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Effect of sweep angle on bifurcation analysis
of a wing containing cubic nonlinearity
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Abstract. Limit cycle oscillations (LCO) as well as nonlinear aeroelastic analysis of a swept aircraft wing
with cubic restoring moments in the pitch degree of freedom is investigated. The unsteady aerodynamic
loading applied on the wing is modeled by using the strip theory. The harmonic balance method is used to
calculate the LCO frequency and amplitude for the swept wing. Finally the super and subcritical Hopf
bifurcation diagrams are plotted. It is concluded that the type of bifurcation and turning point location is
sensitive to the system parameters such as wing geometry and sweep angle.
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1. Introduction

Interaction of aerodynamic, elasticity and dynamics is called aeroelasticity, and many
disciplines in this field such as dynamic instability and flutter, are investigated by many
researchers. The aeroelastic results under the assumption of structural linearity, may disagree with
the physical phenomena as most real structures may have structural nonlinearities such as freeplay,
bilinear, cubic non-linearity, friction, and hysteresis.

Limit cycle oscillations (LCOs) and bifurcations arising from a concentrated structural
nonlinearity in the restoring forces were first studied by Woolston et al. (1957) and Shen (1977).
Breitbach (1979) described the flutter analysis of an airplane with multiple structural nonlinearities

in the control system. Laurenson (1980) studied flutter of a missile control surface with
freeplay using the describing function method. Lee and Torn (1989) applied the describing
function method to analyze the flutter characteristics of the F-18 aircraft. They considered a
nonlinearity of the type represented by a bilinear spring at the wing-fold hinge. They also
considered free-play nonlinearity at the leading edge flap. Tang and Dowell (1992) investigated
free-play nonlinearity in the pitch degree of freedom. It was shown that free-play nonlinearities
introduced limit cycle oscillations at speeds below the linear flutter speed.

They concluded that the amplitude of limit cycle oscillations depended on initial conditions,
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airspeed, and degree of nonlinearity. Kim and Lee (1996), particularly investigated same problem
but with a flexible two degrees of freedom airfoil. They performed nonlinear aeroelastic analyses
for both the frequency domain and time domain.

The nonlinear response of a structurally nonlinear airfoil in subsonic flow has similarly been
the subject of a number of investigations such as works done by Conner et al. (1998) and Tang et
al. (1998) for discontinuous structural nonlinearities, and by O’Neil (1998) and Sheta et al. (2002)
for continuous structural nonlinearities. Sedaghat et al. (2001) considered the estimation of the
hopf bifurcation point for aeroelastic systems. In this investigation, a procedure was developed to
produce and solve algebraic equations for any aeroelastic systems, with and without frequency-
dependent aerodynamics, to predict the hopf bifurcation point. Dessi et al. (2002) studied the limit-
cycle stability reversal near a hopf bifurcation with aeroelastic applications. In this investigation
numerical studies were performed to show the dependence of the Hopf bifurcation characteristics
upon the structural and geometric properties of the wing section. Dessi and Mastroddi (2004)
constructed a theoretical model with a three-degree-of-freedom aeroelastic typical section with a
trailing-edge control surface including cubic nonlinear springs for both the nonlinear description of
the torsional stiffness and of the hinge elastic moment. The equations of motion are then analyzed
by a singular perturbation technique based on the normal-form method.

Experimental investigation of the aeroelastic response of a wing section with a structural
freeplay nonlinearity were performed by Marsden et al. (2005). They concluded that the friction
damping in the experimental apparatus, particularly in the plunge degree of freedom is not
negligible, and is probably responsible for the damped LCO behavior. Liu et al. (2007) developed
a high dimensional harmonic balance approach for an aeroelastic airfoil with cubic restoring
forces. In this research a new formulation of the harmonic balance method was employed for the
aeroelastic airfoil to investigate the amplitude and frequency of the limit cycle oscillations. Limit
cycle oscillation of rectangular cantilever wings containing cubic nonlinearity in an incompressible
flow has been studied by Ghadiri and Razi (2007). In this study the nonlinear aeroelastic behavior
of the 2DOF rectangular cantilever wing with hardening and softening cubic nonlinearities was
studied in the time domain, and the prediction of LCO amplitude and frequency via the HB
method and numerical solution was investigated.

