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Abstract.  In this manuscript, free vibrations of a unidirectional composite orthotropic Timoshenko beam 
based on finite strain have been studied. Using Green-Lagrange strain tensor and comprising all of the 
nonlinear terms of the tensor and also applying Hamilton’s principle, equations of motion and boundary 
conditions of the beam are obtained. Using separation method in single-harmonic state, time and locative 
variables are separated from each other and finally, the equations of motion and boundary conditions are 
gained according to locative variable. To solve the equations, generalized differential quadrature method 
(GDQM) is applied and then, deflection and cross-section rotation of the beam in linear and nonlinear states 
are drawn and compared with each other. Also, frequencies of carbon/epoxy and glass/epoxy composite 
beams for different boundary conditions on the basis of the finite strain are calculated. The calculated 
frequencies of the nonlinear free vibration of the beam utilizing finite strain assumption for various 
geometries have been compared to von Karman one. 
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1. Introduction 

 

Today, due to the promotion of computational facilities, using nonlinear vibrations in many 

sections of the mechanical engineering have been increased. One of the reasons of nonlinear 

vibration behavior is vibration with large deformation. The nonlinear vibrations based on the 

geometry are divided to two main groups: 1) vibration with large deformations and small strains, 

and 2) vibration with large deformations and no infinitesimal strains which is denominated finite 

strain. Based on the finite strain assumption, not only are deformations large, but also the strains 

are not limited to infinitesimal strain. 

The first theory about vibration of a beam was expressed by Euler and Bernoulli. Rayleigh 

(1877) incorporated the effect of rotary inertia in beam. Using this assumption in vibration of 

beams, created error into natural frequencies was corrected. One of the most accurate theories for 

vibration of thick beams in high frequencies was suggested by Timoshenko. In Timoshenko theory 

(Timoshenko 1921), transverse shear deformation and the effect of rotary inertia were included. 

Singh et al. (1990) studied free vibration of the Euler-Bernoulli beam with large amplitude using 

finite element method (FEM). Lewandowski (1994) investigated nonlinear free vibration of the 
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Euler-Bernoulli beam using the von Karman assumption and applying the FEM. In his research, 

bifurcation points into Backbone curves were indicated for the first time. Foda (1999) considered 

nonlinear free vibration of Timoshenko beam using multiple scales method subjected to simply 

supported boundary condition. He demonstrated that the effect of shear deformation and rotary 

inertia in large amplitude vibration behavior for thick and short beams were remarkable. 

Yardimoglu and Yildirim (2004) investigated the influence of pre-twisted on vibration of a 

Timoshenko beam by applying FEM. The results indicated that the natural frequencies of the beam 

had appropriate agreement with previous experimental and theoretical results. Free and forced 

vibrations of a laminated FGM Timoshenko beam were analyzed by Xiang and Yang (2008). Not 

only was the beam thickness variable, but also it was under thermally induced initial stresses. The 

numerical results of their research showed that the effects of thickness variation, temperature 

change, slenderness ratio, volume fraction index, thickness of the functionally graded (FG) layer 

and the end support conditions on vibration frequencies, mode shapes and dynamic response were 

considerable. Using the dynamic stiffness method, the free vibration and buckling of axially 

loaded laminated composite beams (LCBs) were analyzed by Jun et al. (2008). The governing 

equations of motion were derived based on the first order shear deformation theory and applying 

Hamilton’s principle. The results indicated that the influence of axial force on the natural 

frequencies and mode shapes was remarkable. Gunda et al. (2010) studied large amplitude 

nonlinear vibration of isotropic Timoshenko beam using a relatively simple finite element 

formulation subjected to different boundary conditions. They illustrated the nonlinearity was 

obtained independent for each mode by the finite element formulation. Jafari-Talookolaei et al. 

(2012) studied the free vibration of laminated composite Timoshenko beams using Lagrange 

multipliers method. The results showed that the natural frequencies of the bam declined by 

growing the material anisotropy. Also, maintaining the longitudinal and torsional deformations in 

some cases had significant effect on vibration of the LCB. Rahimi et al. (2013) analyzed post-

buckling of FG Timoshenko beams using an exact solution method. They presented closed-form 

solution method to study the buckled configuration of the beam subjected to different boundary 

conditions. In addition, the influence of FG material power law index and geometrical parameters 

of the beam on free vibration frequencies and static deflection were investigated. Also, the natural 

frequencies of the beam were compared with the Euler-Bernoulli beam and the results showed that 

accuracy of the Timoshenko beam was more than the Euler-Bernoulli one. Asadi and Aghdam 

(2014) analyzed large amplitude nonlinear vibration and post-buckling of variable cross-section 

composite beams using GDQM. The Euler-Bernoulli beam was with symmetric and asymmetric 

lay-ups and rested on nonlinear elastic foundation. Nonlinear forced vibration of nanocomposite 

beam reinforced by single-walled carbon nanotube was analyzed by Ansari et al. (2014). In their 

research were considered the forced vibrations of beams based on the Timoshenko theory and was 

used the von Karman assumption for deriving the equations. The nonlinear free vibration of a 

composite Euler-Bernoulli beam for different boundary conditions was analyzed by Ghasemi et al. 

