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Abstract.  The dynamical requirements are obtained for airplanes to travel on inclined circular trajectories. 
Formulas are provided for determining the load factor, the bank angle, the lift coefficient and the thrust or 
power required for the motion. The dynamical properties of the airplane are taken into account, for both, 
airplanes with internal combustion engines and propellers, and airplanes with jet engines. A procedure is 
presented for the construction of tables from which the flyability of trajectories at a given angle of 
inclination can be read, together with the corresponding minimum and maximum radii allowed. Sample 
calculations are shown for the Cessna 182, a Silver Fox like unmanned aerial vehicle, and a F-16 jet 
airplane. 
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1. Introduction 

 

This study is a contribution to the endeavor of automatic mission planning for airplanes and in 

particular for unmanned aerial vehicles (UAVs). Whereas the flight programs of commercial 

airplanes are usually fairly simple and determined before the airplane takes off, that of UAVs is 

generally more complex, and very often have to be adapted to unforeseen circumstances during the 

mission. Thus UAVs should be able to perform on-board trajectory re-planning in response to 

various events. In order to help realize this task, it is necessary to have at one's disposal 

mathematical formulas for determining what trajectories this particular airplane can fly and what 

their relative costs are. It is the purpose of this article to present the derivation of such formulas for 

inclined circular trajectories. 

A common approach to automatic trajectory planning consists in firstly constructing a stick 

trajectory, that is a continuous sequence of rectilinear segments, and then smoothing the 

connections between these segments so that the velocity of a point moving on this trajectory would 

be continuous. Labonté (2011, 2015) analysed the dynamics of airplanes on rectilinear segments 

inclined at arbitrary angles, and derived necessary and sufficient conditions for engine-propeller 

driven airplanes to be able to follow such trajectories. Although the corresponding analysis has not 

yet been done for jet airplanes, it would not be too difficult to do, based on the work about 
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propeller airplanes. There are two main approaches for connecting smoothly the rectilinear 

segments: one uses circular arcs and the other one B-splines. The B-spline approach is described 

in, among others, Zheng et al. (2003), Nikolos et al. (2003) and Yang and Sukkarieh (2010). This 

method has the disadvantage of producing final trajectories that may deviate considerably from the 

initial stick trajectories. Furthermore, the splines are not easily analysed for their dynamical 

flyability by airplanes; to our knowledge, no such analysis has yet been done. The first method 

generalizes, to three dimensions, the work of Dubins (1957) according to which trajectories can be 

built up from rectilinear and circular segments. This technique has been explained in, among 

others, Chandler et al. (2000), Chitsaz and LaValle (2004), Jia and Vagners (2004), Myung 

Hwangbo et al. (2007), Li Xia et al. (2009), Ambrosino et al. (2009), Babaei and Mortazavi 

(2010), Hota and Ghose (2010). In three dimensions, the connecting circular arcs have to lie in 

inclined planes. Furthermore, these trajectories are very often considered to be flown at constant 

speed, as is the case in all the references just mentioned. 

Notwithstanding the evident importance of such inclined circular trajectories, it is remarkable 

that no rigorous formulas yet exist to determine whether or not they are compatible with the 

dynamics of the airplane supposed to fly them. Almost all airplane dynamics manuals discuss 

circular trajectories in the horizontal plane under the heading of “banked turns”. Many also discuss 

circular trajectories in the vertical plane as loops, pull-ups or pull-downs. A few have a section on 

aerobatics where they discuss inverted loops and various turning trajectories such as spirals (see 

for example, Chapter 3 of Phillips (2004), Chapter 8 of Mair and Birdsall (1992), or Section 15 of 

Cowley and Levy (1920)), which are actually similar to circular trajectories in an inclined plane. 

However, we have not found published any complete solution to the equations of motion that 

would give the position, velocity and acceleration of an airplane, as a function of time, for circular 

trajectories inclined with an arbitrary angle.  

In all the discussion of climbing or descending flights that we have found, except for the 

vertical loops, the approximation is made that θH, the angle of the trajectory with the horizontal 

plane, is small so that cos(θH)≈1. Although this is true for many conventional airplanes for which 

θH is limited to roughly 10°-15° or less, it is not true for UAVs or high performance jet fighters 

such as the F-16. UAVs come in a wide range of sizes and agilities and they can fly much more 

daring maneuvers as inhabited airplanes. For example, some commonly available radio-controlled 

planes can easily climb at 45° or steeper, as for example, the Carl Goldberg Falcon 56 described 

by Granelli (2007) and the Hangar 9 Twist 40 described by Horizon Hobby (2004). Therefore, in 

the present study, we do not make the small angle approximation and the formulas we derive are 

applicable for any angle of inclination θH.  

 

1.1 Assumptions 
 

As remarked in the chapter “Nonuniform Flight” of Von Mises (1945), it is very rare that the 

equation of motion for a rigid body, with all its six degrees of freedom, can be integrated. 

Furthermore, it would be very complicated to actually take into account all the aerodynamic forces 

acting on the different parts of an airplane that is in nonuniform motion, due to its asymmetric 

attitude with respect to its trajectory. In this same chapter, Von Mises discusses vertical loops and 

banked horizontal turns and points out that in curved trajectories, “the air reactions must supply, in 

addition to the centripetal force ..., a rolling, a pitching, and a yawing moment...” After some 

calculations for the banked turn, he further comments that, under normal conditions, the moments 

required for maintaining the steady rotation are, after all, unimportant. A similar remark can be 
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Airplanes at constant speeds on inclined circular trajectories 

found in Chapter 8 of Mair and Birdsall (1992) in which vertical loops, horizontal banked turns 

and helicoidal trajectories are discussed. In Section 8.5, they state “that any increase of drag due to 

the angular velocity of the aircraft and the deflections of the control surfaces can be neglected in 

comparison with the dominant increase of the lift-dependent drag”. Section 15 of Cowley and 

Levy (1920) comments similarly that a rigorous treatment of curved flight trajectories would be 

extremely complicated because of imperfectly known factors related to the variation in 

aerodynamic forces along the wings, due to their non-symmetric role in the motion. They also 

assume that “any increase of drag due to the angular velocity of the aircraft and the deflections of 

its control surfaces can be neglected in comparison with the dominant increase of lift-dependent 

drag.”  

Thus, in the present study, we make the same assumptions that the dynamics involved in the 

rotations of the airplane about its center of mass, which necessarily occur in the curved motions we 

examine, are negligible in comparison with those that concern the motion of its center of mass. We 

also do not take into account the perturbations of the atmosphere and assume that the circular 

trajectories are small enough that the air density, the air temperature and the weight of the airplane 

can be considered constant during the motion. Finally, we make ours the remark in the introduction 

to Chapter “Aircraft Performance” of Phillips (2004) to the effect that the material we present 

“should be thought of as only a preliminary study of airplane performance. Here, emphasis is 

placed on obtaining closed-form analytic solutions suitable for preliminary design”. 