Irani et al. (2011), studied the Bifurcation in a 3-DOF Airfoil with Cubic Structural
Nonlinearity. They showed that the type of bifurcation and turning point location depends on the
characteristics of the airfoil as well as the parameters of structural nonlinearity. Numerical
investigation of the effects of structural geometric and material nonlinearities on limit-cycle
oscillation of a cropped delta wing was considered by Peng et al. (2011). This study demonstrated
that the LCO of the cropped delta wing was not only closely related to geometric nonlinearity, but
was also remarkably affected by material nonlinearity. Numerical bifurcation analysis of static
stall of airfoil and dynamic stall under unsteady perturbation was studied by Liu et al. (2012). In
this research the static and dynamic stalls were studied from viewpoint of nonlinear dynamics and
it was concluded that the oscillating airfoil could have a positive influence on the aerodynamic
performance of airfoil by modifying the streamline topology. Anton et al. (2012) analyzed the
hopf bifurcation of an aeroelastic model using stochastic normal form. In this research, the effects
of parameter uncertainties on the dynamical response of an aeroelastic model representing an
oscillating airfoil in pitch and plunge with linear aerodynamics and cubic structural nonlinearities
were investigated.

Harmonic Balance Method is used to determine the turning point location respect to the free-
stream flow velocity and it is an efficient method to illustrate unstable LCOs before the Hopf
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Fig. 1 Swept wing configuration

point, which is in this case is equal to the linear flutter speed.

Cubic nonlinearity in the pitch degree of freedom causes subcritical knee-like and supercritical
pitchfork-like shape Hopf bifurcation respect to the characteristics of the wing. More recently,
Eken and Kaya (2015) investigated the limit cycle oscillation of swept cantilever wings containing
cubic nonlinearity. They showed that the sweep angle can affect the wing response dramatically.

It seems that the effect of wing sweep angle on bifurcation analysis of swept wings has not
received much attention in the literature. So in the current study, the effects of wing sweep angle
on bifurcation analysis are presented.

2. Governing equations

A swept cantilever wing modeled as a classic beam containing two degree of freedom as shown
in Fig. 1, is considered. By using standard notation, the plunge deflection and pitch angle are
denoted here by h, positive in downward direction, and «, positive nose up, respectively. The
elastic axis distance from the mid-chord is ab,, where b is the semi-chord length, while the
distance between the wing center of gravity and the elastic axis is x,b,. All distances are positive
when measured towards the TE of the wing.

The kinetic energy, the potential energy and the virtual work of aerodynamic forces acting on
the wing may be expressed as follows

T= %L‘ [m(h+bnxad)2 + Iadz}iy,

14| _(a%nY’ oa) |,
Vv =§I{El(ay2J +GJ(§) }dy, 1)

|
W, = [(Ldw+MsoXx.
0
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Where m, I, El, GJ, L and M are wing mass per unit length, wing mass moment of inertia per unit
length about wing center of gravity, bending stiffness, torsional stiffness and the aerodynamic lift
and moment, respectively. By considering the procedure of Ghadiri et al. (2007), the following
aeroelastic equations can be obtained

AT + A, (Imbx, ) + A1) =Q,
@
Aslm(bnxafdﬁA7(lmbnxah;)+lAsladl+AA(GI—"al) -Q,.

The coefficients A;, Ay, As,... are the integration of the selected mode shapes of the wing and
are defined in Appendix A.
The non-dimensional parameters are considered as below:

I, om o, . U, y oo _Udt

h
=T ra: ’ - T o 7:7! Unzil = '
iy mb? M ot YT, bo, ' b

a n a n

By substituting the dimensionless parameters into Eq. (2), the final form of governing
equations can be written as follow

oA ) [ ] 6(6)= ko,

A7(ra jAB A{ J (a1)=,fTZ“§,Qa-

The aerodynamic lift and moment used in this paper are the unsteady aerodynamic loading
based on strip theory like the model used in Hadadpour et al. (2008), and in dimensionless form
are

@)

2
L(&, @) = pU 0w 7l(a’ +§”+ b, 9¢' —tan A+ b, 9 tanA+( )2 s tan® A) -
| On | on on’
-a, (a"+ b, 9 )2 Gl atan A)+2W,, (7)1,
on’
M(a:,o:):pU,fzb;‘aoj;r[—((O.S—ah)oc’Jrb—a tan A) +a, (& +2b o7 tan A + b—(a—tanA
2l on | on | on