(2016). They applied the finite strain assumption to investigate vibration of the beam. Also, 

Mohandes and Ghasemi (2016) compared the finite strain assumption with the von Karman 

hypothesis to analyze nonlinear free vibration of the beam. Unlike the obtained results of the von 

Karman assumption, in their study was demonstrated that for simply-simply supported beam, 

difference between the linear and nonlinear mode shapes were remarkable. 

In this research, the free vibration of composite Timoshenko beam based on the finite strain is 

considered and its results are compared to the von Karman assumption. Deflection and cross 

section rotation of the beam in the linear and nonlinear states are drawn and compared with each 
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other. Also, the effect of thickness on the nonlinear vibration of the beam undergoing finite strain 

is investigated and compared to the von Karman hypothesis. Finally, to study the effect of 

materials on the vibration, the natural frequencies of carbon/epoxy and glass/epoxy is compared to 

each other. 

 

 

2. Governing equations of motion 
 

In this section, the equations of motion and boundary conditions of the unidirectional 

composite Timoshenko beam are calculated. Based on the Timoshenko beam theory, displacement 

field can be defined as follows (Dong et al. 2005) 

(1) 
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where u and w are longitudinal and transverse displacements of the beam, respectively. Also, φ is 

cross-section rotation of the beam. As the effect of longitudinal displacement in the free vibration 

analysis of the beam is very less than transverse one, longitudinal displacement of the beam can be 

ignored against transverse one. In this research, Hamilton’s principle is used to obtain the 

governing equations of motion and boundary conditions. According to this principle, in the 

absence of external forces can be written as (Reddy 2003) 
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where t1 and t2 are two given arbitrary time, δT and δU are virtual kinetic and strain energies, 

respectively, and L is the Lagrangian. Using this principle can be obtained the equations of motion 

and boundary conditions together. The variations of kinetic δT and strain energies δU can be 

expressed as (Reddy 2003) 

(3) 

      

V

ii dVvvT 
2

1

 

(4) 
     


V

ijij dVSU 
2

1

 

where ρ, v, V, S and ε are density, speed vector of environment particles, volume of non 

deformation, stress and strain tensors, respectively. The von Karman hypothesis which is applied 

in the most studies is valid for large transformations and small strains, while according to the finite 

strain assumption (Attard 2003) not only transformations are large, but also the strains can be 

greater than the unit. Therefore, none of the transformation terms are not eliminated in Green-

Lagrange strain tensor on the basis of the finite strain assumption. So, by substitution of the 

Timoshenko displacement field into the Green-Lagrange strain tensor, the finite strain type 

nonlinear strain-displacement relations of the beam can be written as following for the axial and 

shear strains 
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(5b) 
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By using Eqs. (5a) and (5b) into Eq. (4), the strain energy variations can be obtained as 
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The stress resultants (Yang et al. 2010) for composite beam can be defined as 

(7) 
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where Nx, Mx and Qx are the in-plane force, bending moment and shear force resultants, 

respectively. Also, Px are the high order resultants of normal stress and Rx are the high order 

resultants of shear stress. Stiffness coefficients are defined as the following (Yas and Samadi 2012) 

(8) 
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where Aij are extensional stiffnesses, Dij are bending stiffnesses and Fij are additional stiffnesses 

coefficient matrix. By substituting Eq. (5) into Eq. (7), the stress resultants are calculated based on 

the cross section rotation and displacement. 
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By using Eq. (9) into Eq. (6), the variations of strain energy are obtained according to the stress 

resultants. Substituting the variations of kinetic and strain energies into Hamilton’s principle, the 

equations of motion and boundary conditions can be expressed as 
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(10a) 
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For a single orthotropic generally layer, the stiffness coefficients according to transformed 

coefficients Qij and thickness of the beam h can be obtained as 
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Substituting Eqs. (9a) to (9e) into Eqs. (10) and (11) and using Eq. (12), the governing 

equations of motion and boundary conditions of the unidirectional composite Timoshenko beam 

are expressed as 
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Boundary conditions in x=0 and x=L are as 
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or w=0 (14a) 
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In this section, the governing equations of motion and boundary conditions for the 

unidirectional composite beam based on the finite strain were obtained. 

