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Abstract.  In a whole variety of higher order plate theories existing in the literature no consideration is 
given to the transverse normal strain / deformation effects on flexural response when these higher order 
theories are applied to shear flexible composite plates in view of minimizing the number of unknown 
variables. The objective of this study is to carry out cylindrical bending of simply supported laminated 
composite and sandwich plates using sinusoidal shear and normal deformation plate theory. The most 
important feature of the present theory is that it includes the effects of transverse normal strain/deformation. 
The displacement field of the presented theory is built upon classical plate theory and uses sine and cosine 
functions in terms of thickness coordinate to include the effects of shear deformation and transverse normal 
strain. The theory accounts for realistic variation of the transverse shear stress through the thickness and 
satisfies the shear stress free conditions at the top and bottom surfaces of the plate without using the problem 
dependent shear correction factor. Governing equations and boundary conditions of the theory are obtained 
using the principle of minimum potential energy. The accuracy of the proposed theory is examined for 
several configurations of laminates under various static loadings. Some problems are presented for the first 
time in this paper which can become the base for future research. For the comparison purpose, the numerical 
results are also generated by using higher order shear deformation theory of Reddy, first-order shear 
deformation plate theory of Mindlin and classical plate theory. The numerical results show that the present 
theory provides displacements and stresses very accurately as compared to those obtained by using other 
theories. 
 

Keywords:  cylindrical bending; shear deformation; normal deformation; laminated plate; sandwich plate; 

antisymmetric; symmetric; arbitrary laminates 

 
 
1. Introduction 

 

Structural components made with composite materials are increasingly being used in various 

engineering applications such as aviation and aerospace, navigation, automotive, civil, mechanical, 

marine etc. due to their attractive properties such as high specific strength, high specific stiffness, 

and high thermal resistance. Understanding their bending, buckling and vibration behaviour is of 
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increasing importance. 

Well known classical plate theory underestimates the deflection and overestimates natural 

frequencies and buckling loads due to the neglect of transverse shear and transverse normal 

deformation effects. The errors in deflection, stresses, natural frequencies and buckling loads are 

quite significant for plate made out of advanced composites. The first order shear deformation 

theory accounts for the transverse shear deformation effect, but require a problem dependent shear 

correction factor to appropriately take into account the strain energy of shear deformation of the 

plate (Mindlin 1951). 

To avoid the use of problem dependent shear correction factor, higher order shear deformation 

theories were developed based on the assumption of quadratic, cubic or higher-order variations of 

in-plane displacements through the plate thickness. Higher order shear deformation theories can be 

developed by expanding the displacements in power series of the coordinate normal to the middle 

plane. In principle, theories developed by this means can be made as accurate as desired simply by 

including a sufficient number of terms in the series. These higher-order theories are cumbersome 

and computationally more demanding, because, with each additional power of the thickness 

coordinates, an additional dependent variable is introduced into the theory. It has been noted by Lo 

et al. (1977a, 1977b) that due to the higher order of terms included in their theory, the theory is not 

convenient to use. This observation is more or less true for many other higher order theories as 

well. And, thus there is a scope to develop simple to use higher order plate theory. Many simple 

higher order shear deformation theories are available in the literature for the bidirectional bending 

analysis of laminated composite plates such as higher order theory of Ambartsumian (1958), 

higher order theory of Kruszewski (1949), a simple higher order shear deformation theory of 

Reddy (1984), hyperbolic shear deformation theory of Soldatos (1992), an exponential shear 

deformation theory of Karama et al. (2003), hyperbolic shear deformation theory of Akavci 

(2007), two variable plate theory of Shimpi and Patel (2006), higher order shear deformation 

theory of Aydogdu (2009) and many more. 

Pagano (1969) has obtained exact 3D solutions for cross-ply laminates under cylindrical 

bending and investigated limitations of classical plate theory comparing with the solutions of 

several specific boundary value problems to the corresponding 3D elasticity solutions. Pagano 

(1971) also studied cylindrical bending of angle-ply laminates considering the influence of shear 

coupling. These solutions are obtained for simply supported boundary conditions only. Pagano and 

Wang (1971) extended this solution for cross-ply laminates under uniformly distributed load and 

patch load.  