2 [ (4)
%ﬂ 20 itanzA)—(%+a§)(a"+ zf’n oa’y
n

Where, A is the wing sweep angle, and W3, in terms of Wagner’s function can be written as
follow

Wiy, (7) = (2(0) +£(0) + (0.5-a,)a'(0) + &(0-5 —2)

an A+ ( )—tan A)+2(0.5+a,)W,,(2)].
77

oa(0)

tan A) + b 06(0)
on

—tan Ale(r) +
on

(5)
+[ p(0)(E"(0) +a'(0) +(05-3,)a" (o )+7a§ @) 4 +Tn(o.5— )aoé(a)tanA)da
n
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In Eq. (5), ¢(z) is Wagner function and can be determined approximately by using the
following expression:

P(r) =(L-ye™™ —y,e™™).
where the constants y,=0.165, £=0.0455, y,=0.335, and &=0.3 are borrowed from Jones R.T
(1940).
Due to the existence of the integral terms in the integro-differential Eq.(5), it is cumbersome to

integrate them numerically. A simpler set of equations was derived by Lee et al. (1997), and they
introduced four new variables as

w = [Te (o) do = W = £() - & W,
W, = jof e =(I¢(g)do => W, = E(r) — &, W,

(6)

w, = jor e g (o)do => W, = a(r) - &, W,

w, = jo’ e =g (c)do =>W, = a(r)-&,W,

By integrating and employing the above variables, the complete aeroelastic equation of motion
can be obtained as

2
14 n 6 1 1/ ", ’
AL+ A, (Xaa1)+A5 (U*J G (51)+;[§1A5 —a,aA, +2(p16, +1,6,)EA + 21—y, —y, ) A +
+2(A-y,—y,) +(0.5-a, )(y1&, +y,6,))aA; + (1+2(0.5-a, )A-y, —y,))a'A; +
2b, tan A 2b, tan A b, tan A
+|7(1_W1_!//2)§1A8+ | |

2b, tanA _ b, tan A
_nliahalAQ +( | ) EA, -2, (

SR+ 1+2(0.5-a,)A-y, —w,)) A, —

b, tan A

)2 A, — 2‘//1512\’\’ As— 2‘//2522"\’ As +

2b, tan A
+2y,6,(1-(0.5-a,)g W, A, +2p,5,(1-(0.5-a,) g, W A, ++ ”Iilylglw A+

2b, tan A
+n|7 v16,(0.5—a, W ;A +

—2(5(0)A; +(0.5-a,) (0)A, )W e ™™ +y,e )] =0,

2b, tan A 2b, tan A

YoM A + |

W,6,(0.5—-a, W A, -

2
X " ” 1 1 "
A, [r—z 1J+A6a1+Ae(lTj M (al)—P[ahajl&+(1+2ah)(y/151+1//252)§1A7+

+(1+ 28, ) Ay, —y,)GA; + 1+ 2, )(L-y, —w,) + (0.5-a, ) (w16 +y,8,)) A —

, b, tan A
~(0.5-23,)(1- (1+23, )L~y ~wa))ogAg + (L+ 28,) === (L= ~v,) S +

b, tan A

2b tan A 1

+ | (5 +ay) oA, —

(@, +(1+2a,)(0.5-a,)1-y, —y,)aA,, —

1 b tan A
—(§+ah2)( : |

1 1/
)2051A15 —(1+2a, )l//lé‘l?W A, —(1+2a, )1//2827W LA, — (§.+ aﬁ)oclA6 +
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+(1+2a, )y,5,(1-(0.5+a, )e, W ,Aq + (1+ 28, )w,&,(1-(0.5+4a, ), W A, +

b, tan A b, tan A

+ w6 (L+2a, WA, +n|—‘//151(1+23h )(0.5-a, W A, +

b, tan A b, tan A

|
—(1+2a,)(5(0)A; +(0.5-28,) (0)As) (168 ™ +y,6.8 ™)+,

b, tan A (7)

+ )2§1A14+|—‘//2‘92(1+2ah)W2A10 -

w,e,(1+238,)(0.5-a, W Ay +a, (

2b, tan A
I

By summarizing the above equations, the aeroelastic equations of motion can be written as:

‘§1'A1o] =0.

2
@
C.E]+Co0] + Ci&, +Col) + Catty +C,u0t] + CoW, + CgW, +C, Wi + CoW, + A{U*j G(£)=f(r),

n

2
d,&l+d o) +d,& +d,& + dya, +d,af +dgw, +d,w, +d,w, +dyw, + A{Ul*] M(a)=g(z).

