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Abstract.  The present study aims to investigate the shimmy stability behavior of a single wheeled nose 
landing gear system. The system is supposed to be equipped with an electromechanical actuator capable to 
control the shimmy vibrations. A Proportional-Integrative-Derivative (PID) controller, tuned by using the 
Particle Swarm Optimization (PSO) procedure, is here proposed to actively damp the shimmy vibration. 
Time-history results for some test cases are reported and commented. Stochastic analysis is last presented to 
assess the robustness of the control system. 
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1. Introduction 

 

Shimmy vibration is a phenomenon that regards dynamics of steerable wheels and, thus, it is of 

relevant aeronautical interest for landing gear dynamics and for motorcycles or cars tire dynamics, 

Besselink (2000), Pacejka (2005). During the rolling motion, the wheel can oscillate about the 

steering axis as consequence of the tire-road interaction and of the torsional stiffness and damping 

characteristic of the landing gear strut, Stépán (2002). The interplay of the tire-road dynamics and 

of the torsional elastic behavior of the gear strut are such that the shimmy oscillations can be 

classified as a self-sustained and inherently non-linear phenomenon, Howcroft et al. (2014). 

Moreover, the complexity of the shimmy behavior deeply increases when the influences of other 

factors are taken into account, namely the gear strut lateral and vertical dynamics, Thota (2009), 

the non-linearity introduced by the torque link torsional play, Sateesh and Maiti (2009), and the 

delay effect introduced by the tire elasticity, Takács et al. (2009).  

Despite of the causes, it is known that shimmy vibrations of landing gears can increase in 

amplitude and frequency at high rate and can cause severe damages to the aircraft before the pilot 

can counteract it, Moreland (1954). For this reason, it is important to equip any landing gear that is 

prone to the shimmy phenomenon with damping systems. Generally, by increasing the torsional 

stiffness of the gear strut the shimmy vibrations are reduced in amplitude. However, it is common 
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to install a small shock absorber between the nose wheel fork and the nose wheel cylinder to 

passively dampen shimmy vibrations. A drawback of passive hydraulic shimmy dampers is their 

need to be periodically inspected for leaks and kept fully operational by adding fluid to capacity, 

EASA and TTS (2010). Rubber-piston shimmy dampers can be employed; indeed, they are 

certified for some aircrafts and they exhibit a long service life without the necessity to replenish 

fluid, FAA-H-8083-312(2012). Independently from the kind of shimmy dampers, their passive 

behavior allows optimal performances only in the design conditions. Any variation of the loading 

conditions, of the tire-road interaction or of the gear leg structural properties can drastically 

reduces the damping authority of system that can also become instable, Huynh et al. (2008). In 

order to increase the robustness of the shimmy damping system, both semi-active and active 

control approaches have been investigated. Among others, a semiactive shimmy damper based on 

magnetorehological (MR) fluid has been proposed and numerically analyzed by Atabay and Ozkol 

(2014) proving that the MR shimmy damper added to the system allows to dampen shimmy 

vibration even in presence of torsional play and very low hydraulic damping constant using about 

one Ampere current input. On the other hand, active approaches based on both state-feedback and 

output-feedback fuzzy control have been proposed and studied (Pouly et al. 2008, 2011) 

evidencing the feasibility of active shimmy vibration suppression. No matter of the control 

solutions proposed or adopted in the literature, the shimmy vibration of the Nose Landing Gear 

(NLG) is still an open problem from both the theoretical and technological point of view, Bonfè 

(2011). 

In this paper, an electromechanical actuator based PID control scheme is used to damp the 

shimmy vibration of a NLG. Despite the great variety of advanced control schemes proposed and 

validated, the PID algorithm is still one of the most used because of its simplicity, Ang et al. 

(2005). Its tuning represents the bottleneck of the method since no standardized procedure exists to 

set the involved parameters, Ang et al. (2005). Here, a particle swarm optimization (PSO) 

procedure, Shi and Eberhart (1999), is implemented to obtain the optimal selection of the PID 

parameter based on a non-linear NLG model, which takes the actuator dynamics into account, 

Somieski (1997), Pouley et al. (2011). The aim of the paper and its contribution to the field is to 

numerically demonstrate the feasibility and the stochastic robustness of an active PID shimmy 

controller based on the use of a electromechanical actuator. The equations of motion of the 

controlled landing gear shimmy are given in Section 2 along with the particle swarm optimization 

scheme used to select the PID parameters. Section 3 reports the model validation results and the 

convergence analyses of the PSO procedure as well as time-history results for some selected test 

cases and a probabilistic robustness study. Eventually, conclusions are given in Section 4.  