Wan (1992) has developed sixth and twelfth order plate theories for cylindrical bending 

problems and demonstrated the efficiency of these theories for thick plates. Based on the 

assumption of the through-the-thickness inextensibility of laminates, Jalali and Taheri (1998) have 

developed a new semi-analytical method to study the response of cross-ply laminated plates under 

cylindrical and planar bending. Soldatos and Watson (1997) have proposed a new method for the 

stress analysis of two layered simply supported and clamped cross-ply laminated composite plates 

which is further extended by Shu and Soldatos (2000) for the stress analysis of angle-ply laminates 

subjected to different sets of edge boundary conditions. 

Perel and Palazotto (2001) presented a discrete layer theory for the cylindrical bending of 

sandwich plates based on assumed transverse strains. It is assumed that transverse strains do not 

vary in the thickness direction within the face sheet and the core. A problem of cylindrical bending 

of a simply supported plate under uniform load is considered and results are obtained using finite 

element method. A new higher order shear and normal deformation theory for the bending and free 
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vibration analysis of sandwich plates with functionally graded isotropic face sheets is developed 

by Bessaim et al. (2013). Zenkour (2007) has developed three dimensional elasticity solutions for 

uniformly loaded cross-ply laminates and sandwich plates. Khdeir (2001) has studied dynamic 

behaviour of anti-symmetric angle-ply laminated plates in cylindrical bending using classical plate 

theory and first order shear deformation theory. The natural frequencies are determined for 

arbitrary boundary conditions and loading conditions using a generalized modal approach. Vel and 

Batra (2000, 2001) obtained exact three-dimensional state space solution for the static cylindrical 

bending of simply supported laminated plates with embedded shear mode piezoelectric actuators, 

and subjected to mechanical and electric loading on the upper and lower surfaces. Park and Lee 

(2003) have presented a new shear deformation theory for cylindrical bending of laminated plates 

in which inplane displacements vary exponentially through plate thickness and applied the theory 

for cross-ply and angle-ply anti-symmetric laminates under cylindrical bending. Lu et al. (2007) 

have obtained an exact solution for free vibration of angle-ply laminates subjected to cylindrical 

bending using a semi-analytical approach in which thickness domain is solved analytically using 

the transfer matrix method based on the state space concept, while the in-plane domain is solved 

approximately via the technique of differential quadrature. Starovoytov et al. (2010) carried out 

cylindrical bending analysis of laminated plate resting on an elastic foundation. Kapuria and 

Kumari (2011) obtained a three dimensional elasticity solution of symmetric and anti-symmetric 

cross-ply and angle-ply laminated composite plates in cylindrical bending using extended 

Kantorovich method. Kant and Shiyekar (2008) have presented analytical solution for the 

cylindrical bending of piezoelectric laminates using higher order shear and normal deformation 

theory. Sayyad et al. (2014) and Sayyad and Ghugal (2015a) have applied nth order plate theory 

for the cylindrical bending analysis of specially orthotropic and cross-ply laminated plates and 

obtained the numerical results for simply supported plate subjected to sinusoidally distributed 

load. Saeedi et al. (2013) proposed two-dimensional layerwise model for the cylindrical bending 

of multilayered plates with multi-delamination. Lebee and Sab (2011) obtained a closed form 

solution for cylindrical bending of laminated plates using a bending-gradient plate theory which is 

an extension of the Reissner-Mindlin plate theory to arbitrarily layered plates. Afshin et al. (2010) 

studied static response of cylindrical sandwich panels with flexible core using the high order plate 

theory based on layerwise formulation. Zhou et al. (2009) carried out free vibration of cross-ply 

piezoelectric laminates in cylindrical bending with arbitrary edges using the state-space method 

and the differential quadrature method. Within a framework of the three-dimensional 

piezoelectricity, asymptotic formulations of functionally graded piezoelectric cylindrical shells 

under cylindrical bending type of electromechanical loads using the method of perturbation have 

been presented by Wu and Syu (2007). Chen and Lee (2005) developed an elasticity method to 

study the bending and free vibration of simply-supported angle-ply laminated cylindrical panels in 

cylindrical bending based on the state space formulations. Vel et al. (2004) developed an 

analytical solution for the cylindrical bending vibrations of linear piezoelectric laminated plates. 