Where c;and d; (i=a,b) and c; and d; (j=1,2,...,8) are given in Appendix B. the expressions for f(z)
and g(z) are

1612 e v g0 -, 0|

9)
1+2a er - 1
9(7) = _[ Lur? : J|:(‘//181e T tY,8,€ (A7§1(0)+ AG(Z -, ]al(o)ﬂ-
The nonlinear stiffness terms for the cubic nonlinearity are defined as follow
Ge)=p.5+8.8  Mla)=pa+p . (10)

3. Numerical simulation

The governing aeroelastic equations in the time domain, Eq. (8), can easily be rewritten as a set
of first order ordinary differential equations (ODEs). By a suitable transformation, the resulting set
of eight ODEs is given as follows

d—X:F(X,T) (11
dr

By assuming the following variables:
X =8% =&\ X =0, Xy = Xg =W, Xg =Wy, X = Wy, Xg = W,
vector X takes the following form
T
X=[X X, X X X X5 X5 Xg] (12)

The initial conditions of the system can be expressed as
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X(0)=[£(0) &'(0) &(0) «(0) 0 00 0OF
The first ODEs in the state space form are given as
’ . COH _dOP ’ ’ _ClH +le
Xpp Xp == X3 =Xy Xg =———"—,
doci—codh doci—codh (13)
X =X EX, Xg =X = EXe X =X mEX, Xy =X =6
Where

—2
(4]

P =X +C,X, +C;X; +C, X, +CXs +CXs +C, X, +CXg + A K G(x)—f (),
n

(14)
Q=dx +d,x, +d,X; +d,X, +dX; +dXs +d, X, + X + A & M., (x;) —9(z).

n

The standard fourth-order Runge-Kutta method is used to integrate the system of Eq.(11) under
given initial conditions as mentioned.

4. Computing linear flutter speed
Substituting G(&)=¢ and M(a)=a into Eq. (8) yields
X'=ATF - ABX (15)

where A, B are 8 by 8 and F'is 8 by 1 sparse matrices given as follow

_ - c, C, c1+A5w—j2 C, C; C C, G
c, ¢, 00 0O0O0O U,
Ci)a (2; fl) g 8 g 8 8 d2 d4 dl d3+A6U1;2 d5 d6 d7 d8
A 0 0 010000 B -1 0 0 0 0 0 0 O
0 0001000 0 -1 0 0 0 0 0 O (15)
0 0 00O0O1O00 0 O -1 0 g 0 0 O
0 0 00O0OOT1O0 0 O -1 0 0 & 0 O
|0 0 00 0O0 O 1] 0 O -1 0 0 g O
10 0 0 -1 0 0 0 g

F=[f(r) g(zy 0 0 0 0 O OF.

The linear flutter velocity U, is obtained by solving the resultant eigenvalue problem. Stability
of the linear system depends on the eigenvalues of -4 B in Eq. (15). To obtain the solution to the
problem, the eigenvalues and eigenvectors of the system must be determined. The real parts of the
eigenvalues represent the damping and the imaginary parts represent the frequency. In order to find
the aeroelastic instability, one can use the plot of damping against speed and the corresponding
airspeed with zero damping is called the flutter or divergence speed.
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Table 1 Case studies of the linear analysis: physical, geometrical and nondimensional characteristics

Model A (deg) f,(cps) fa(cps) I (in) b, (ft) an Xa ra2 U
30B-2 30 12.1 88.8 24.8 0.167 -0.2 0.12 0.277 37.7
40A-5 15 9.3 88.2 24.8 0.167 -0.2 0.12 0.277 35.1
50A-2 -15 15 137 24.8 0.167 -0.34 0.34 0.352 8
93-3 30 6.3 50 23.6 0.167 -0.12 0.24 0.428 73.2
85-3 60 5 63 44 0.167 -0.36 0.38 0.378 345
30D-1 15 13.2 82.4 24.8 0.167 -0.21 0.17 0.28 8.7

Table 2 Validation of sweep effect on instability speed.