 

 

2. PSO-PID shimmy damping control 
 

The system under consideration is schematically shown in Fig. 1. It consists of a turning tube 

and a sliding tube connected by the torque link to ensure the torsional stiffness of the gear strut and 

a caster fork that links the single wheel to the sliding tube. This scheme is a simplification of an 

aircraft nose landing gear already proposed by Somieski (1997) and successively extended by 

Pouly et al. (2001) to take into account the presence of an electromechanical actuator, which is 

assumed capable of applying the requested control torque to the turning tube. The problem 

governing equations are given first in the next subsection and then the PID control scheme is 

presented along with the particle swarm optimization algorithm used for the selection of the PID  
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Fig. 1 Model of the nose landing gear 

 

 

parameters.  

 
2.1 Nonlinear shimmy model 
 

With reference to Fig. 1, let JZ and e be the mass moment of inertia about the vertical steering 

axis and the caster length, respectively, and let JA denote the electromechanical actuator mass 

moment of inertia. The NLG is moving with velocity V along the xB direction. The variables used 

to describe the kinematics of the NLG about the vertical steering axis are the rotation angle of the 

caster fork ψW, the yaw angle of the turning tube ψA and the sideslip angle of the tire  .  

The problem governing equations are obtained from the torsional dynamics of both the NLG 

and the actuator and from a simplified model of the lateral tire-road interactions. Firstly, the 

torsional dynamic equation of the actuator is written and it reads as 
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where ME=KS(ψA−ψW) is the linear spring torque provided by the scissor link, 

)( WADD KM    is the damping torque provided by the shimmy damper and the viscous 

friction in the bearings of the NLG shock absorber, MC is the control torque commanded by the 

actuator, KS is the NLG torsional stiffness whereas KD and KDA are the NLG and the actuator 

damping constants, respectively. Secondly, the equilibrium equation for the NLG is written as 

dTDYZDEWZ MMeFMMMJ                      (2)
 

where Md is the external torque disturbance applied to the tire, MZ is the so-called self-aligning 

moment caused by the tire lateral elastic deflection about the center of the tire, FY is the tire lateral 

force. In Eq. (2), MTD is the damping moment provided by the tire deflection that reads as 

WTD
V

M 


                                  (3) 

where κ is the constant of tread width tire moment. More particularly, the introduced tire quantities 

are defined as 
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where 
Fc   and 

Mc   are the force and moment derivatives with respect to  while δF and δM are 

the limiting angles for the tire force and moment, respectively. As it appears from Eqs. (4) and (5), 

both FY and MZ are functions of the side slip angle  and of the ground normal reaction FZ; they 

represent a simple, but still realistic nonlinear model of the lateral force and self aligning torque 

generated by the tire in contact with the road, Somieski (1997).   

Lastly, the governing equation for the lateral dynamics of the tire is considered. It is written in 

terms of the sideslip angle by using the elastic string model, Pacejka (2005) 
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being ζ=3a the relaxation length of tire deflection and a the half contact length of the tire and the 

ground, see Besselink (2000) and Pacejka (2005). In writing Eq. (6) the approximation yT≈αζ has 

been used, being yT the tire lateral deflection. 

 
2.2 PSO-PID control 
 

A Proportional Integral Derivative controller is proposed to lead the actuator in such a way the 

error function ε(t)=ψW,d(t)−ψW(t), being ψW,d the desired value of the controlled variable, is 

minimized and the nose landing gear shimmy vibrations are actively dampened. The control torque 

provided by the actuator is thus the sum of a term proportional to the current error, plus a term 

proportional to the integral of the error signal, plus a term proportional to the error time derivative, 
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and writes as 

       
0

t
D

C P I D

DF

K
M t K t K d t    


  

                    

(7) 

where KP, KI and KD are the proportional, integral and derivative gains. In Eq. (7) ηDF is the 

constant of the time derivative filter used to smooth noise effects on the measured error signal. In 

particular, the filtered value of the error derivative considered in the PID scheme given in Eq. (7), 

namely εD, is governed by the following first order differential equation 

   DDDF                                 (8) 