Auricchio and Sacco (2003) developed refined first-order shear deformation theory models for the 

cylindrical bending of composite laminates. Alibeigloo and Shakeri (2009) presented the three-

dimensional solution for static analysis of cross-ply cylindrical panel using differential quadrature 

method and Fourier series approach. The cylindrical bending vibration of a laminated elastic plate 

due to piezoelectric actuators has been presented by Yang et al. (1994). Toledano and Murakami 

(1987a, 1987b) have developed a new laminated plate theory for arbitrary laminate configurations 

based on Reissner‟s mixed variational principle. The accuracy of theory was examined by 

applying it to the cylindrical bending problem of symmetric, antisymmetric, arbitrary laminated 
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plates. He (1992) presented a refined shear deformation theory for cylindrical bending of arbitrary 

cross-ply laminated plates. 

The higher order shear deformation theories with trigonometric functions in terms of thickness 

coordinates, to include thickness effects, are designated as trigonometric/sinusoidal shear 

deformation theories. Several trigonometric shear deformation theories (TSDTs) have been 

developed by various researchers for the bending, buckling and free vibration analysis of 

laminated composite beams and plates. Stein (1986) presented a quasi-3D nonlinear theory for 

stability analysis of laminated and thick plates and shells including the effects of transverse shear 

and transverse normal strain. The displacement field of the theory consists of trigonometric terms 

in addition to the initial terms of a power series through-the-thickness. Equations of equilibrium 

and boundary conditions are obtained using principle of virtual work. Touratier (1991) has 

developed a trigonometric shear deformation theory using principle of virtual work. The several 

problems of plates investigated include bi-directional bending, buckling and free vibration analysis 

of laminated and sandwich plates. Wave propagation, torsion of a rectangular plate and edge effect 

on the stress distribution at the edge of a circular hole in a large rectangular bent plate are also 

addressed. Shimpi and Ghugal (2001) have developed a layerwise trigonometric shear deformation 

theory for the bending analysis of two layered anti-symmetric laminated beams which is further 

extended by Ghugal and Shinde (2013, 2014) for the flexural analysis of laminated beams of 

various boundary conditions using general solution technique. Shimpi et al. (2003) have developed 

trigonometric shear deformation theory for the bending and free vibration analysis of isotropic, 

orthotropic and laminated plates which is extended by Zenkour (2005) for the free vibration 

analysis of functionally graded plates by normalizing trigonometric function. Mantari et al. (2012) 

have developed a new trigonometric shear deformation theory to analyze the static behaviour of 

isotropic, laminated and sandwich plates. Neves et al. (2011, 2012) have developed a hybrid quasi-

3D trigonometric shear deformation theory for the bi-directional bending and free vibration 

analysis of functionally graded plates using radial basis functions. The effect of transverse normal 

strain is taken into account. The boundary value problem is deduced from the Carrera‟s unified 

formulation and the principle of virtual displacement. Recently, Sayyad et al. (2015) applied 

trigonometric shear deformation theory for the bending analysis of laminated composite and 

sandwich beams.  

However, it is observed from the literature reviewed that all the trigonometric shear 

deformation theories are not explored thoroughly for the one dimensional analysis of laminated 

composite and sandwich plates with transverse normal deformation effects on their static and 

dynamic responses. 