 

 

3. Free vibration of a unidirectional composite Timoshenko beam based on the 
finite strain 
 

3.1 Harmonic response 
 
In this section, equations responses of free vibration of the beam using harmonic solution are 

obtained. Utilizing single-harmonic solution, time and locative parameters into the equations of 

motion and boundary conditions are separated and then the time parameter is eliminated. Single-

harmonic solution (Zhong and Guo 2003) for the variables φ(x,t) and w(x,t) are assumed as 

(15) 
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where ω is natural frequency. By substituting Eq. (15) into Eqs. (13) and (14), the following 

harmonic equations are obtained 
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Boundary conditions in x=0 and x=L are as 
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Introducing the dimensionless parameters as follows 

h

w
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(18) 

Using the dimensionless parameters into Eqs. (16) and (17), the equations of motion and 

boundary conditions are turned to the dimensionless form. For simplicity purpose in 

communication of this research, the dimensionless quantities W, X and ϕ are replaced by w, x and  

φ, respectively.  
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Boundary conditions in x=0 and x=1 are as 
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Dimensionless frequency λ has relation with natural frequency ω as the following 

(21) 
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By applying Eq. (21) into Eqs. (19) and (20), the governing equations of motion and boundary 

conditions are obtained according to the dimensionless frequency. 
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(22b) 

      

0144144129

9
2

9
9

40

81

2

34

2

2
222

2

2
2

2

2

22

2

2

2

22

























































































































dx

dw

h

L
a

h

L
a

dx

d

h

L

dx

d
a

h

L

dx

d
a

h

L

dx

d

dx

dw

dx

d

dx

wd

dx

dw

dx

d

dx

d

 

Boundary conditions in x=0 and x=1 are as 
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To obtain the frequency, deflection and cross section rotation of the beam, the equations with 

boundary conditions are solved by applying the GDQM. 

 

3.2 Generalized differential quadrature method 
 
In this paper, the GDQM has been applied to solve the nonlinear equations of the finite strain 

vibration of composite beam. In the GDQM, differential function and its derivatives at all grid 

point in the whole domain of spatial coordinate are demonstrated as a weighted linear sum of all 

the functional values. In other words, governing differential equations using weighting coefficients 

change to the first order algebraic equations (Bert and Malik 1996). In the present study is used the 

GDQM that was derived by Du et al. (1995). In this method, the first order derivative of function 

f(x) can be approximated as linear sum of weighting coefficients and function values for all grid 

point in the x domain. 
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where N is the number of grid point in the x domain, f(xi) is function in the point of xj and 
1

ijC  is 

weighting coefficient of the first order derivate. Weighting coefficient for the first order derivate is 

expressed as following 
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The rth-order approximate of function f(x) into the GDQM for x domain is given as following 

(Du et al 1995) 
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(27) 

In this research has been used the Chebyshev-Guass-Lobatto sample points (Wu and Shu 2002) 

to calculate the weighting coefficients. 
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4. Numerical results 
 

In this section, the results of the free vibration of the unidirectional composite Timoshenko 

beam based on finite strain assumption by using the GDQM have been obtained and compared 

with the Euler-Bernoulli beam. Also, the finite strain assumption has been compared with the von 

Karman hypothesis and difference between two assumptions has been analyzed. In addition, the 

effects of length to thickness ratio (L/h) on the free vibration of the beam undergoing finite strain 

have been investigated. The frequencies of the beam have been obtained for carbon/epoxy and 

glass/epoxy subjected to various boundary conditions. 

 

4.1 Validation of the numerical procedure 
 
In this section, frequencies of the unidirectional composite Timoshenko beam according to the 

finite strain are compared with the composite Euler-Bernoulli beam (Ghasemi et al. 2016). The 

calculated frequencies are shown in Table 1 for glass/epoxy, L/h=10, N=35 nodes and clamp-free 

boundary condition. The elastic properties of these two materials (Tsai 1980) are indicated in Table 

2. As depicted, the frequencies of the Timoshenko beam are less than the Euler-Bernoulli beam 

and difference between frequencies of the two beams for high modes increases. Also, ratio of the 

nonlinear to linear frequency of the unidirectional composite Timoshenko beam is compared with 

the Euler-Bernoulli beam presented by Guo and Zhong (2004). The results have been calculated 

for N=75 nodes and clamp-clamp and clamp-simply boundary conditions and have been shown in  