With the aim of tuning the parameters of the PID controller, namely KP, KI, KD and DF, the 

particle swarm optimization technique is adopted. The PSO is a stochastic optimization technique 

based on simplified social model. Each particle has a number of qualities, associated with the 

problem solution, that allow to locate the i-th particle in the problem space by means of an 

n-dimensional vector, the so called position variables p
i
. For the problem under consideration, the 

position variables vector particularizes as p
i
 =[ KP  KI  KD  DF ]. At first, the swarm is initialized 

randomly and then, at the successive steps, it is updated as 

1 1

i i ip p dp    
                               

(9) 

In Eq. (9), λ is the iteration step, 1

idp  is the particle velocity computed on a unitary step 

increment according to Shi and Eberhart (1999) as 

   1 1 2

i i i i g i

c b s bdp dp c r p p c r p p        
                   

(10) 

where  is the inertia weight, cc and cs are acceleration coefficients, called cognitive and social 

constant, respectively, r1 and r2 are coefficients chosen randomly in the interval [0, 1]. i

bp  is the 

personal best position of the i-th particle, i.e. the position that gives the best fitness value with 

respect to the chosen objective function, while g

bp  is the global best position of the entire swarm. 

Moreover, in order to balance the exploration and the exploitation processes of swarm, the linear 

variation of the inertia weight is taken into account as 

min1Max

Max Max

 
  

 

 
   

                           

(11) 

where min and Max are the minimum and maximum value of the inertia weight while Max is the 

maximum number of iterations. In this paper, the objective function considered in running the PSO 

procedure for the active shimmy vibration suppression is the integral of square error, namely 

2

0

WT

dt                                   
(12) 

where TW is the time window extent over which the fitness value is computed.  

 

 

3. Results 
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Table 1 Model data  

Parameter Value Parameter Value 

Forward velocity V=80 [m/s] Half contact length a=0.1 [m] 

Inertia of actuator Ja=0.1 [kg m
2
] Caster length e=0.1 [m]  

Inertia of NLG Jz=1 [kg m
2
]  Cornering stiffness cFα=20 [rad

-1
] 

Actuator damping Ba=0.1 [Nms/rad] Self-aligning stiffness cMα=−2 [rad
-1

] 

Vertical load Fz=9 [kN] 
Limiting angle for lateral 

force 
δF=5 [deg] 

Stiffness constant KS=100 [kNm/rad] 
Limiting angle for self-

aligning moment 
δM=10 [deg] 

Damping constant KD=10 [Nsm/rad] 
Constant of tread width tire 

moment 
κ=−270 [Nm

2
/rad] 

 

 

The proposed PSO-PID controller for the active suppression of the NLG shimmy vibration was 

analyzed numerically. The model parameters of the investigated NLG were taken from literature, 

see Somieski (1997) and Pouley et al. (2011), and they are collected in Table 1.  

To check the present results with those by Pouley et al. (2011), three different case studies were 

solved. These are described in the next section along with the model validation under open loop 

condition. For all of the case studies, the desired value of the caster-fork rotation angle was ψW,d=0 

deg while the maximum allowed value of the wheel rotation angle was ψW,Max=1.5 deg. It was also 

requested that the settling time of the shimmy vibration phenomenon is no longer than tS,Max=0.2 s 

and maximum value of the torque exerted by the actuator should not exceed MC,Max=2 kNm. 

Results from the PSO-PID tuning procedure and from closed loop control simulations are given 

and commented in section 3.2. Last, the controller robustness was verified using the stochastic 

robustness analysis in section 3.3. 

 

3.1 Case studies and model validation 
 

Three different case studies were taken into account that are of interest from the aeronautical 

point of view, namely Case 1: tire damage, Case 2: rough runaway and Case 3: rough runaway 

under increasing velocity. In both the tire damage and rough runaway case studies, the forward 

velocity of the aircraft was set to V=80 m/s, as shown in Table 1. In the former case an external 

torque disturbance pulse of amplitude Md=1 kNm was applied to the tire for 0.1 s while, for 

carrying out simulations in the latter case, a random torque disturbance characterized by zero mean 

value and standard deviation SD(Md)=0.1 kNm  was considered. Open loop results for both 

Cases 1 and 2 are reported in terms of caster-fork rotation angle history in Fig. 2 and Fig. 3, 

respectively, where the applied disturbances are also depicted. Fig. 2 shows that the shimmy 

phenomenon appears with the impulse disturbance in the tire damage case while under the rough 

runaway condition, see Fig. 3, the wheel starts to vibrate slowly. However, in both cases the 

amplitude of the rotation angle increases with time until it reaches a limit cycle of about 22.4 deg. 