In a whole variety of higher order plate theories existing in the literature no consideration is 

given to the transverse normal strain / deformation effect on flexural response when these higher 

order theories are applied to shear flexible composite plates in view of minimizing the number of 

unknown variables. The effect of transverse normal strain on static and dynamic responses of 

multilayered plates is highly recommended by Carrera (1999a, 1999b, 2005). Carrera 

recommended that any refinements of classical models are meaningless, in general, unless the 

effects of interlaminar continuous transverse shear and normal stresses are both taken into account 

in a multilayered plate/shell theory. In a whole lot of literature on this subject many researchers 

neglected this effect including Reddy (1984). Carrera Unified Formulation (CUF) is developed by 

Carrera and his co-workers in the last decade for beams, plates and shells theories (Carrera 2002, 

Carrera 2003, Carrera et al. 2008, Carrera et al. 2011). CUF based theories are based on the 

Legendre polynomials or Taylor series expansion in thickness coordinate z. The soft core effect on 
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sandwich plates has been recently studied by Tornabene et al. (2014, 2015) using CUF approach 

with differential quadrature method and the higher order equivalent single layer theory without 

transverse normal strain effects. The theories reported in references Mindlin (1951), Lo et al. 

(1977a, 1977b), Ambartsumian (1958), Kruszewski (1949), Reddy (1984), Soldatos (1992), 

Karama et al. (2003), Akavci (2007), Shimpi and Patel (2006), Aydogdu (2009), Wan (1992), 

Jalali and Taheri (1998), Soldatos and Watson (1997), Shu and Soldatos (2000), Park and Lee 

(2003), Lu et al. (2007), Sayyad et al. (2014), Sayyad and Ghugal (2015), Lebee and Sab (2011), 

Afshin et al. (2010), Auricchio and Sacco (2003), Toledano and Murakami (1987a, 1987b), He 

(1992), Touratier (1991), Shimpi and Ghugal (2001), Ghugal and Shinde (2013, 2014), Mantari et 

al. (2012) do not consider the effect of transverse normal strain whereas the theories reported in 

the references Perel and Palazotto (2001), Bessaim et al. (2013), Kant and Shiyekar (2008), Zhou 

et al. (2009), Stein (1986), Shimpi et al. (2003), Zenkour (2005), Neves et al. (2011, 2012) 

considered the effect of transverse normal strain. 

Ghugal and Sayyad (2011, 2013) and Sayyad and Ghugal (2013, 2014a, 2014b, 2015b) also 

developed a trigonometric / sinusoidal shear and normal deformation theory for the laminated 

composite and sandwich plates taking into account both the effects of transverse shear and normal 

deformations. However, in these works by authors, the theory is mostly applied for bi-directional 

bending of cross-ply laminated plates but not exclusively developed for the cylindrical bending or 

one dimensional analysis of laminated and sandwich plates taking into account the effect of 

transverse normal strain. The main objective of the present study is to examine the efficiency of 

the sinusoidal shear and normal deformation plate theory for the cylindrical bending of 

multilayered laminated composite and sandwich plates. The theory is built upon classical plate 

theory. The governing equations and boundary conditions are obtained by using the principle of 

minimum potential energy. Closed form solutions are obtained for the cylindrical bending analysis 

of single layer and multilayered laminated composite and sandwich plates and compared them to 

solutions of classical plate theory (CPT), first order shear deformation theory (FSDT) of Mindlin 

(1951), higher order shear deformation theory (HSDT) of Reddy (1984) and the exact solutions 

given by Pagano (1969). The results presented in this paper are specially generated according to 

various theories being not available in the open literature. In the present study, results for 

laminated and sandwich plates subjected to uniformly distributed load and patch load are 

presented for the first time which can be served as benchmark solutions for the future researchers 

in this field.  

 

 

2. Mathematical formulation 
 

The mathematical formulation of present sinusoidal shear and normal deformation plate theory 

(SSNPT) for laminated composite and sandwich plates is based on certain kinematical and 

physical assumptions. The principle of minimum potential energy will be used to obtain the 

governing equations of equilibrium and the associated boundary conditions. The Navier solution 

technique will be employed to develop analytical solution for the simply supported boundary 

conditions. The program has been developed in FORTRAN to determine numerical results. 