Model Utiutter m/s Udivergence m/s ;(mpséaﬁl:,ﬁ/err?(;l first flutter |r-]rs¥§t?| ﬁIy Error %
30B-2 103.906 118.48 105.050 -3.5 Flutter 1.089005
40A-5 93.292 113.552 89.852 -2 Flutter -3.82852
50A-2 84.437 45.006 46.938 -3.2 Divergence 4.116068

93-3 81.789 165.664 82.701 -3.6 Flutter 1.102768

85-3 132.726 332.558 135.450 -4 Flutter 2.011074
30D-1 45.721 105.215 45.491 -4.1 Flutter -0.50559

4.1 Validation

Linear aeroelastic analysis of the swept wing was carried out in order to verify the derived
formulations. For this reason, experimental data for the flutter speed of the swept wing of Barmby
et al. (1950) are used. The physical characteristics of the tested wings and their nondimensional
parameters are presented in Table 1.

The linear flutter speed for each case is calculated and compared with those obtained by
experiments for six different cases are given in Table 2. It can be seen that this formulation
provides good agreement with the experimental data, and the difference between our proposed
method and experimental data, in all six cases, is below 5%.

5. The First Order BH method(HB1)

The HB method is an efficient method for the prediction of the frequency and amplitude of
LCO that occurs at speeds above the linear flutter speed for wings containing a cubic nonlinearity.
In order to apply this method, plunge and pitch motions should assume the form of a trigonometric
series, such as Fourier series. So, the time-dependent part of plunge and pitch motions can be
approximated as

&(r) = f,sin(w7) + g, cos(wr)
a(r) =a,sin(wr)

(17)

Substituting Eq. (17) into Eqg. (6) and Eq. (8), and calculating the coefficients of sin(wz) and
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cos(wrt), we obtain the system ay, f;, g; and w

SV BN ) =0

3 7]
m,a, + p2f1+ngl+ZA5(U*

3 1

m f - -

38, + Py 1+q3gl+4Aﬁ(U
m,a, + p4f1+Q491:0

where m;, p; and q; (i=1, 2.. 4) are functions of system parameters and frequency @, and their
definitions are given in Appendix C. For velocities larger than the bifurcation value, the motions
have limited-amplitude, i.e., there exist non-zero solutions to Eq. (18).

At the particular case where we only have cubic nonlinearity in the pitch degree of freedom or
B #0 and =0, the determinant of three equations of Eq. (18) should be zero. We can obtain
acceptable frequency by the following equation

3
ma, + p1f1+q191+ZA5(

2 31f12 1220
) B.0:(f7+9,) (18)

)’ B8 =0

m m, m,
PP P|=0 (19)
@ 4 O

In this instance, once the frequency is obtained, f; and g; can be solved from the two relations
of Eq. (18) in terms of a;, that is

f,=—a(mp,+m,p,)/(p} +p;)=aF
g, =a,(mp,—m,p,)/ (p; + p;) =aG,

Substituting Eq. (20) into the third equation of Eq. (18) pitch and plunge amplitude can be
obtained:

(20)

Pitch amplitude/rad :

a = u” |- (m, + p;F, +6,G))
3ALB,s

Plunge amplitude:

2 2
L=yf2+0? =a\F?+G; =2u*\/_(':1 +Gl)(;n;6;psﬁ+q361)

6. The third order BH method (HB3)

The second dominant harmonic is associated with a frequency of 3w. For a higher order
approximation in the analytical prediction, we rewrite Eq. (17) as
&(7) = f,sin(wr) + g, cos(wr) + f,sin(3w7) + g, cos(3wr)
a(r) = g, sin(wr) + a, Sin(3wr) + b, cos(3wr)

21

Substituting Eq.(17) into Eq.(6) and Eq.(8), and calculating the coefficients of sin(wz) and
cos(wr), we obtain the system of ay, f1, g1, as, bs, f3, gs and
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3 7]
ma, + p, f1+q1g1+ZAS(U*)2ﬁ§3 (_29193 f1+2912 f3+ f13 + f1912 +2f1 f32 +2f1932 - flz fa) =0
3 7]
M3, + P fy + 0,0, + 5 A()" B (20, T+ 07 + 170, — 179, +30, 1+ 20,07 +39/9,) =0
3 1
m,a, + p3f1+q391+ZAe(U*)2ﬁas(_aizas+a13+231a32+231b32):0
3 1, 2
m,a, + p, f1+q491_ZAe(U*) ﬂ,,,sa1b3 =0
3 @\ 3 3 2 2 2 2 (22)
m13a3+V13b3+ Pis f3+q13gs+ZA5(U*) ﬁ§3(_fl /3+2f3 + f3g3 +2f1 f3+ flgl +2¢, f3):0
3 @
Mas, +Voas + Py s + 0 + 7 A7) B (2170, +12970, 21, 9, 13+ 179, +.95) =0
b f i Ly b? +2a’a,—a’/3+a’)=0
My38; + V3305 + Py 3+CI3393+4A5(U*) ﬁaa(a3 ; +23;8, - /3+3;) =
i 1, 2 2 3y _
M58 + Vs + Py F + 058 + 4 A%;(U*) ﬂaa(agb3+281b3+b3)—0