These trends are confirmed by previously published work by Somieski (1997), Pouley et al. 

(2011). 

Open loop results obtained under the rough runway and increasing speed condition are reported 
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(a) time history of the rotation angle ψW(t) (b) time history of the disturbance torque Md(t) 

Fig. 3 Rough runway case: open loop results 

 
 
in Fig. 4 along with the time history of the aircraft forward velocity. It was assumed that the 

aircraft speed starts from the value of 10 m/s and reach a final constant value of 80 m/s with a 

constant acceleration of 5 m/s
2
 that lasts for 14 s. The torque disturbance varied randomly with 

zero mean value and standard deviation SD(Md)=0.1 kNm.  

The system behavior resulted stable during the first three seconds of analysis, when the aircraft 

forward velocity was V<25 m/s, then the shimmy vibration increased rapidly to about 26 deg 

approaching the limit cycle value. This behavior confirmed that the critical forward velocity of the 

analyzed NLG system, i.e. the velocity above which shimmy may occur, is 25 m/s and the shimmy 

frequency is of 51 Hz. These results match well literature data, Somieski (1997), Pouley et al. 

(2011). Open loop results for the three analyzed study cases are summarized in Table 2 in terms of 

maximum absolute value of the rotation angle ψW and in terms of the objective function value, 

namely Eq. (12) computed over 15 seconds of analysis. 

  
(a) time history of the rotation angle ψW(t) (b) time history of the disturbance torque Md(t) 

Fig. 2 Tire damage case: open loop results 
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(a) time history of the rotation angle ψW(t) (b) disturbance torque Md(t)and velocity history 

Fig. 4 Increasing velocity case: open loop results 

 
Table 2 Open loop results 

Cases [deg]W Max
  2rad s   

[rad
2
 s]

 

Tire Damage 22.4 1.1099 

Rough Runaway 22.4 1.1117 

Increasing Velocity  0.9894 

 

 

3.2 PSO-PID control analysis 
 

In order to design the PID active shimmy controller using the PSO technique the first case 

study, namely the tire damage one, has been considered. The objective function to be minimized 

was computed over 1 second of analysis. A trial and error procedure has been used to set the 

parameters for the PSO problem by using the following procedure parameters. The number of 

particles is 20; the cognitive and social constants, cc and cs, were set to 2.05; the minimum and 

maximum values of the inertia weight were μmin=0.4 and μmax=0.9 while the maximum number of 

iteration was set to 20. To take into account the probabilistic nature of the employed optimization 

algorithm, about 500 simulations have been run in order to gain a stochastically significant result. 

Fig. 5 shows the trend of the objective function; only 10 runs are plotted for the sake of simplicity, 

which demonstrate that 20 iterations are enough to ensure the minimum value of the objective  

function is reached ( 20.0218 deg s   
deg

2
 s). The problem solution p

best
, that represents the PSO optimal  

selection of PID parameters, resulted as KP=872.5 Nm/deg, KI=2.745 Nm/s deg, KD=8.854 

Nms/deg and ηDF=3.5902 ms. 

The closed loop time history of the caster-fork angle under the tire damage case is shown in 

Fig. 6 along with the control moment needed to damp the shimmy vibration. From Fig 6 (a) it 

appears that the shimmy vibration started with the pulse disturbance at the instant t=0.2 s and the 

maximum value of the rotation angle was |ψW|Max=0.714 deg, then it rapidly decreased with settling 

time ts=0.052 s when ψW<0.05 deg. The damping capability of the proposed PSO tuned 
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Fig. 5 PSO convergence results 

 

  
(a) time history of the rotation angle ψW(t) (b) time history of the control torque MC(t) 

Fig. 6 Tire damage case: closed loop results 

 

 

PID controller was assessed by computing the damping ratio to have an objective control criterion. 