 

2.1 The plate under consideration 
 

A general laminated composite plate with length of „a‟ and width of „b‟ respectively in the x 
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and y directions is considered (Fig. 1). The z-direction is assumed positive in downward direction. 

The thickness of the laminate following the z-direction and the middle plane of the plate is located 

at z=0. The plate is made up of N number of layers and the behaviour of all layers is in general 

considered orthotropic. The laminate is subjected to cylindrical bending via an out-of-plane 

loading q(x) applied on its top surface (z=-h/2). It is assumed that the plate is long in the y 

direction (b >>a, h) so that the strain components are independent of the y coordinate. The plate is 

in state of plane strain condition with respect to xz plane. 

 

2.2 Assumption made in mathematical formulation 
 

Assumptions of present sinusoidal shear and normal deformation plate theory (SSNPT) are as 

follows:  

1. It is assumed that the plate is of an infinite extent at the y-direction (b>>a, h) while it is 

simply supported at its edges x=0 and x=a. 

2. The displacement component u is the inplane displacement in x- direction and w is the 

transverse displacement in z-direction. These displacements are small in comparison with the 

plate thickness.  

3. The in-plane displacement u in x-direction consists of three components (extension, bending 

and shear) 

     0 b su u u u                                  (1) 

a) u0 
is the middle surface displacement in x- direction. 

b) The bending component is assumed to be analogous to the displacement given by classical 

plate theory. 

 0

b

w x
u z

x


 


                               (2) 

c) Shear component is assumed to be sinusoidal in nature with respect to thickness coordinate, 

such that maximum shear stress occurs at neutral plane and zero at top and bottom surfaces of 

the plate. 

 sins

h z
u x

h





                              (3) 

4. The transverse displacement w in z- direction is assumed to be a function of x and z 

coordinates. 

   0 cos
h z

w w x x
h





 

                          
(4) 

5. The plate is subjected to transverse load only. 

6. The body forces are ignored in the analysis. 

  

 

3. Sinusoidal shear and normal deformation plate theory (SSNPT) 
 

SSNPT is developed based on the before mentioned assumptions. By using Eqs. (1)-(4), the  

118



 

 

 

 

 

 

Cylindrical bending of multilayered composite laminates and sandwiches 

 

 

Fig. 1 Geometry of a plate strip in cylindrical bending 

 

 

displacement field of the present SSNPT can be expressed as follows 

       

     

0
0

0

, , 0sin

cos

x z
w h πz

u x,z = u x z + x v =
x π h

h πz
w x,z = w x + ξ x

π h







                

(5) 

Here, u(x, z) is the in-plane displacement in the x- direction and w(x, z) is the transverse 

displacement in the z- direction. There is no relative motion in the y- direction at any points in the 

cross section of the plate, therefore v=0. u0 (x) is the center line displacement and is a function of x 

only. The shear slopes ϕ and ξ
 
are functions of x only. The following strain vector {ε} is given by 

strain displacement relationship as per linear theory of elasticity. 

x

y

T

z

xy

yz

xz

u v w u v v w u w

x y z y x z y z x













 
 
 
            

      
          

 
 
  

                

(6) 

Considering the problem as a plane strain problem, strain quantities in y direction are zero 

(εy=γxy=γyz=0). The strain displacement relationship of Eq. (6) becomes 
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x T

z

zx

u w u w

x z z x







 
      

    
     

 

                          (7) 

   

   

0

0

,b s
x x x x z

s
zx zx z

zk f z k g' z ,

f ' z g z k

   

 

   

 

                      

(8) 

where 

 

       

2
0 00 0

2
; ; ; ; ;

sin ; cos cos sin

b s s

x x x zx z

u w
k k k

x x xx

h z h z z z
f z g z ; f ' z ; g' z

h h h h

 
  

   

 

   
     
  

    

        

(9) 

where the prime ( )′ indicates the differentiation of function with respect to z. 

