust trajectory are the angle of inclination  (or H) the radius R and the “energy” E. Once these 

are known, all the details of the trajectory can be computed.  

 

9.1 Procedure for propeller driven airplanes  
 

1. Use Ineq. (27), which pertains to the bounds on the load factor, to compute the upper bound 

Hmax_1 on the inclination angle H. 

2. Select an angle of inclination H such that H<Hmax_1. 

3. Use Ineq. (34), which pertains to the bounds on the lift coefficient, to compute a lower bound 

Rmin_1 on the radius of the trajectory. 

4. Select a radius R such that R≥Rmin_1. 

5. Use Ineq. (26), which pertains to the bounds on the load factor, to compute the upper bound 

Emax__1 on the energy E. 

6. Use Ineqs. (35) and (36), which pertain to the bounds on the lift coefficient, to compute the 

lower bounds Emin_1 and Emin_2. 

7. Compute the overall bound Emin=max{Emin_1, Emin_2} 

The following part of the procedure is to ensure that PR≤PAmax. 

1. Consider the values of PR(VM) and PAmax(VM) given in Eqs. (39) and (49), for E[Emin, 

Emax_1]. Either with the help of the graph of these two functions or some numerical method, 

determine the range of E for which PR(VM)≤PAmax(VM). 

2. Perform the same procedure as in step 8 for PR(Vm) and PAmax(Vm) given in Eqs. (39) and (50) 

and determine the range of E for which PR(VM)≤PAmax(VM).  

3. Compute the range of allowed values of E as the intersection of the above computed two 

ranges. If this intersection is empty, then the selected inclination angle H and radius R do not 

correspond to a flyable trajectory. 

By performing successively the above procedure with various values of H and R, one can 

produce a table of allowed parameters for which a particular airplane can fly the low thrust circular 

trajectories. We will show an example of this procedure in Section 11. 

 

9.2 Procedure for jet airplanes  
 

1. Verify that Ineq. (57) holds, without which the airplane cannot fly any circular trajectory. 

2. Perform Step 1 of Section 10.2 to obtain Hmax_1. 

3. Use Ineq. (56), which pertains to the bound on the thrust, to obtain the upper bound Hmax_2 

on the inclination angle H. 

4. Select an angle H that satisfies H<Hmax_1 and H≤Hmax_2. 
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5. Perform Step 3 of Section 10.2 to obtain Rmin_1. 

6. Use Ineq. (58), which pertains to the bound on the thrust, to obtain the lower bound on R: 

Rmin_2. 

7. Select a radius R such that R≥Rmin 
with  2min_1min_min R,RmaxR  . 

8. Perform Steps 5 and 6 of Section 10.2 to obtain Emax_1, Emin_1 and Emin_2. 

9. Use Eq. (59), which pertains to the bound on the thrust, to obtain the lower and upper 

bounds: Emin_3 and Emax_2. 

10. Use Eq. (62), which pertains to the bound on the thrust, to obtain the lower and upper 

bounds: Emin_4 and Emax_3. 

11. Compute the overall bounds  4min_3min_2min_1min_min E,E,E,EmaxE   and 

 3max_2max_1max_max E,E,EminE   

For the selected inclination angle H and radius R the range of allowed values of E is [Emin, 

Emax]. If this range is empty, then the selected inclination angle H and radius R do not correspond 

to a flyable trajectory. If it is not empty, then all E’s in this range are allowed. 

For jet airplanes, the necessary and sufficient conditions for trajectories to be flyable have been 

solved completely. Thus, the above computations could be performed quickly on-board the 

airplane, in order to determine if a considered trajectory is flyable or not. Nevertheless, in order to 

give an idea of the possible performances of the F-16, we calculated tables as for the above 

propeller airplanes.  

 

 

10. Examples of computation 
 

In this section, we illustrate the procedure described in Section 10, to determine what low thrust 

circular trajectories a particular airplane can fly. We do so for the three different types of airplanes. 