where m;, mis, Pi, Pis, Vi Gi» Gis (I=1, 2, ..., 4) are functions of system parameters and frequency o,
and their expressions are given in Appendix C. Also variables m;, p; and q; (i=1, 2, ..., 6) are the
same as mentioned in HB1 method.

Again At the particular case where we only have cubic nonlinearity in the pitch degree of
freedom or ﬁf;éO and ,B;3=0, the variables fi, g; in terms of @; can be solved from the two
expressions in Eq. (22), and their solutions are the same as Eq. (20). Also the variables f;, g3 can be
solved from other two expressions in Eq. (22) in terms of a3 and b

f3 =—q (m13 Pig + My pza) /( p123 + pzzs) - bs(mls Pag —Myg p13) /( p123 + pzzs) = F3aa3 + Fsbba

2 2 2 2 (23)
0;= as(mlz Pas =My p13) / (p13 + pza) - bs(m13 Prg — My pza) / (p13 + pzz) = Gsaas + Gsbbs

So the other four expressions of Eq. (22) are

2
M@+3&(1j/ye%%+ﬁ+%@%4q%rm

4 °\U”

va-2a( L) p.am-0
@A e | Baab=
2 (24)
3 1 2 2 313 3
M3333+N33b3+zp\9 F ﬂaa a3b3+231a3_?+a3 =0

1
R

3 2
M43a3+N43b3+ZA5[ j ﬁaz(a§b3+2312b3+b33):0

Where
M, =m, + p;F, +0,G,
M,=m,+p,F +q,G,
M33 = Mgz + Pyg F3a + qssG3a
N33 = V33 + Py F3b + q33G3b
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Mz ==Ng =My + PysFs, + 0,565, (25)
N43 = M 33 — V43 + p43 F3b + q43G3b

Lee et al. (2005), solved a equation similar to Eq. (24) for a 2-DOF airfoil after some
complicated algebraic manipulations. Taking advantage of the suggested relations, we have:

M; -8M,;M,,+M(1OMZ +4MZ + M. —4M M, )+ MZ(30M ,,M M, —9M ;M2 —12M , ;M - 24M 2)) +

M, (B6MZMZ —=30M M M, +9M 2 +OM M E) +3M M2 =0

2=U_*2_4M43(M3M43+M4M33)
,Bas Mf_4M3M43_3Mfa
a§+b2= u” . 4M43(M3M4+M4M33)
3
Aeﬂas 3(Mf_4M3M43_3M423)

(26)

By using Eqg. (25), we can obtain acceptable frequency, and then by substituting Eq. (26) into
the two expressions of Eq. (24), a; azand bscould be found. Consequently, from Eq. (20) and Eg.
(21), we can derive the specific values of fi, g;and f3, gs, respectively.

7. Determining turning point location

Turning point exists only in subcritical bifurcations where the amplitudes of the unstable and
stable LCO become equal to each other as well as frequency. In a swept wing with cubic
nonlinearity, the characteristics of the wing and the sign of pitch cubic nonlinearity, affect the TP
location, irrespective of its magnitude and initial conditions.

In this section by utilizing HB1 method, we investigative how the characteristics of the wing
affect the location of TP and how the subcritical bifurcation converts to supercritical one or vice
versa. The results are consistent with when the HB3 method is applied. A typical application of
Runge-Kutta algorithm fails to estimate this location because typically there is no proper initial
disturbance for finding this location. The wing parameters are as follow:

4=100, ,=0.25, a,=-0.3, ,=0.5, IIb, =50, ®=1.2, §, =1, i, =40, B, =1, . =0, A =30’

The location of turning point of the wing with respect to the variation of wing parameters is
depicted in Fig. 2.