 

3.1 Constitutive relations 
 

The constitutive equations for the k
th
 lamina of laminated composite plate under cylindrical 

bending (plane strain problem) can be written as 

1311

13 33

55

0

0

0 0

k kk

xx

z z

xz xz

QQ

Q Q

Q



 

 

    
    

    
    
    

                       

(10) 

where ijQ are the reduced elastic constants corresponding to plane strain state in x-z plane. The 

following relations hold between these and the engineering elastic constants: 

     1 23 32 1 31 21 32 3 12 21

11 13 33 55 13

1 1
; ; ; ;

E E E
Q Q Q Q G

        
   

       
(11) 

where 

 12 21 23 32 31 13 12 23 311 2             
                

(12) 

in which E1, E3 are Young‟s moduli, G13 is the shear modulus and μ12, μ21, μ13, μ31, μ23, μ32, are 

Poisson‟s ratios. The subscripts 1, 2, 3 correspond to x, y, z directions of Cartesian coordinate 

system, respectively. 

 

3.2 Governing equations and boundary conditions for SSNPT 
 

The governing equations and boundary conditions are derived by using the principle of 

minimum potential energy. The principle of minimum potential states that of all possible 

displacements that satisfy the given conditions of constraint, that system which is associated with 

equilibrium makes the value of the sum of the potential energy of the prescribed external forces 
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and the potential strain energy of the internal stresses maximum and in the case of stable 

equilibrium a minimum. In analytical form it can be written as 

  0U V  
                               

(13) 

where U is the total strain energy due to deformation, V is the potential of the external loads and δ 

is the variational symbol. The strain energy of the plate is given by 

 
2

0 2

1

2
x x z z zx zx

x a z h /

x z h /
U dz dx     

 

 
                     (14) 

and the potential energy of the external laterally distributed load q(x,y) on the plate is given by 

  0
0

x a

x
V q x w dx




 

                           
(15) 

Substituting the energy expressions (14) and (15) into Eq. (13), the final expression can be 

written as 

    0

2

0 2 0
0x x z z zx zx

x a z h/ x a

x z h/ x
dz dx q x w dx      

  

  
     

        
(16) 

Substituting the strain components from Eq. (8) into the Eq. (16), one can obtain 

   

     

2

0 0

2

0

2 2

0 2 0 2

2

0 2 0
0

x z

zx

x a z h / x a z h /

x z h / x z h /

x a z h / x a

x z h / x

u w
z f z g' z

x x x

f ' z g z q x w dx
x

dz dx dz dx

dz dx

  
  


  

   

   

  

  
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   

   

 
  

 
 

   

  

  (17) 

By integrating the Eq. (17) with respect to z, we get the following equation: 

 

2

0 0

2

0

0 0

0 0
0

s

x x x z

x x

x a x a

x x

x a x a

x x

u w
N M M Q

x x x

h
Q Q q x w dx

x

dx dx

dz dx

  



 



 

 

 

 
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   

   

 
  

 
 

 

 

             (18) 

Integration of Eq. (18) by parts and collecting the coefficients of δu0, δw0, δϕ and δξ
 
leads to 

the following equation 

 
2

0 020 0 0

0
0 000

0 0

00
0

s
x a x a x a

x x x
x

x x x

x a x a
x a x ax x

z x xxx
x x

x a x as

x x xx

N M M
u dx q x w Q dx

x x x

Q w Mh
Q dx N u M w

x x x

h
M Q

dx  


  



 


  

  

 
 


 

 



     
      

     

   
    

   





 

  



        

(19) 

121



 

 

 

 

 

 

Atteshamuddin S. Sayyad and Yuwaraj M. Ghugal 

Invoking the fundamental lemma of calculus of variations in Eq. (19), the following governing 

equations (Euler-Lagrange equations) are obtained 

 0 : 0xN
u

x





                                
(20) 