 

1.2 Representative airplanes 
 

Our study deals with airplanes with the two types of powerplant: internal combustion engines 

with propellers and jet engines. We recall that the thrust required TR on a particular trajectory 

depends on the configuration of the airplane body, on the manoeuver it executes and on the state of 

the atmosphere about it. On the other hand the thrust available TA depends only on the propulsion 

system of the airplane. The power P is related to the thrust T by the relation P=TV∞. As discussed 

in Chapter 9 of Anderson (2000), for a reciprocating engine-propeller combination, the power 

available PA is such that PA=P, with  the propeller efficiency and P the shaft brake power of the 

engine. PA is directly proportional to the engine rpm and the air pressure ∞. At a given air 

pressure, the power available PA has a maximum constant value PAmax that corresponds to the 

engine running at its maximum regime. For fixed pitch propeller and also for constant speed 

propeller at small speeds, the propeller efficiency  depends on the speed of the airplane. For a jet 

engine, the thrust available TA is directly proportional to the air density but can be considered 

reasonably independent of the speed. At constant air pressure, it has a maximum value TAmax that 

depends only on the engine.  

After having derived the required formulas, we shall illustrate their application with airplanes 

that have similar properties as the following three well known, very different airplanes: 

• the Cessna 182 Skylane, 

• a Silver Fox like unmanned aerial vehicle (UAV), 

• the Lockheed-Martin F-16 fighter jet. 

The values of the characteristic parameters, we use for them, are listed in Appendix A. There 

may be small differences between some of those parameters and their actual values but they are 

precise enough for our purpose of illustrating the flight analysis procedure. We have selected these 

particular three airplanes because they are representative of three different propulsion systems. The 

thrust of the Cessna 182 is provided by a reciprocating engine with constant speed propeller; that 
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of the Silver Fox by a reciprocating engine with a fixed pitch propeller, and that of the F-16 by a 

jet engine. 

We recall that the efficiency of the propeller is a function of the advance ratio J, defined as: 

DN

V
J   

in which N is its number of revolution per second and D is its diameter. Thus the maximum power 

available PAmax will depend on the speed, according to the equation 

maxmaxA P)J(P                                (1) 

The dependence of  on J for a constant speed propeller has the general features shown in Fig. 

1(a). This curve approximates that given in Cavcar (2004) by the following quadratic expressions 

  8.08.0J
640.0

663.0
)J(

2









   J ≤ 0.8. 

8.0)J(      J > 0.8.                  (2) 

The dependence of  on J for a fixed pitch propeller has the general features shown in Fig. 

1(b). This curve approximates that given in the Aeronautics Learning Laboratory for Science 

Technology and Research (ALLSTAR) of the Florida International University (2011) by the 

following quadratics 

  83.070.0J
49.0

83.0
)J(

2









   J ≤ 0.7. 

  83.070.0J
06.0

83.0
)J(

2









   J > 0.7.              (3) 

 
1.3 Organization of the article 
 

The first sections of this article are valid for all inclined circular trajectories, whether they are 

traversed at constant speed or not. They start with a mathematical description of such trajectories 

in terms of the convenient Frenet-Serret frame variables. Formulas for the bank angle, the load 

factor, the lift coefficient and the thrust required are then obtained and some of their general 

properties are derived. The implications of the boundedness of these physical parameters are 

derived for constant speed trajectories, yielding inequalities for the centripetal acceleration and the 

speed and the inclination angle. The rest of the article deals only with constant speed trajectories 

for which many inequalities are obtained on the trajectory and flight parameters. Section 7 

examines the consequences of the non-negativity requirement for the thrust. Section 8 analyses the 

constraints that follow from the upper-boundedness of the power available for propeller airplanes. 

Section 9 presents a similar analysis about the upper-boundedness of the thrust available for jet 

airplanes. Finally, a systematic procedure for determining the flyability of circular trajectories is 

presented in the last section. It is illustrated through the construction of tables of possible 

parameters for flyable trajectories, for the three different types of airplanes mentioned above. 
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Airplanes at constant speeds on inclined circular trajectories 

  
(a) Constant speed propeller (b) Constant pitch propeller 

Fig. 1 Typical efficiency factor  as a function of the advance ratio J 

 

 

 

(a) Cartesian coordinate system (b) Frenet-Serret vectors , N, B, the angle of 

bank  and the lift vector L 

Fig. 2 Parameters used in the description of circular trajectories inclined by and angle  with respect to 

the vertical 

 

 

2. Equation of motion 
 

Let us consider an airplane that flies on a circular trajectory that lies in a plane inclined by an 

angle with respect to the vertical. Fig. 2 represents such a trajectory, for which we have chosen 

the coordinate axes so that its horizontal diameter is along the x-axis. Let n represent the unit 

vector that is normal to the plane in which it lies, then 

n=[0, -cos(), sin()]. 

The position of the centre of mass of the airplane, at time t, on the trajectory is given by x(t): 

x(t) = C + R r   in which 
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• r = [cos(), sin() sin(), cos() sin() ] is the unit radial vector 

• C = [C1, C2, C3] is the position of the centre of the circle, 

• R is its radius,  

•  is the angle, in the plane of the circular trajectory, which the airplane position vector makes 

with the x-axis.  

Whatever the speed of the airplane on this circular trajectory,  is a monotonically increasing 

function of t if the trajectory is traversed in the counterclockwise direction around the normal n 

and otherwise, it is monotonically decreasing. It is such that (0)=0 and (P)=2, when P is the 

period, i.e., the time required to fly around the trajectory. Note that, for counterclockwise motion, 

the airplane is ascending when  2/,2/   and it is descending when  2/3,2/   . For 

a constant speed trajectory, =t, in which  is a constant =2/P. Its velocity is v(t) 

      v(t) = x'(t) = V∞     

where   V∞ R ' and  = [-sin(), sin() cos(), cos() cos() ].  

 is the unit vector tangent to the trajectory. For constant speed trajectories, V∞=Rω. For the sake 

of clarity, we shall hereafter consider that the trajectory is in the counterclockwise direction so that 

'>0 at all times. We shall use the Frenet-Serret frame of reference that is particularly useful in the 

description of such trajectories. Fig. 2(b) shows its basis vectors. The unit principal normal vector 

N is directed toward the centre of the circle with N=-r.   