 

10.1 Cessna 182 Skylane  
 

The bounds Hmax_1
 
and Rmin_1 are independent of the other parameters. Thus, their values hold 

for all low thrust circular trajectories. Their values are 

Hmax_1=48.45° and Rmin_1=37.11 m. 

Flyability tables could be produced for each value of H, starting with 0° and increasing the 

angle by some fixed increment, until the upper Hmax_1 is reached. These tables can be constructed 

as follows. 

1. For each value of H, consider successively increasing values of R, from Rmin_1 until a radius 

is reached after which no trajectory is flyable. R could be increased by a fixed increment, such 

as 25 m, as we do here. 

2. For each selected H and R, compute the range of possible values of E[Emin, Emax] for which 

all the constraints are satisfied. 

Tables 1-3 are examples of tables of parameters obtained at various H. The smallest and the 

largest radius in the table respectively correspond to the first one and the last one at which the 

trajectory is flyable. 

Similar flyability tables for flights at constant speeds on inclined circular trajectories have been 

produced in Labonté (2015b). The comparison between these tables and those produced here  
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Table 1 Flyability table for H=10
0 

H=10°

R 50 75 100 125 150 175 200 225 250 275 ˖˖˖ 800 

Emin 394 445 523 606 690 775 860 945 1030 1115 ˖˖˖ 2903 

Emax 803 1285 1713 2012 2224 2378 2491 2576 2641 2693 ˖˖˖ 2947 

 
Table 2 Flyability table for H=30°

 

H=30° 

R 50 75 100 125 150 175 200 

Emin 650 893 1141 1388 1635 1882 2128 

Emax 700 1176 1568 1896 2115 2277 2398 

 
Table 3 Flyability table for H=40° 

H=40° 

R 75 100 1 25 150 

Emin 1091 1412 1731 2049 

Emax 1131 1508 1845 2068 

 

 

clearly shows the advantages of flying at low thrust. We did not find it worthwhile reproducing 

completely the latter tables here for comparison purposes; however, an evident advantage of flying 

at low thrust is that the maximum angle of inclination H for trajectories at constant speeds is only 

10° while at low thrust, it is 40° (note that there are some errors in the tables in Labonté (2015b); 

so that actually the flights at 15° are not possible).  

 

10.2 Silver Fox like UAV  
 

For this airplane, the bounds Hmax_1 and Rmin_1 are Hmax_1=90° and Rmin_1=12.50 m. 

The tables of parameters are constructed exactly as for the Cessna 182. Tables 4-6 are examples 

of tables of parameters obtained at various H. The entries in the tables correspond to values of R 

at each 10 m. The smallest and the largest radius in the table respectively correspond to the first 

one and the last one at which the trajectory is flyable. 

Comparison of these tables with those shown in Labonté (2015b) for flights at constant speed, 

clearly show the advantage of flying at low thrust. Indeed, for flights at constant speeds, the 

maximum angle of inclination H is only 10°, while at low thrust, it is 60°. 

 

10.3 F16 Fighting Falcon  
 

For this airplane, the bounds Hmax_1 and Rmin_1 are  

Hmax_1=90°, Rmin_1=299,67 m and Rmin_1= 82.49 m. 

The flyability tables are constructed as described in Section 10.2. Tables 7-9 are examples of 

flyability tables for various values of H. The entries in the tables correspond to values of R at each 

261



 

 

 

 

 

 

Gilles Labonté 

Table 4 Flyability table for H=15° 

H = 15°

R 15 25 35 45 55 65 75 85 95 105 ˖˖˖ 165 

Emin 162 188 237 288 338 389 440 491 542 593 ˖˖˖ 898 

Emax 339 569 701 776 821 850 869 883 893 900 ˖˖˖ 921 

 
Table 5 Flyability table for H=35° 

H=35° 

R 15 25 35 45 55 65 

Emin 242 332 446 560 673 787 

Emax 311 534 676 755 803 834 

 

Table 6 Flyability table for H=60° 

H=60° 

R 25 35 

Emin 468 642 

Emax 503 653 

 

Table 7 Flyability table for H=30° 

H=30° 

R 350 450 550 650 750 850 950 1050 ˖˖˖ 

Emin 6046 5687 6662 7650 8640 9631 10621 11611 ˖˖˖ 

Emax 11488 18618 22795 26940 31084 35229 39373 43518 ˖˖˖ 

 

 

100 m, starting the first radius at which the trajectory is flyable.  