 

 
Table 1 Dimensional frequencies of nonlinear vibration of the composite Timoshenko and Euler-Bernoulli 

C-F beams 

λ5 λ4 λ3 λ2 λ1 frequency 

200.7538 121.7854 62.5786 22.9683 3.9448 (Ghasemi et al. 2016) 

119.2119 82.6461 48.7735 20.2790 3.8056 Present 
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Table 2 Properties of carbon/epoxy and glass/epoxy  

Material Ex (GPa) Ey (GPa) Ex (GPa) υx ρ (kg/m
3
) 

Carbon/epoxy 181 10.3 7.17 0.28 1600 

Glass/epoxy 38.6 8.27 4.14 0.26 1800 

 
Table 3 Ratio of the nonlinear to linear frequency 

Boundary conditions present 
(Guo and Zhong 2004) 

SBDQM GFEM FEM 

Clamp-clamp 1.0255 1.0296 1.0295 1.0295 

Clamp-simply 1.0442 1.0592 1.0641 1.0641 

 

 
Fig. 1 Deflection of the first mode of the clamp-clamp supported carbon/epoxy composite beam 

 

 

Table 3. The results demonstrate that they have good agreement with the results of the finite 

element method (FEM), the generalized finite element method (GFEM) and the spline-based 

differential quadrature method (SBDQM). 

 

4.2 Vibration analysis of the beam subjected to clamp-clamp boundary condition 
 
The clamp-clamp boundary conditions at two ends of the beam are given as 

(29)       0w  

Deflection of the first three modes of the composite Timoshenko beam based on the finite strain 

assumption for carbon/epoxy material in the dimensionless form are shown in Figs. 1, 2 and 3. In 

the figures, the amplitude is made dimensionless through dividing by maximum amplitude. In 

these figures are seen that the most difference between the linear and nonlinear states occur 

between maximum and minimum of the amplitude. Also, the slope of nonlinear curve in the clamp 

end is more than the linear one. 
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Fig. 2 Deflection of the second mode of the clamp-clamp supported carbon/epoxy composite beam 

 

 
Fig. 3 Deflection of the third mode of the clamp-clamp supported carbon/epoxy composite beam 

 

 
Fig. 4 Cross section rotation of the first mode of the clamp-clamp supported carbon/epoxy composite beam 
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Fig. 5 Cross section rotation of the second mode of the clamp-clamp supported carbon/epoxy 

composite beam 

 

 
Fig. 6 Cross section rotation of the third mode of the clamp-clamp supported carbon/epoxy composite beam 

 

 

 In Figs. 4 to 6 have drown cross-section rotation of the carbon/epoxy composite beam for the 

first to third modes, respectively. In this figures are shown that the slope of nonlinear curve in the 

clamp end is more than the linear one. 

As depicted in the figures, the difference between nonlinear and linear states is small because 

the carbon/epoxy material is stiff and nonlinear deflection and cross-section rotation due to 

nonlinear terms cannot create a significant difference. To demonstrate the remarkable difference 

between linear and nonlinear states, the deflections of the beam have been drawn for glass/epoxy 

material as shown in Figs. 7 to 9. As shown, the difference between linear and nonlinear cases is 

considerable, because the glass/epoxy material is more flexible than the carbon/epoxy one. 
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Fig. 7 Deflection of the first mode of the clamp-clamp supported glass/epoxy composite beam 

 

 

Fig. 8 Deflection of the second mode of the clamp-clamp supported glass/epoxy composite beam 

 

 

Fig. 9 Deflection of the third mode of the clamp-clamp supported glass/epoxy composite beam 
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4.3 Vibration analysis of the beam subjected to clamp-free boundary condition 
 
The clamp-free boundary conditions at two ends of the beam are given as 

(30a) in x=0       0w  

(30b) in x=1 
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4.4 Vibration analysis of the beam subjected to simply-simply boundary condition 
 
The simply-simply boundary conditions at two ends of the beam are given as 

(31a) in x=0,1        0w
 

 (31b) in x=0,1 
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As depicted, simply-simply supported boundary conditions are nonlinear, which these 

nonlinear terms are related to the finite strain assumption however, the obtained boundary 

conditions by using the von Karman assumption are linear. The deflection and cross-section 

rotation of the simply supported beam for carbon/epoxy material have been shown in Figs. 10 to 

12 and 13 to 15, respectively. As seen, the least difference between linear and nonlinear states 

occurs in the simply supported beam. Unlike the von Karman assumption, which the difference 

between the linear and nonlinear vibrations subjected to simply-simply boundary condition is very 

little, the difference the linear and nonlinear states on the basis of the finite strain is remarkable. 