The acceleration of the airplane is:  a(t) = v'(t) = N
R

V
''R

2
 . For constant speed 

trajectories, this reduces to a(t) = N
R

V 2
 . The unit binormal vector B is simply the vector n. 

     

2.1 The forces at play 
 

The physical forces at play are  

• the lift L,  

• the gravitational force W =-W k, with k = [0, 0, 1],  

• the longitudinal force that corresponds to the thrust produced by the propulsion system T 

minus the drag D; its value is then (T−D)τ.  

The lift L is perpendicular to the velocity of the airplane and its bank angle , is measured with 

respect to the normal to the plane of the trajectory, L can be written as: 

L = L cos() n + L sin()N(t) 

Fig. 2(a) shows how the bank angle is defined; it can take any value, corresponding to the 

airplane flying in any possible attitude on the trajectory. Newton’s equation of motion is 

g

W
a = L + W + (T-D)            (4) 

The n, N and  components of this equation are respectively  

)sin(W)cos(L          (5) 
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Airplanes at constant speeds on inclined circular trajectories 

)sin()cos(W
Rg

WV
)sin(L

2

   ,                                 (6) 

)cos()cos(W''
g

WR
DT                     (7) 

We define Ac, the centripetal acceleration in units of g as 

)sin()cos(
Rg

V
A

2

c   .               (8) 

Eq. (6) can then be written as 

L sin() = W Ac.         (9) 

 

 
3. Bank angle 

 

3.1 Vertical loops 
 

In a vertical loop, =0 and Eq. (5) then implies that cos()=0 so that either β=π/2 or β=−π/2 

everywhere along the trajectory. The first case corresponds to the loop usually performed in 

aerobatics shows, in which the airplane is upside up at the bottom of the loop and upside down at 

the top. The case with the angle of bank β=−π/2, corresponds to an “inverted loop” in which the 

airplane is upside down at the bottom of the loop and upside up at the top. 

 

3.2 Non-vertical trajectories 
 

When  ≠ , we divide Eq. (9) by Eq. (5) and obtain the following equation for the bank angle 

tan() =
)sin(

Ac


.                                                           (10) 

This equation indicates that all airplanes must bank by the same angle  in order to travel with 

the same speed V on this circular trajectory, a fact that generalises a well-known property of 

horizontal circular trajectories. It also shows that the bank angle will generally vary along the 

trajectory. It should be noted that, because the right-hand-side (RHS) of Eq. (5) is always positive 

when ≠0, its left-hand-side (LHS) cannot be null at any point of the trajectory. Thus, L and cos() 

must always keep the same sign, either positive or negative, at every point of the trajectory, and 

this sign has to be the same one for both of them. According to Eq. (8), Ac is always positive when 

 = 0, thus, tan() is positive and both sin() and cos() must then have the same sign at this point. 

If this sign is positive, because cos() has to remain positive everywhere, the angle of bank  has 

to remain in the interval (−π/2, π/2), and the airplane has to keep flying upside up for the whole 

trajectory. If cos() is negative the angle of bank has to remain in the interval (π/2, 3π/2), with the 

airplane flying upside down, on the whole trajectory. Thus,  

2
c

2

c

A)(sin

A
)sin(





  

2
c

2 A)(sin

)sin(
)cos(







                        (11) 
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with =+1 in the first case and -1 in the second one. According to Eq. (10), if the lift vector points 

toward the region above the trajectory and Ac changes sign, then sin() will change sign, indicating 

that the lift vector will now point away from this region, and vice versa.  

 

3.3 Trajectories at constant speed 
 

We note that the centripetal acceleration Ac is symmetrical through reflection in the vertical 

plane that passes through =/2 and =-/2. Thus the bank angle also has this symmetry. Its 

minimum value is at =/2 and its maximum value is at =-/2. There would be sections of the 

trajectory on which the bank angle would change sign as the centripetal acceleration Ac would 

change sign. However, it will be shown in Section 7 that, for trajectories at constant speed, it is 

necessary to have )cos(
gR

V 2

  so that Ac will always be positive. Thus, the bank angle will keep 

the same sign for the whole trajectory. Fig. 3(a) shows how the bank angle varies with , for =1, 

for the Cessna 182, when θ=π/6 and )cos(5.1gR/V 2  . 

 

 

4. Load factor 
 

According to Eq. (5), the load factor is 

2
c

2 A)(sin
W

L
n                            (12) 

with  as in Eq. (11), and, as is the case for L, the load factor keeps the same sign on the whole 

trajectory, which is that of the bank angle. Fig. 3(b) shows how the load factor varies with , for 

=1, for the Cessna 182, when θ=π/6 and )cos(5.1gR/V 2  .  

 

 

  
(a) Bank angle  (b) Load factor n 

Fig. 3 Bank angle and load factor as functions of the position angle that varies from 0 to 2when 

θ=π/6 and )cos(5.1gR/V 2 
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n is bounded such that 

nmin ≤ n ≤ nmax                                                             (13) 

thus, from Eqs. (8), (12) and (13), one can deduce that  

)(sinn)sin()cos(
Rg

V 22
lim

2
2

 







 ,  with 










1ifn

1ifn
n

min

max
lim 


 .     (14) 

Again, for the sake of clarity, we shall hereafter consider trajectories on which =+1; the case 

with =-1 can be dealt with the same way. 

 

4.1 Horizontal trajectories 
 

In a horizontal trajectory, =/2, so that 
Rg

V
A

2

c
  and Eq. (12) becomes simply n=sec(β), 

which is an equation found in most textbooks on airplane dynamics, as for example in Chapter 2 of 

Stengell (2004). For upside-up flight, Ineq. (14) yields the following upper bound for the radius of 

the trajectory: 
1ng

V
R

2
max

2
max


 , in which Vmax is the maximum speed of the airplane on the circular 

trajectory. 

 

4.2 Vertical loops 

 

For vertical loops, =0 and )sin(
Rg

V
A

2

c   . The load factor is n= Ac so that there is a 

restriction on R that results from the constraints: Max{Ac}≤nmax and Min{Ac}≥nmin, in which the 

maximum and minimum are calculated over the trajectory. These values depend on the value of ϕ′. 

We note that Ac is always positive at the bottom of the trajectory where ϕ=−3π/2. Thus, in inverted 

loops, the load factor is always negative near this point where the airplane is upside down. When 

discussing vertical loops, Von Mises (1945) points out that the inverted loop is a maneuver of 

extreme difficulty and danger, due to this large negative load when the airplane is inverted. He 

interestingly remarks that it is often forbidden to accomplish this aerobatics figure when a pilot is 

inside the plane, except under strict precautions and regulations. 