We note that the parameters determined for very large radii trajectories are not as accurate as 

those for smaller radii. Indeed, the derivation of our formulas assumed that the difference in air 

density could be neglected along the trajectory. However, with large radii, the difference of altitude 

between the lowest and the highest points of the trajectory is also large. There is then an 

appreciable difference in the thrust available and the thrust required to fly the trajectory. For 

example, as described in Example 6.4 of Anderson (2000), in the first order approximation the 

thrust available depends on the altitude as 
)0(

)(
)(






 h
hTA

TA(0). For the F-16, the thrust available 

at sea level is 131 222N. For the trajectory at 30° with radius R=1050 m the decrease in thrust 

available TA is 12 690N between the lowest and the highest points. At 60°, for R=1050 m, it 21 373 

N and at 90° with R=1075, it is 24 956 N. Nevertheless, one should remember that the object of 

the present study is circular trajectories to be used for connecting rectilinear segments of 

trajectories. Thus, they would not be very large radius circular trajectories; in the connections, the 

circular arcs will rather be desired to be as short as possible. We have included such large radii 

trajectories in our tables only to show the way the trajectory parameters change in relation to each 

other, according to the formulas we have obtained. Note that larger radii as those appearing in the 

tables are possible. 
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Table 8 Flyability table for H=60° 

H = 60° 

R 350 450 550 650 750 850 950 1050 ˖˖˖ 

Emin 9051 8605 10360 12103 13838 15567 17290 19010 ˖˖˖ 

Emax 10319 17212 21884 25862 29841 33820 37799 41778 ˖˖˖ 

 
Table 9 Flyability table for H=90° 

H=90° 

R 375 475 575 675 775 875 975 1075 ˖˖˖ 

Emin 8166 10230 12235 12247 16249 18244 20233 22218 ˖˖˖ 

Emax 11482 18557 22540 26460 30380 34300 38220 42140 ˖˖˖ 

 

 

Again, the comparison of these tables with those shown in Labonté (2015b) for flights at 

constant speeds, show an evident advantage of flying at low thrust. For flights at constant speed, 

the maximum angle of inclination H is only 40
0
, while at low thrust, it is up to 90

0
. 

 

 

10. Conclusions 
 

We have defined a particular way for an airplane to fly on an inclined circular trajectory, such 

that all the components of the required thrust cancel out, except for the drag. Such a motion is then 

near optimal in terms of power requirements. The airplane moves on such trajectories essentially 

as a rigid pendulum on which a drag force is acting. To our knowledge, this type of airplane 

motion had not been studied before. 

We have solved the equations of motion and obtained explicit expressions for the position, the 

velocity, the angle of bank, the load factor, the lift coefficient and the thrust or power required. We 

have determined the limits on the trajectory parameters, i.e. the angle of inclination, the radius and 

the speed, that follow from the limits on the airplane characteristic parameters. The formulas we 

have obtained are exact in so far as the rotational motions of the airplane can be considered as not 

affecting the motion of its center of mass, and the air density can be considered constant on the 

trajectory. They yield necessary and sufficient conditions for an airplane to be able to fly on such 

trajectories. They are original formulas that apply to all airplanes. As such, they constitute a 

valuable tool for the analysis of airplane performance and mission planning.  

They are simple enough that trajectories can be analyzed in real time on board any airplane. 

The computations could even be performed with a microcontroller on board a small UAV. 

We have illustrated the application of these formulas to airplanes with a reciprocating engine 

and a constant speed propeller or with a fixed pitch propeller, and airplanes with jet propulsion. 