By increasing ay, supercritical bifurcation converts to the subcritical at a,=-0.47 and it causes
the TP location gets more far away from the Hopf point. Moreover, by increasing r, supercritical
bifurcation converts to the subcritical at r,=0.32. This phenomenon is repeated again for @ and
the conversion from supercritical to subcritical bifurcation occurs in @ =1.04.

8. Bifurcation plots

Supercritical bifurcation emerges, when a wing with the characteristics mentioned in Sec. 7,
including cubic hardening stiffness in the pitch degree of freedom, is considered.
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To check the validation of results, stable LCO’s at various U/U," are numerically evaluated
and compared with those obtained by Ghadiri et al. (2007) and reported in Table 3, and good
agreement is observed. Here the wing has no sweep angle and the results are for the mid section of
the wing.

The pitch and plunge amplitudes obtained via different methods (i.e., Runge-Kuta, HB1, HB3)
are compared with each other in Tables 3 and 4. It can be realized that, in stable LCO condition,
all methods have same results with small difference.

Table 3 Validation of wing pitch amplitude.

Uy, HB1 Ghag:ﬁlet al,  HBs Ghag:ﬁit al, Runge-kutta g#:(?lil iltjt;?
present (2007) present (2007) present (2007)
1.005 2522169 2522232 2524398 2524287  2.524225 2524312
1.045 7637217 7.637241  7.696709  7.689807  7.691579  7.691588
1.075 9.027706 9927723 1005102 10036279  10.042526  10.042542
1.1 11.528767 11.528789 11.71012 11.690238 11.702814 11.702847
1135 13500821 13500811  13.76358  13.742102 13767989  13.767986

1.15 14.278625 14.278636 14.57505 14.555414 14.588522 14.588624
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Table 4 Validation of wing plunge amplitude.
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HB1 HB3 Runge-kutta
U :Eei . Ghadirietal. rHeSB; . Ghadirietal. R““r%es'e';‘:“a Ghadiri et al.,
P (2007) P (2007) P (2007)
1.005 0079809  0.079811  0.079729 0.79739 0079734  0.079736
1.045 0244428 0244429 0242566 0242694  0.242689 0.24269
1.075 0320237  0.320237 0316775  0.316968 0.31695 0.31695
11 0374169  0.374169 0369543  0.369717  0.369682  0.369681
1.135 0441699  0.441698 0435901 0435953 0435889 0.435889
115 0468665  0.468665  0.462549 0.46254 0.462465  0.462466
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Fig. 3 finite limited amplitude of the stable and unstable LCOs for different wing sections (a) pitch
amplitude (b) plunge amplitude (c) frequency
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Fig. 3 Continued

Now, by using the HB1 and HB3 methods, the finite limited pitch and plunge amplitudes of the
stable and unstable LCOs as well as LCO frequency, for the swept wing are computed and
compared with numerical Runge-Kutta method in Fig. 3 for different span-wise positions.

It is concluded form this plot that for greater values of U'/U_" there are some difference between
different solution methods. Also the differences between three methods are increased for greater
values of 7. Here the turning point location is near U"/U,"=0.967. Another interesting result is that
for all sections of the wing, the TP location is same. Moreover, the LCO frequency first increases
until turning point and then decreases.

Among the different investigations, the effects of different parameters on Subcritical and
Supercritical knee-like Hopf bifurcation diagrams, for wing tip, are studied and plotted in Fig. 4.

In this figure, the bifurcation diagrams for different values of a, and x are plotted. It is seen that
for a,=-0.6 the Supercritical knee-like Hopf bifurcation condition is obtained, but in a,=-0.3
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Fig. 4 Subcritical and Supercritical knee-like Hopf bifurcation diagram against different parameters (a),

(b), (c), (d) pitch and plunge amplitude vs. different value of a, (c), (d) pitch and plunge amplitude vs.
different value of u
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Fig. 6 Bifurcation onset location against wing sweep angle for two different initial conditions

the system examines the Subcritical condition. Moreover, for different system parameters,
different turning point locations are obtained. Also when x increases, the turning point appears in
lower values of speed.

In Fig. 5 Subcritical and Supercritical knee-like Hopf bifurcation diagram against different
values of sweep angle are plotted.

As it can be seen, the variation of sweep angle has not had significant effects on amplitudes.