 

4.3 Constant speed trajectories at arbitrary inclinations 

 

We note that Ineq. (14) holds  if and only if it holds when its LHS is maximum. This occurs 

at =-/2; thus Ineq. (14) implies an upper bound on the average centripetal acceleration 

)(sinn)cos(
gR

V 22
max

2

  .                 (15) 
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5. Lift coefficient 
 

The lift coefficient has to be bounded as follows 

maxLLminL CCC  .                                           (15) 

When the expression for sin() given in Eq. (11), is substituted in Eq. (9), one obtains  

2
c

2

22L A)(sin
SV

W2

SV

Wn2
C 









.                    (16) 

Thus Ineqs. (15) can be rewritten as: 
W2

VSC
n

W2

VSC 2
maxL

2
minL  

 , which has the same form 

as Ineq. (13) and can therefore be analysed in the same way. For constant speed flight, in which the 

airplane is flying upside up, it thus yields the constraint 

)(sin
W2

VSC
)cos(

gR

V 2

2
2

maxL
2




 







   .            (17) 

A condition that can be satisfied only if 

maxLCS

W2
V



 


.                         (18) 

Since, according to Eq. (16), CL is directly proportional to n; it varies in the same way as n 

along the trajectory. Thus, the curves shown in Fig. 4 are proportional to those representing CL on 

the trajectories considered. The upper bound on the average centripetal acceleration that 

corresponds to Ineq. (17) is represented by the meshed surface in Fig. 4; the grey region below 

represents the allowed average centripetal accelerations. 

 

 

 

Fig. 4 Region of allowed average centripetal acceleration, shown in grey, for the Cessna 182 
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6. Thrust and power required 
 
Upon replacing the drag D by its value in Eq. (7), one obtains the following expression for the 

thrust required TR 

)cos()cos(W''
g

WR
V

eAR

C
CS

2

1
T 2

2
L

0DR 


 







  . 

When CL is replaced by its value, given in Eq. (16), one obtains 

)cos()cos(W''
g

WR
)sin()cos(

gR

V
)(sin

V
VCT

2
2

2

2

2
0DR 


























 



    (19) 

in which 

0D0D SC
2

1
C     and 

SeAR

W2 2






 .               (20) 

The power required for the motion is PR=V∞TR. Whatever the speed, the thrust is always 

bounded since the power output of the motor is limited. For propeller airplanes, this bound is 

expressed in terms of the maximum power available PAmax as 

     PR ≤ PAmax.                              (21) 

For jet airplanes, if the maximum thrust available is denoted by TAmax, the limit on the thrust 

implies 

     TR ≤ TAmax.                 (22) 

 

 

7. Non-negativity of the thrust at constant speed 

 

For constant speed trajectories, TR must remain non-negative on the whole trajectory since a 

negative thrust implies a deceleration. We shall examine this constraint in the present section. We 

note that, in the expression for TR, given in Eq. (19), all the terms, except the last one are 

symmetrical about a vertical plane passing through the lowest and the highest points of the 

trajectory. This last term is positive during the ascending phase of the trajectory and negative in the 

descending phase. We then only have to ensure non-negativity for the descending phase, where 

cos()<0. It is then required that   2/3,2/    

 0)cos()cos(W)sin()cos(
gR

V
)(sin

V
VC

2
2

2

2

2
0D 























 



 


.               (23) 

Fig. 5(a) shows the thrust required as a function of the angle , for the Cessna 182 to fly on a 

circular trajectory inclined by 10 degrees with the horizontal, with radius R=100 m, at a speed of 

25 m/s. As can be seen, there are values of , when the airplane is descending, at which the thrust 

would be negative so that such a trajectory would not be possible for this plane. However, on the  
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(a) Thrust required at 25 m/s (b) Thrust required at 50 m/s 

Fig. 5 Thrust required as a function of the angle , for the Cessna 182 to fly on a circular trajectory 

inclined by 10 degrees with the horizontal, with radius R=100 m 

 

 

same trajectory, with a speed of 50 m/s, the thrust required would remain positive, as can be seen 

in Fig. 5(b). 

We remark that for trajectories in an horizontal plane, =/2 so that Ineq. (23) is always 

satisfied. We thus only have to examine the case in which ≠/2. In analysing Ineq. (23), it is 

useful to remember that V∞ and 
gR

V 2
  are two distinct variables. Upon multiplying Ineq. (23) by

2
V , 

there results 

0)sin()cos(
gR

V
)(Q

2
2









                                   (24) 

with 

)(sinV)cos()cos(WVC)(Q 224
0D    .           (25) 

Let us define U 

 
)cos(WV

)(sinVC
),V(U

2

24
0D












 ,             (26) 

such that if 

1),V(U   , then 0)(Q       

and if 1),(  VU , then 0)( Q  such that )cos()cos( 1  with ),()cos( 1   VU and 

  ,2/1 . Such 's are then in the interval  11 2,   . In the rest of the interval 

 2/3,2/  ,   0)(Q , with 0)( Q at =1 and 12   . Fig. 6(a) shows, in grey, the  
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Airplanes at constant speeds on inclined circular trajectories 

  
(a) Region in grey where U(V∞, ) ≤ -1 (b) Q(), for V∞=40 m/s, =4/9 and R=100 m 

Fig. 6 Some characteristic functions related to the thrust required 

 

 

region of the (V∞, cos()) plane in which 1),(  VU . Fig. 6(b) shows Q as a function of for 

the Cessna 182, on the trajectory inclined at 10
0
 with the horizontal, with radius R=100 m, at the 

speed of 40 m/s. In that case, 1=2.084.  

We now examine further Ineq. (24) for the angles  such that 0)( Q . The LHS of Ineq. (24) 

can then be factorized to yield 

0)(Q)sin()cos(
gR

V
)(Q)sin()cos(

gR

V 22



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




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











   .     (28) 

Consequently, we shall consider the following two situations that correspond to the sign of the 

factor in square brackets in this inequality.  

Case 1:  is such that 0)sin()cos(
gR

V 2









  . 

This conditions requires that  

1
)cos(

2



gR

V

    

with ≤ where 
)cos(

)sin(
2

2



gR

V .                         (29) 

There are such 's in the interval  11 2,    if and only if 12   . Thus, the interval to 

consider here is  21,I . In this interval, Ineq. (28) reduces to 

0)(Q)sin()cos(
gR

V
)(F

2

1 







   .              (30) 

This inequality will hold  I  if and only if it holds for the maximum value of )(1 F  in this 

interval. This value will occur either at the limit points of the interval I or at the critical points at 
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which 0)('1 F . This equation for critical points reduces to 

)(Q)cos(2)sin(WV 2   . 