To compare the present results with those by Pouly et al. (2011), the damping ratio was computed 

by using the values of two successive minima, ψW1 and ψW2 respectively, after the disappearance of 

the disturbance torque as  

 
2

1

1 2





 
                              

(13) 

where Δ=log(ψW1/ψW2). In particular, the values of the two successive minima were ψW1=−0.04904 

deg and ψW2=−0.01812 deg, thus the damping ratio resulted as ς=0.1565, which was in accordance  
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(a) time history of the rotation angle ψW(t) (b) time history of the control torque MC(t) 

Fig. 7 rough runaway case: closed loop results 

 

  
(a) time history of the rotation angle ψW(t) (b) time history of the control torque ψW(t) 

Fig. 8 Increasing forward velocity case: closed loop results 

 

 

with the damping ratios obtained by Pouley et al. (2011) using both the direct and indirect fuzzy 

approaches. On the other hand, from Fig. 6(b) it appears that the maximum absolute value of the 

control torque was |MC|Max=1362 Nm which was less than the maximum allowed value MC,Max.. 

The results with the PSO-PID active controller under the rough runaway condition are plotted 

in Fig. 7 in terms of nose wheel rotation angle and control torque exerted by the actuator. Despite 

of the random disturb at high velocity, which was such to engender limit cycle oscillation in the 

open loop case (see Fig. 3), the maximum absolute value of the shimmy oscillation amplitude did 

not exceed 0.05 deg while the maximum value of the control torque was 124 Nm. Such variations 

of the wheel angle are small and cannot cause damage to the system. 

The last closed loop test case to be analyzed in comparison with the open loop one was the 

rough runaway with increasing forward velocity. The results are shown in Fig. 8 and allowed to 

verify that the active controller did not influence the system stability behavior below the critical  
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Table 3 Closed loop results 

Cases ts [sec] [deg]W Max
  [ ]C Max

M Nm  2rad s   
[rad

2
 s]

 

Tire Damage 0.052 0.714 1362 1.31e-05 

Rough Runaway  0.045 124 1.33e-06 

Increasing Velocity 14.95  152 1.32e-06 

 

 

forward velocity of 25 m/s. Moreover, from Fig. 8 it appears that the active controller was capable 

of damping the shimmy vibration at high velocity. 

Closed loop results for the three analyzed study cases are summarized in Table 3 in terms of 

maximum absolute value of the rotation angle ψW and in terms of the objective function value 

computed over 15 seconds of analysis. The maximum absolute value of the control torque |MC|Max 

is also reported along with the settling time tS. In the rough runaway study case the settling time 

was zero since the absolute value of the caster-fork angle was less 0.05 deg over the 15 s of 

analysis. In the increasing velocity case, it could not be defined since the value of the wheel angle 

exceeded the limit value of 0.05 deg randomly, however it was always lower than 0.063 deg and 

thus it was not able to cause damage to the oscillating NLG wheel. 

 

3.3 Sthocastic robusteness verification 
 

Stochastic robustness analysis was used to estimate the damping capability of the proposed 

control system for the shimmy vibration problem, Ray and Stengel (1993). Mismatch between the 

actual and the nominal system are introduced by environment effects, systems failures, parameters 

estimation errors as well as by wear and manufacturing differences. This implies that a control 

system optimized for the nominal system may not be optimal for the actual one. Stochastic 

robustness analysis offers the possibility to investigate the robustness of the control system taking 

into account the probabilistic nature of uncertainties. Moreover, it also allows obtaining a 

controller, which is not over conservative neither insufficiently robust, Ray and Stangel (1992). 

The method is based on the definition of stability or performance criteria and on the Monte Carlo  

analysis of the probability P̂  of violating such criteria. It follows that the stochastic robustness  

problem is binomial (the criterion under consideration is verified or not) and thus the confidence 

interval can be computed by the binomial test, Von Collani and Dräger (2001). In the present 

paper, four criteria were considered to investigate the robustness of the proposed PID control 

scheme, they write as 

,

,

,

min

:

w w MaxMax

C C MaxMax

s s Max

M M
Criteria

t t

 

   






                            

(14) 

The minimum value of the damping ratio ςmin used in Eq. (14) was selected from the work of 

Pouly et al. (2011) and specifies as ςmin=0.07. Each Monte Carlo evaluation was based on the 

solution of the problem governing equation taking into account the uncertainty of the problem 

parameters. More in detail, the variations of the stiffness KS and the damping KD constants are 

representative of wear or loose of tolerances; the uncertainties on cornering and self-aligning  
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Table 4 Probabilistic robustness data 