Also, unlike the clamp-clamp boundary condition, the curves slope of the nonlinear vibration in 

the simply-simply state is less than the linear one.  

 

 

 
Fig. 10 Deflection of the first mode of the simply-simply supported carbon/epoxy composite beam 
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Fig. 11 Deflection of the second mode of the simply-simply supported carbon/epoxy composite beam 

 

 
Fig. 12 Deflection of the third mode of the simply-simply supported carbon/epoxy composite beam 

 

 
Fig. 13 Cross section rotation of the first mode of the simply-simply supported carbon/epoxy 

composite beam 
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Fig. 14 Cross section rotation of the second mode of the simply-simply supported carbon/epoxy 

composite beam 

 

 
Fig. 15 Cross section rotation of the third mode of the simply-simply supported carbon/epoxy 

composite beam 

 

 

4.5 The effect of thickness on the finite strain vibration 
 
In this section, the influence of thickness on vibration of the beam based on the finite strain is 

studied and compared with the von Karman assumption. The equations of the von Karman 

dimensionless don’t depend to geometry of the beam, but vibration equations of the beam 

undergoing the finite strain depend to geometry of the beam. First five dimensionless frequencies 

of the beam for N=35 nodes and L/h=5,8 and 10 have been calculated based on the finite strain. 

Also, they have been compared with the von Karman assumption subjected to clamp-clamp 

boundary condition and have been shown in Table 4. As seen, the frequencies of the finite strain  
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Table 4 Dimensionless frequencies of the von Karman and finite strain 

von Karman finite strain with L/h=10 finite strain with L/h=8 finite strain with L/h=5 

19.6868 19.7012 18.3278 14.7259 

48.2608 48.3050 43.4187 33.0169 

80.1115 80.1632 70.3702 51.6315 

114.9642 115.0152 99.3291 70.9550 

151.4435 151.5194 129.2385 90.5447 

188.7734 188.8581 159.5251 109.2585 

 
Table 5 Dimensionless frequencies of carbon/epoxy and glass/epoxy of the composite Timoshenko beam 

clamp-free simply-simply clamp-clamp 
Boundary 

conditions 

glass/epoxy carbon/epoxy glass/epoxy carbon/epoxy glass/epoxy carbon/epoxy Material 

3.8057 3.6762 10.6533 10.2165 19.7012 16.4190 λ1 

20.2790 17.6972 36.8207 32.2116 48.3050 37.7371 λ2 

48.7735 39.1653 70.2548 56.1147 80.1632 59.7990 λ3 

82.6461 62.2634 107.4104 80.4803 115.0152 83.0509 λ4 

119.2119 85.8634 145.8656 104.6198 151.5194 106.6421 λ5 

 

 

with L/h=10 are close to the von Karman, nevertheless with decreasing the L/h ratio, the difference 

between two assumptions increases. 

 
4.6 The effect of material properties 
 
In this section, the dimensionless frequencies of carbon/epoxy and glass/epoxy for various 

boundary conditions are calculated. First five frequencies of the beam for N=35 nodes and L/h=10 

are shown in Table 5. The results illustrate that the dimensionless frequencies of carbon/epoxy are 

less than glass/epoxy for different boundary conditions. 

 

 

5. Conclusions 
 

In this research, the free vibration of the unidirectional composite Timoshenko beam based on 

the finite strain was studied. The equations and boundary conditions were obtained using 

Hamilton’s principle. In the first step, the equations were separated using single-harmonic solution 

and then they were solved by applying the GDQM for different boundary conditions. The results 

demonstrated that the curves slopes of deflection and cross-section rotation of the beam for the 

nonlinear vibration in the clamp end are more than the linear one and by increasing number of 

modes, this slope increases. Also, the curve slope of deflection and cross-section rotation of the 

beam subjected to simply-simply boundary condition for the nonlinear state is less than the linear 

one. The results for simply-simply beam showed that the difference between linear and nonlinear 

states was remarkable. In this article was showed that the frequencies of the finite strain 

assumption with L/h=10 were close to the von Karman and also by decreasing L/h, the difference 
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between the finite strain and von Karman assumptions increased. Also, the results indicated that 

the dimensionless frequencies for glass/epoxy were more than carbon/epoxy for various boundary 

conditions. 
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