Since its RHS is negative, this equation requires sin() to be negative. However, this is never 

the case for I; thus F1 has no local maximum in I, and it is maximum at one of the end points of 

I. It is straightforward to see that this maximum is )()( 221  QF  . This is positive and 

therefore Ineq. (30) is not satisfied at this point, and we must conclude that it is necessary to have  

)cos(
gR

V 2

               (31) 

so that Case 1 does not occur.  

Case 2:  is such that 0)sin()cos(
gR

V 2









  . 

Because of Ineq. (31), this is true for all 's so that the interval to consider is  11 2,  I . 

Ineq. (28) then reduces to 

0)(Q)sin()cos(
gR

V
)(F

2

2 







   .                (32) 

This inequality will hold  I  if and only if it holds when )(2 F is minimum in this interval. 

This minimum value will occur either at the limit points of the interval I or at critical points where 

0)('2 F . This equation for critical points reduces to 

)(Q)cos(2)sin(WV 2   .                     (33) 

Since the RHS of this equation is positive, sin() must also be positive, so that the critical 

points must be in the sub-interval I1 of I that ends at . Upon squaring Eq. (33), one obtains the 

following cubic equation for cos() that can readily be solved: 

0))(cos(P3   

with 

    42222424
0D

32
3 VWx)(sin4VWVC4x)cos(WV4)x(P         (34) 

Since the coefficients of x3 and of 1 in P3(x) are positive, P3 has only one negative real root. Let r- 

represent this root. If r- is in the interval [−1,1] and if )(cos 1
3 

 r is in   ,1 , then 3 is a 

critical point for F2, otherwise F2 has no critical point in the interval of interest. The values of F2 at 

the ends of the interval are:  









  )sin()cos(

gR

V
)(F 1

2

12   and 







  )sin()cos(

gR

V
)2(F 1

2

12   

which are both positive because of Ineq. (31). There then remains only to ensure that Ineq. (32)  
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Airplanes at constant speeds on inclined circular trajectories 

  
(a) Graph of F2() (b) Graph of Z() 

Fig. 7 Some functions related to the thrust required by the Cessna 182, when V∞=40 m/s, =4/9 and 

R=100 m 

 

 
holds at the critical point, which requires that 

)(Z
gR

V
3

2

    ,if 13                            (35) 

with 






)(Q
)sin()cos()(Z


 .                  (36) 

Fig. 7(a) shows the graph of F2(), for  in the interval (π−), for the Cessna 182, when 

V∞=40 m/s, =4/9 and R=100 m. Fig. 7(b) shows the graph of Z() in the same interval, for the 

same flight. We note that Z is an increasing function of cos(); thus its maximum value can be 

increased or decreased by decreasing or increasing . In this flight, the RHS of Ineq. (35) is 1.878. 

 

 

8. Upper bound on the power for propeller airplanes 
 
For a trajectory to be flyable, it is necessary that the power the airplane requires does not 

exceed the power its powerplant can provide. Ineq. (21) expresses this constraint; we shall now 

derive necessary and sufficient conditions for this inequality to hold. Upon substituting the 

expression for TR from Eq. (19), and multiplying Ineq. (21) by V∞, there results the inequality 

0)sin()cos(
gR

V
V)V(P)(Q

2
2

maxA 







 

          (37) 

Fig. 8 shows the power required PR by the Cessna 182 to fly the trajectory at 10° with the 

horizontal, speed V∞=50 m/s and radius R=100 m, together with the maximum power available 

PAmax. As can be seen the Cessna has enough power to fly this trajectory. 
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Fig. 8 Power required PR by the Cessna 182 to fly the trajectory at 10° with the horizontal, speed 

V∞=50 m/s and radius R=100 m, together with the maximum power available PAmax 

 

 

At the beginning of Section 5, we remarked that the power required in the descending section 

of the trajectory is always smaller than that required in the ascending section. Thus we only have 

to ensure that Ineq. (37) holds in the ascending section, that is for ϕ∈[−π/2, π/2], in order to 

ensure that it holds over the whole trajectory. For Ineq. (37) to hold, it is necessary that 

0)()( max   VVPQ A  , that is 

   0)(sinV)V(PV)cos()cos(WVC 2
maxA

24
0D .                (38) 

This inequality will hold if and only if it holds when its LHS is maximum. This occurs at ϕ=0 

so that, one needs 

0),V(QA   ,  with )(sinV)V(PV)cos(WVC),V(Q 2
maxA

24
0DA    .       (39) 

This inequality would be solvable in terms of V∞ if PAmax(V∞) could be approximated by 

quadratic functions of V∞ as we did in Eqs. (1), (2) and (3). However, we do not know whether that 

would be a valid approximation in general, so instead, we examine Ineq. (39) from the point of 

view that QA is a quadratic function of cos(). As such, it corresponds to a downward concave 

parabola.  

Its discriminant is 

    V)V(PVC4VW maxA
4

0D
42 .     (40) 

If ≤, QA either has no real roots or has a double root and then Ineq. (39) would be satisfied 

for all values of . However, for the airplanes we considered as examples,  is always positive, 

being always greater than 106. We must then examine more in details the case in which . The 

two roots of QA are then 

 


 
2WV

2

1
s .                      (41) 

and Ineq. (39) will be satisfied if either 
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Airplanes at constant speeds on inclined circular trajectories 

  
(a) Region in which cos(θ)≤s- (b) ZA() when V∞=50 m/s and =4/9 

Fig. 9 Some functions related to the power required by the Cessna 182 

 

 

 s)cos(  or  s)cos(  .                                (42) 

This inequality yields a constraint on the possible values of the speed V∞ and the angle  

Again, for all the airplanes we considered as examples, 12/2 WV so that s+>1 and therefore, 

there are no  satisfying the second inequality of Ineqs. (42). Thus, the first inequality of Ineqs. 

(42) must be satisfied. Fig. 9(a) shows in grey the regions of the (V∞, ) plane in which it holds, 

that is, in which 0),(  VQA . Given Ineqs. (31),and (38), Ineq. (37) will be satisfied if and only 

if 

)(Z
gR

V
A

2

                          (43) 

with 






)(QV)V(P
)sin()cos()(Z maxA

A


  .             (44) 

Fig. 9(b) shows ZA() for the Cessna 182, when =4/9 and V∞=50. We note that Ineq. (43) will 

hold if and only if it holds when ZA is minimum. 

The minimum of ZA will occur at one of the extremities of the interval [-/2, /2] or at a critical 

point at which its derivative is null. We note that it is always true that )2/()2/(  AA ZZ  . 