We have described a procedure for testing the flyability of specific trajectories and for constructing 

tables of flyable trajectories parameters. The airplanes considered in our sample calculations are 

representative of a wide range of airplanes. They are similar to the Cesna 182 Skylane, the Silver 

Fox UAV and the F-16 Fighting Falcon jet. These are the same three airplanes used in Labonté 

(2015b), for the flyability study of inclined circular trajectories flown at constant speed. It was 

thus straightforward to compare the flyabilities of our low thrust trajectories with those flown at 
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constant speeds. It was seen that the same airplanes can fly much more inclined low thrust circular 

trajectories than constant speed circular trajectories.  
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Nomenclature 
 

AR = aspect ratio=b
2
/S  

b = wingspan 

= bank angle 

CD = global drag coefficient for the airplane =
eAR

C
C L

D


2

0   (Drag polar) 

CD0 = global drag coefficient at zero lift 

CL = global lift coefficient for airplane 

CLmax = maximum value of CL 

D = drag= 2

2

1
 VCS D  

e = Oswald’s efficiency factor 

g = gravitational constant=9.8 m/s
2
 

L = lift= 2

2

1
 VCS L  

nmax = maximum value of load factor 

nmin = minimum value of load factor 

P = power of the engine in Watt 

PAmax = maximum power available for propulsion 

PR = power required for a certain motion 

S = wing area 

t = time  

T = thrust of an engine 

TAmax = maximum thrust available 

TR = thrust required for a certain motion 

V = airplane speed with respect to the undisturbed air in front of it 

Vmin = minimum value of V∞  

Vmax = maximum value of V∞ 

W = weight of airplane  

W1 = weight of empty airplane  

W0 = maximum total weight of airplane at take off 

= propeller efficiency 

s = air density at sea level=1.225 kg/m
3
 

 = density of undisturbed air in front of airplane 

Appendix A: Reference airplanes 
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A.1 Cessna 182 skylane  
 

The characteristic parameters for the Cessna 182 can be found in Airliners.net (2015), Roud 

and Bruckert (2006), McIver (2003). Some of the parameters, which were not readily available, 

were estimated from those of the very similar Cessna 172.  

 
Table 10 Characteristic parameters of the Cessna 182 Skylane 

W1=7,562.0 N W0=11,120.6 N  

b=11.02 m S=16.1653 m
2
 e=0.75 

CLmax=2.10 CD0=0.029 nmax=3.8, nmin=-1.52 

PAmax=171.511 kW, 2,600 rpm, at sea level 

Propeller: constant speed, diameter=2.08 m, max=0.80 

 

A.2 Silver fox like UAV  
 

The Silver Fox UAV is presently produced by Raytheon. Some of its specifications can be 

found at the Faculty of Engineering, University of Porto (2013). It has an off-the-shelf Radio 

Controlled plane engine that is described at the Currawong Engineering website (2016). Some of 

the parameters given below were estimated by comparison with similar small UAVs.  

 
Table 11 Characteristic parameters of a Silver Fox like UAV 

W1=72.35 N W0=119.6 N  

b=2.4 m S=0.768 m
2
 e=0.8 

CLmax=1.26 CD0=0. 0251 nmax=5.0, nmin=-2.0 

PAmax=1,491 W at 7,500 rpm, at sea level 

Propeller: fixed speed, diameter=0.56 m, max=0.83 

 
A.3 F16 fighting falcon  

 

The General Dynamics/Lockheed Martin F-16 Fighting Falcon is a single-engine fighter 

aircraft originally developed for the United States Air Force. Its characteristic parameters can be 

found in Lockheed-Martin (2015), Filippone (2000), Sadraey (2009). The maximum value of the 

lift coefficient and the maximum negative load factor were estimated from those of other fighter 

airplanes. 

 
Table 12 Characteristic parameters of an F16 like jet 

W1=90,237.4 N W0=213,365.6 N  

b=10.0 m S=27.87 m
2
 e=0.8 

CLmax=1.8 CD0=0. 026 nmax=9.0, nmin=-3 

TAmax=131,222.5 N 
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