In Fig. 6 the effect of wing sweep angle on bifurcation location of a wing with following
characteristics for two different initial pitch conditions, is plotted.
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4=100, x,=0.25, a,=-05, 1,=05, /b, =50, =02, /3, =1 8, =80, B, =1, B, =0, A=30’,

¢(0)=¢"(0)=a'(0)=0,a(0) = 2", 77 =1.

As it can be seen in this figure, for zero sweep angles in the first case, the bifurcation is
occurred in U"/U,"=2.14 but this value decreases until A=9°. After this point, the bifurcation
nondimensional speed increases until A=27° and for sweep angles greater than this value, the
bifurcation speed again decreases. The trend of the second case shown in this figure is same as the
first one, but the values are different. It is concluded from this plot that for sweep angles lower
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Fig. 9 Bifurcation locations for different values of o’(0)and U/U,” for (a) A=0 (b) A=30°

than or equal of 33 degree, the variation of initial condition has significant effects on the location
of bifurcation onset. But in greater values of sweep angle, the location of bifurcation is
independent of the initial conditions.

In Figs. 7 to 11, the bifurcation locations of the prescribed wing with and without sweep angle
for different value of initial condition for two different nondimentional speed are plotted. The
region that bifurcation occurred is obviously different between the wing with sweep and without it,
in all figures. In Fig. 7, it is seen that bifurcation region for swept wing is bigger than the unswept
wing.

As it is clear from this plot, the bifurcation location is divided into two parts and between these
two parts there are some initial conditions in which the wing doesn’t examine the bifurcation
phenomenon. In Fig. 8, the bifurcation location is plotted for different values of U7U."and «(0).
Here, the region that bifurcation occurred for wing with sweep angle is smaller than the unswept.

In Fig. 9 the bifurcation location is plotted against different value of U"/U "and «/(0). The
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bifurcation region for swept wing is bigger than the unswept wing except for somewhere near
/(0)=0.

Furthermore, the bifurcation location for £(0) and &'(0) are plotted in Figs. 10 and 11. In both
plots the bifurcation region for swept wing is bigger than unswept wing.

In Fig. 11 the bifurcation location is so big that we can say in all initial conditions the
bifurcation phenomenon is occurred.

9. Conclusions

In this work, the governing aeroelastic equations of a swept wing in an incompressible flow
were derived in the time domain. The nonlinear aeroelastic behavior of the wing with hardening
cubic nonlinearities in the pitch degree of freedom was studied. Moreover, the prediction of LCO
amplitude was investigated by using the HB method and numerical solution and the results were
illustrated in bifurcation plots. The different Supercritical and Subcritical knee-like Hopf
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bifurcation diagrams, for different system parameters, were plotted and the following outcomes
were concluded:
(a) The bifurcation diagram is highly dependent on the position of the elastic center.
(b) The type of bifurcation and TP location depend on the characteristics of the wing as well as
the structural nonlinearity parameters.
(c) The type of bifurcation is strictly depends on the value of structural nonlinearity parameter.
(d) The wing sweep angle has significant effect on the location of bifurcation.
(e) For the high values of sweep angle, the location of bifurcation is independent of the initial
conditions.
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cC

Nomenclature

an non dimensional distance from wing mid-chord to elastic axis
b wing semi-chord
h plunge displacement
HB1,HB2 first and third order harmonic balance method
I, wing mass moment of inertia about elastic axis
L wing aerodynamic lift force
LCO Limit cycle oscillations
m wing mass per unit length
M, wing pitching moment about elastic
M, () nonlinear pitch stiffness terms
t time(s)
TP turning point
U’ Linear flutter speed
U, free-stream velocity normal to swept wing
Uy non-dimensional velocity normal to swept wing
« non-dimensional distance from the
“ wing elastic axis to the centre of mass
a pitch angle of wing
B B constants in nonlinear term M, ()
B B constants in nonlinear term G(¢&)
&1, & constants in Wagner’s function
& G viscous damping ratio in plunge and pitch
u wing-air mass ratio

p density of air
é non dimensional plunge displacement
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non dimensional time

constants in Wagner’s function
fundamental frequency of the motion
natural frequencies in plunge and
nonlinear plunge stiffness terms
Wing sweep angle



Effect of sweep angle on bifurcation analysis of a wing containing cubic nonlinearity 469
Appendix A
The coefficnets of the Egs. (2) and (8) are as follow
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Appendix B

The coefficients of the Egs. (18) and (22) are as follow
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