Upon looking for the critical points, one sees that they can exist only where sin()<0, that is for 

 0,2/  , and they should satisfy the equation 

0)(cosV)V(P4))(cos(P 2
maxA3                           (45) 

where P3 is the same third degree polynomial as defined in Eq. (34). Note that Ineq. (38) ensures 

that the coefficient of cos2(), on the LHS of Eq. (45), is negative. Therefore, the third degree 
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polynomial in cos() on the LHS of Eq. (45) has either no positive real roots or two positive real 

roots. Let then r represent the set, which may be empty, of angles in the interval (−π/2,0) that 

correspond to the roots in [0, 1]. Then 

 A),2/(ZMin
gR

V
A

2

   with  )(Z
Min

A A
r

 .  (46) 

 

 

9. Upper bound on the thrust for jet airplanes 
 

For jet airplanes, the upper bound on the thrust available corresponds to Ineq. (22). We now 

derive necessary and sufficient conditions to ensure that this inequality holds. With the value of TR 

given in Eq. (19), Ineq. (22) can be written as 

0)sin()cos(
gR

V
VT)(Q

2
2

2
maxA 








 

                         (47) 

The analysis of this inequality follows closely that of Ineq. (37). Again, because the thrust 

required in the descending section of the trajectory is always smaller than that in the ascending 

section, it suffices to ensure that Ineq. (47) holds   2/,2/   . This inequality requires that 

0)( 2
max  VTQ A  , i.e. 

     0)(sinVTV)cos()cos(WVC 22
maxA

24
0D .       (48) 

This condition will hold if and only if it holds when its LHS is maximum, i.e., when 

     0)(sinVT)cos(WVC 22
maxA

4
0D    .                     (49) 

This inequality yields constraints on the possible values of the speed V∞ and the angle of 

inclination . For it to hold, it is necessary that the coefficient of 
2
V  be negative because all the 

other terms on its LHS are positive, thus it is required that 

    
W

T
)cos( maxA ,          (50) 

For the F-16 jet airplane, this inequality holds for all ’s since its RHS is larger 1. Ineq. (49) can 

then hold only if the discriminant of the quadratic polynomial in
2
V on its LHS is non-negative, i.e. 

0)sin(C2)cos(WT 0DmaxA   .              (51) 

This inequality is a constraint on  that can be rewritten as 

  
2

0D

maxA

WC4

T
)sin(





   with  




0DC2

W
)tan(                     (52) 

For the F-16 jet airplane, this inequality also holds for all ’s since its RHS is larger 1. If Ineqs. 

(50) and (51) hold, then Ineq. (49) will hold  V∞, such that 

416



 

 

 

 

 

 

Airplanes at constant speeds on inclined circular trajectories 

 
 

(a) Region, in grey, of the speeds allowed for 

various values of  
(b) ZB( for H=30° and V∞=200 m/s 

Fig. 10 Some functions related to the thrust required by the F-16 

 

 

 
222 VVV   .                                   (53) 

where 
2
V  are the two roots of the quadratic polynomial in

2
V on the LHS of Ineq. (49), which are 

  )(sinC4)cos(WT)cos(WT
C2

1
V 2

0D

2

maxAmaxA

0D

2   .      (54) 

Fig. 10(a) shows, in grey, the region of allowed speeds for the different values of the angle of 

inclination , according to Ineq. (53). Once Ineq. (48) is ensured to hold, Ineq. (47) will be 

satisfied if and only if 

)(ZMin

gR

V
B

2



                   (55) 

with 






)(QVT
)sin()cos()(Z

2
maxA

B


        (56) 

Fig. 10(b) shows the graph of ZB as a function of [0, 2] when the angle of inclination with 

the horizontal is H=30° and the speed is V∞=200 m/s. The minimum of ZB will occur at one of the 

extremities of the interval [-/2, /2] or at one of its critical points where its derivative vanishes. 

Such points occur at ’s that such sin() < 0, so that  must be in (−/2, ), and such that 

0)(cosVT4))(cos(P 22
maxA3    .                   (57) 

where P3 is the same third degree polynomial as defined in Eq. (34). Note that Ineq. (48) ensures 

that the coefficient of cos2() in the third degree polynomial in cos(), on the LHS of Eq. (57), is 
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negative. Therefore, this polynomial has either no positive real roots or two positive real roots. Let 

then r represent the set, which may be empty, of angles in the interval (−/2, ) that correspond 

to the roots in [0, 1]. Then 

 B),2/(ZMin
gR

V
B

2

   with  )(Z
Min

B B
r

 .  (58) 

 

 
10. Examples of flyability analysis 

 

We have obtained many conditions for the flyability of inclined circular trajectories at constant 

speed. We have not been able to solve all of them together and obtain ranges of parameters that are 

suitable for a particular airplane. Nevertheless, It is not difficult to devise a procedure that allows 

to test whether trajectories are flyable at a given speed and inclination. Such tables can be 

produced for any angle of inclination . With this approach, one can produce tables of parameters 

of flyable trajectories; such a procedure could consist of the following steps.  

1. Use Ineq. (18), which expresses the upper-boundedness of the lift coefficient, to obtain a 

lower bound on the speed V∞. This value is independent of the inclination  and the radius R of 

the trajectory. 

2. For propeller airplanes: Use Ineqs. (42), which follows from the inequality PR≤PAmax, to 

obtain the smallest possible angles of inclination min, in terms of the speed V∞, with min given 

by cos(min)=s-. This inequality also yields an upper bound on the value for V∞, as the value at 

which s- becomes null. For example, upon evaluating s- at various V∞ yields Table 1, for the 

Cessna 182. In this table, θHmax is the angle of inclination with the horizontal plane, which we 

found more intuitively meaningful than .  

3. For jet airplanes: Use the following inequalities that are required for TR ≤ TAmax: 

a. Ineqs. (50) and (52) to obtain an upper and a lower bound on the angle of inclination . 

 b. Ineq. (53) to obtain ranges of speeds V∞ for a given . 

4. Having thus determined what speeds Ineq. (42) allows for each angle of inclination, we 

complete the tables by entering in it all the minimum and maximum values of the average 

centripetal acceleration and of the radius that follow from the set of constraints we have 

derived.  

5. Each table corresponds to a particular value of the angle of inclination . In the first line of 

the table, we write the value of , followed by the values of M1 and m1, which are bounds on 

the average radial acceleration. They are put in the heading of the table because they are 

independent of the speed V∞. They are defined as follows: 

c. M1=the upper bound on the average centripetal acceleration that corresponds to the upper 

bound on the load factor n, according to Ineq. (15). 