Parameter Value 

Forward velocity    25,80V m sU  

Vertical load  7.2,10.8 [ ]zF kNU
 

Stiffness constant  80,120 [ ]SK kN m radU
 

Damping constant  8,12 [ ]DK N sm radU
 

Cornering stiffness   116,24 [ ]Fc rad

U
 

Self-aligning stiffness   12.4, 1.6 [ ]Mc rad

  U
 

Constant of tread width tire moment   2324, 216 [ ]N m rad   U
 

 
Table 5 Probabilistic robustness validation data 

 [sec]st  [deg]w Max
  [ ]C Max

M Nm  
 

2rad s   
 

Mean 0.017 0.738 1389 0.117 1.34e-5 

SD 0.0041 0.017 20 0.053 1.45e-6 

Min 0.006 0.691 1329 0.0007 9.97e-6 

Max 0.037 0.811 1442 0.413 1.74e-5 

P̂  0 0 0 0.22 - 

L 0 0 0 0.199 - 

U 0.0024 0.0024 0.0024 0.242 - 

 

 

stiffness, cFα and cMα, as well as on constant of tread width moment κ are considered because they 

are related to whether and tire pressure conditions that affect the tire-road interface. In addition, 

the airplane speed V and the vertical load Fz are considered as varying parameters. Following the 

work of Barmish and Lagoa (1996), for all of the considered parameters uniform random variation 

with bounds given in Table 4 was assumed. 

To verify the robustness of the proposed controller, 1500 Monte Carlo simulations of the tire 

damage case were carried out. The probability of violating the criteria, Eq. (14), with the 

associated 95% confidence intervals [L,U] are given in Table 5 along with the mean and standard 

deviation values as well as the minimum and maximum values of the investigated quantities.  

Values for the objective function   evaluated over a period of 15 seconds are also listed in Table  

5 to compare results with the closed loop data obtained in the nominal case (see Table 3). It 

appears that the mean, minimum and maximum values of the considered variables taking into 

account the uniform distribution of the uncertain model parameters match well those of the 

nominal system.  

The obtained results evidenced that the probability of violating the criteria Eq. (14) is null with 

95% confidence intervals of L=0.0 and U=0.0024 for the settling time as well as for the maximum 

absolute values of the fork ration angle and of the control torque. On the other hand, the 

probability of violating the criterion on the damping ratio, ς>ςmin, was 0.22 with 95% confidence 

bounds L=0.199 and U=0.242. The mean value of the damping ratio is 0.117 and matched well 

with the one obtained in the nominal case. However, the minimum value of ς computed by 

Eq. (13) was lower than the limit quantity used to define the stochastic robustness verification  
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(a) time history of ψW(t)  (b) time history of ψW(t) 

Fig. 9 Stochastic robustness analysis results: damping ratio worst case. 

 

 
criterion. With the aim of investigating the system response for the damping ratio worst case, i.e., 

ς=0.0007, the time history of the fork rotation angle and of the requested control torque are shown 

in Fig. 9. By looking at the rotation angle time response, it can be noticed that the damping ratio is 

ς=0.0007 because the first and second minima after the disturbance were almost equal, namely 

ψW1=−0.01803 deg and ψW2=−0.01795 deg. However in this case the settling time was ts=0.017 s, 

the maximum value of the rotation angle was less than 0.8 deg and the maximum absolute value of 

the control torque demanded by system was less 1.5 kNm. These meant that the criteria on rotation 

angle, control torque and settling time, see Eq. (14), were met and thus the control system can be 

considered robust enough even in worst damping ratio case. 

 
 
4. Conclusions 
 

An active shimmy suppression system has been proposed and analyzed. The active control 

systems has been assumed to be arranged with an electro-mechanic actuator capable of applying 

the commanded control torque to the turning tube at the requested frequency. A proportional-

integrative-derivative controller with first order filter of derivative was taken into account. The use 

of the particle swarm optimization method has allowed selecting the optimal parameters of the PID 

controller based on the minimization of the integral square error objective function. Three different 

study cases of aeronautical interest have been analyzed. It has been shown that results obtained 

under open-loop and closed-loop conditions match well with those presented in the literature. Last, 

in order to verify the robustness of the active control system proposed, the stochastic robustness 

analysis was used. Four criteria have been defined to analyze the damping capability of the 

shimmy control system. The stochastic robustness analysis results allowed to verify the robustness 

of the proposed nonlinear model based active shimmy control system. 
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