 

 
Table 1 Values of the maximum angle of inclination with the horizontal θHmax, in degrees, at various speeds, 

for the Cessna 182 

V∞ 20 25 30 35 40 45 50 55 60 65 70 75 

Hmax 27.2 25.6 22.2 19.9 17.6 15.4 13.1 10.8 8.5 6.2 3.7 1.2 
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Airplanes at constant speeds on inclined circular trajectories 

d. m1=the lower bound on the average centripetal acceleration that is required by the non-

negativity of the thrust, according to Ineq. (31). 

6. The rest of the entries in these tables are the lower and upper bounds on the average 

centripetal acceleration, identified as follows. 

e. M2=the upper bound that corresponds to the upper bound on CL, according to Ineq. (17) 

f. For propeller airplanes: M3=the upper bound that follows from PR≤PAmax, according to 

Ineq. (46) 

For jet airplanes: M3=the upper bound that follows from TR≤TAmax, according to Ineq. 

(58)  

g. U=U(V∞, θ) as defined in Eq. (25). According to Ineqs. (27) if U≤-1 then the thrust 

required TR is guaranteed to be non-negative. Otherwise, there will be the following lower 

bound on the average centripetal acceleration:  

h. m2=the lower bound that corresponds to the RHS of Ineq. (35). 

7. If the upper and lower bounds on the average centripetal acceleration are compatible, then 

the minimum and maximum values of the radius, as Rmin and Rmax are calculated and entered in 

the table. If some constraints are not respected then this indicates that this particular trajectory 

is not flyable by this airplane, and a “X” appears instead of the value of the radii. 

 

10.1 Cessna 182 
 

Ineq. (18) requires the following lower bound V∞≥19.071 m/s. Table 1 lists the possible angles 

of inclination for the various speeds. We shall compute the tables of possibilities for every speed 

V∞ at every 5th value, from 20 to 65 m/s, and for the angle of inclination with the horizontal  at 

each 5 degree from 5° to 15°. The entries for which U≤1 are highlighted in grey. Note that there 

are no speeds at which the Cessna 182 can fly a circular trajectory inclined by 15° or more with 

the horizontal at constant speed. 

 

10.2 Silver Fox like UAV 
 

Ineq. (18) requires the following lower bound V∞≥11.067 m/s. Fig. 11 shows the region in grey 

of the (cos(), V∞) plane in which Ineq. (42), i.e., cos(θ)≤s-, is satisfied. Table 5 lists the 

corresponding possible angles of inclination for the various speeds. 

We shall compute the tables of possibilities for every speed V∞ at every 5th value, from 15 to 40 

m/s, and for the angle of inclination with the horizontal  at each 5 degree from 5° to 30°. The 

 

 

Table 2 Parameters that determine the flyability of trajectories inclined at =5°, for the Cessna 182 

=5° M1=3.58  m1=0.09 

V∞ 20 25 30 35 40 45 50 55 60 65 

M2 0.38 1.31 2.18 3.13 4.20 5.39 6.71 8.170 9.76 11.49 

M3 1.84 2.21 2.51 2.74 2.90 2.97 2.93 2.74 2.33 1.45 

U  -1.01 -0.90 -0.91 -0.99 -1.11 -1.27 -1.47 -1.70 -1.95 

m2   0.43 0.49 0.23      

Rmin  48.6 42.2 45.7 56.4 69.6 87.1 112.6 157.8 298.4 

Rmax 469.2 733.1 212.1 255.1 716.1 2375.1 2932.2 3548.0 4222.4 4955.4 
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Table 3 Parameters that determine the flyability of trajectories inclined at =10°, for the Cessna 182 

=10° M1=3.50  m1=0.17 

V∞ 20 25 30 35 40 45 50 55 

M2 0.32 1.23 2.10 3.05 4.11 5.31 6.63 8.09 

M3 1.52 1.88 2.09 2.21 2.23 2.12 1.81 1.04 

U  -0.50 -0.45 -0.45 -0.49 -0.55 -0.64 -0.74 

m2  1.17 1.47 1.71 1.88 1.98 1.98 1.86 

Rmin X 51.7 44.0 56.5 73.1 97.4 X X 

Rmax X 57.5 62.4 73.2 86.9 104.6 X X 

 

 

Fig. 11 Region in which cos(θ)≤s-, for the Silver Fox-like UAV, shown in gray 

 
Table 4 Values of the maximum angle of inclination with the horizontal θHmax, in degrees, at various speeds, 

for the Silver Fox UAV 

V∞ 15 20 25 30 35 40 45 

Hmax 31.760 28.217 23.933 19.164 14.000 8.427 2.459 

 

Table 5 Parameters that determine the flyability of trajectories inclined at =5°, for the Silver Fox UAV 

=5° M1=4.65  m1=0.09  

V∞ 15 20 25 30 35 40 

M2 1.46 3.02 4.92 7.19 9.86 12.94 

M3 3.42 4.31 4.91 5.13 4.80 3.40 

U  -0.98 -1.32 -1.78 -2.36 -3.04 

m2  0.30     

Rmin  13.50 13.0 17.9 26.0 48.0 

Rmax  137.9 733.1 1055.6 1436.8 1876.6 

 

 

entries for which U≤1 are highlighted in grey. Note that there are no speeds at which the Silver 

Fox can fly a circular trajectory inclined by 15° or more with the horizontal at constant speed. 
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Table 6 Parameters that determine the flyability of trajectories inclined at =10°, for the Silver Fox UAV 

=10° M1=4.73  m1=0.17 

V∞ 15 20 25 30 35 

M2 1.38 2.94 4.83 7.11 9.78 

M3 3.05 3.78 4.18 4.11 3.18 

U  -0.49 -0.66 -0.89 -1.19 

m2  2.09 2.13 1.43  

Rmin X 13.9 15.2 22.4 39.3 

Rmax X 19.5 29.9 64.4 718.4 

 
Table 7 Values of the maximum angle of inclination with the horizontal θHmax, in degrees, at various speeds, 

for the F-16 jet fighter 

θH 10 20 30 40 50 60 70 80 90 

Vmax 509.8 475.0 439.9 405.6 373.6 345.4 323.2 308.9 303.9 

 

Table 8 Parameters that determine the flyability of trajectories inclined at =10°, for the F-16 jet 

H=10° M1= 8.77  m1 =0.17 

V∞ 100 200 300 400 500 

M2 3.09 13.41 30.46 54.30 84.95 

M3 4,43 8.52 11.29 11.56 4.55 

U  -1.22 -2.59 -4.55 -7.09 

m2      

Rmin  479.0 1046.9 1861.2 5602.9 

Rmax  23457.7 52779.7 93830.6 1.47E5 

 

Table 9 Parameters that determine the flyability of trajectories inclined at =30°, for the F-16 jet 

H =300 M1=8.46  m1=0.50 

V∞ 100 200 300 400 

M2 2.79 13.09 30.13 53.97 

M3 3.72 7.09 8.79 6.69 

U  -0.42 -0.90 -1.58 

m2  4.50 2.85  

Rmin  576.1 1085.8 2441.2 

Rmax  907.4 3225.7 32653.1 

 

 

10.3 Lockheed Martin F-16 
 

Ineq. (18), upper bound on CL, requires the following lower bound V∞ ≥ 54.192 m/s. Ineqs. (50) 

and (52) are satisfied for all , since their RHS is larger than 1. For the F-16, the condition V-≤V∞ 

of Ineq. (53) is always satisfied. The condition V∞≤V+ yields the following table of possibilities.  

We shall compute the tables of possibilities for every speed V∞ at every 100 m/s, from 100 to  
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Table 10 Parameters that determine the flyability of trajectories inclined at =40°, for the F-16 jet 

H=400 M1=8.33  m1=0.64 

V∞ 100 200 300 400 

M2 2.68 12.96 29.99 53.83 

M3 3.39 6.37 7.45 2.46 

U  -0.32 -0.70 -1.23 

m2  5.51 5.51  

Rmin X 640.7 1232.1 6634.1 

Rmax X 740.2 1665.8 25391.2 

 

 

500 m/s, and for the angle of inclination with the horizontal =10°, 30° and 40°. The entries for 

which U≤1 are highlighted in grey. Note that there are no speeds at which the F-16 can fly a 

circular trajectory inclined by 50° or more with the horizontal at constant speed. 

 

 
11. Conclusions 

 
We have obtained general formulas that correspond to necessary and sufficient conditions for 

airplanes to be able to travel inclined circular trajectories. We believe that they are original in that 

they have not been published before. They constitute an important tool for the analysis of airplane 

performances. Some of these conditions apply to any circular trajectory, whatever the speed profile 

at which it is flown, namely: 

• Whatever its weight and propulsion system, all airplanes must bank by the same angle  in 

order to travel at a same speed V on a circular trajectory of radius R. This fact is well known 

for horizontal circular trajectories but, as we have proven, also hold for any trajectory inclined 

with respect to the horizontal plane.  

• Both the lift L and cos() must keep the same sign at every point of the trajectory, and this 

sign has to be the same one for both of them.  

For trajectories flown at constant speed: 

• The bank angle is symmetrical through reflection in a vertical plane that goes through the 

lowest and highest points of the trajectory. 

• The centripetal acceleration Ac remains positive and the bank angle keeps the same sign on 

the whole trajectory  

• the load factor and the lift coefficient keep the same sign on the whole trajectory, which is that 

of the bank angle  and the lift L. 

• the speed is bounded below according to Ineq. (18) that is independent of the radius and the 

angle of inclination of the trajectory 

• some constraints on the speed and angle of inclination that are independent of the radius of 

the trajectory, and the thrust available  

• a series of constraints on the average centripetal acceleration that ensures the thrust is non-

negative and that it remains bounded above by the available thrust  

These conditions can readily be used to test whether trajectories at a given speed and 

inclination are flyable. In Section 10, we have demonstrated a procedure that allows for the 
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production of tables of parameters for which trajectories are possible. We have done so for 

airplanes with a reciprocating engine and a constant speed propeller or with a fixed pitch propeller 

and airplanes with jet propulsion. The airplanes considered in the examples are similar to the 

Cessna 182 Skylane, the Silver Fox UAV and the F-16 Fighting Falcon. Such tables, as we have 

obtained, would be very useful when one does not want, or cannot, calculate on board the terms 

that appear in the inequalities that we have derived. When it comes to using them, it would be 

sufficient to store in them the angle H, the speeds V∞ together with the minimum and maximum 

radii for these parameters. Such tables could then readily be stored in a memory that even a small 

microcontroller could access. When considering a circular trajectory to be flown at a given angle, 

the tables could say if it is flyable, and if so, what the possible radii are for it. This approach would 

be completely appropriate for automatic trajectory planning.  
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Appendix A. Parameters of the representative airplanes 
 
We have used for our example of calculations, the characteristics of the three representative 

airplanes that we list hereafter. 

 

A.1 Cessna 182 

 

Characteristic parameters for the Cessna 182 can be found in Airliners.net (2015), Roud and 

Bruckert (2006) and McIver (2003); those parameters that were not available were taken to have 

essentially the same values as those for the Cessna 172, which is similar to it.  

 
Table A.1 Characteristic parameters of a Cessna 182 Skylane like airplane 

W1 = 7,562.0 N W0 = 11,120.6 N Vmax = 90 m/s 

b = 11.02 m S = 16.1653 m2 e = 0.75 

CLmax = 2.10 CD0 = 0.029 nmax = 3.8, nmin = -1.52 

PAmax = 171.511 kW, 2,600 rpm, at see level 

Propeller: constant speed, diameter = 2.08 m, max = 0.80 

 

A.2 Silver Fox like UAV 
 

The Silver Fox UAV is presently produced by Raytheon. Some of its specifications can be 

found at the Faculty of Engineering, University of Porto (2013). It has an off-the-shelf Radio 

Controlled engine that is described at Currawong Engineering (2015). Some of the parameters 

given below were estimated by comparison with similar small UAVs.  

 
Table A.2 Characteristic parameters of a Silver Fox like UAV 

W1 = 72.35 N W0 = 119.6 N Vmax = 26 m/s 

b = 2.4 m S = 0.768 m2 e = 0.8 

CLmax = 1.26 CD0 = 0. 0251 nmax = 5.0, nmin = -2.0 

PAmax = 1,491 W at 7,500 rpm, at see level 

Propeller: fixed pitch, diameter = 0.56 m, max = 0.83 

 

A.3 Lockheed Martin F-16 
 

The General Dynamics / Lockheed Martin F-16 Fighting Falcon is a single-engine fighter 

aircraft originally developed for the United States Air Force. Its characteristic parameters can be 

found in Lockheed-Martin (2015), Filippone (2000), Sadraey (2009). The maximum value of the 

lift coefficient and the maximum negative load factor were estimated from those of other similar 

fighter airplanes. 

 
Table A.3 Characteristic parameters of an F-16 like airplane 

W1 = 90,237.4 N W0 = 213,365.6 N Vmax = 605 m/s 

b = 10.0 m S = 27.87 m2 e = 0.8 

CLmax = 1.8 CD0 = 0. 026 nmax = 9.0, nmin = -3 

TAmax = 131,222.5 N 
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