2

0 2
: 0xM

w q
x




 
                              

(21) 

: 0
s

x
x

M
Q

x



 

                              
(22) 

: 0x
z

Qh
Q

x





 

                              
(23) 

And a proper set of boundary conditions at each edge of the plate is obtained as a result of the 

application of the principle of minimum potential energy and the calculus of variations 

Either 0xN 
   

or 0u  is prescribed                     (24) 

Either =0xM
   

or 0w

x




is prescribed                     (25) 

Either 0s
xM     or   is prescribed                     (26) 

Either 0xM

x





  or 0w  is prescribed                    (27) 

Either 0xQ 
    

or   is prescribed.                    (28) 

The stress resultants appeared in governing equations and associated boundary conditions are 

defined as 
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where N are number of layers, Nx is the axial force resultant analogous to classical plate theory, Mx 

is the moment resultant or the stress couple analogous to classical plate theory, 
s
xM  is the refined 

moment or stress couple due to transverse shear deformation effect and Qx, Qz are the transverse 

shear and transverse normal stress resultants, respectively. The governing Eqs. (20)-(23) can be 

expressed in-terms of the unknown generalized displacement variables as follows 

2 3 2
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(37) 

where the stiffness components (Aij, Bij… etc.) appeared in Eqs. (34) - (37) can be computed as 

follows. 
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(38) 

 
 

4. Navier solution 
 

Following are the boundary conditions used for simply supported laminated composite plates 

along the edges x=0 and x=a 

0 0, 0, 0, 0, 0s

x x xw N M M     
                  

(39) 

Navier‟s solution procedure is adopted to compute displacement variables. The displacements 

and rotations, that satisfy the above boundary conditions exactly, can be assumed as follows 
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(40) 
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(a) Sinusoidally distributed load (b) Uniformly distributed load 

 
(c) Patch load 

Fig. 2 Laminated plates subjected various static loadings 

 

 

where um, wm, ϕm and ξm are the unknowns coefficients to be determine. The various static loadings 

q(x), on the top surface of plate (i.e., z=-h/2) as shown in Fig. 2, are presented in single 

trigonometric series as follows 
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where m is the positive integer and qm is the coefficient of Fourier series expansion as given below 

for various static loadings. 
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(42) 

The value of positive integer m=1 for sinusoidally distributed load and m=25 for the uniformly 

distributed and patch loads. 

Substitution of Eqs. (40) and (41) into governing Eqs. (34)-(37) leads to the set of algebraic 

equations which can be written in matrix form as follows 
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(43) 
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Here the stiffness coefficients of matrix [K] in Eq. (43) are defined as follows. 

 

2 2 3 3 2 2

11 11 12 11 13 11 14 132 3 2

4 4 3 3 2 2

21 12 22 11 23 11 24 134 3 2

2 2

31 13 32 23 33 11 552

, , , ,

, , , ,

, ,

m m m m
K A K B K As K As

a a a h a

m m m
K K K D K Bs K Bs

a a h a

m
K K K K K Ass Acc

a

    

   



       
           

      

     
          

     

  
    

 
34 13 55

2 2 2 2

41 14 42 24 43 34 44 33 552 2 2

, ,

, , ,

h m
K Ass Acc

h a

h m
K K K K K K K Ass Acc

h a

 



 



   
     
   

  
      

    

(44) 

Having obtained the values of um, wm, ϕm and ξm one can then calculate all the displacements 

and stress components within the plate using Eqs. (5)-(10). Transverse shear stress (τxz) can be  

obtained either by constitutive relation ( CR

xz ) or by integrating equilibrium equation ( EE

xz ) of  

theory of elasticity with respect to the thickness coordinate, satisfying shear stress free conditions 

on the top and bottom surfaces of the plate. When constitutive relation is used to obtain transverse 

shear stress, it gives a discontinuity of stress at layer interface. Therefore, transverse shear stress is 

obtained by integrating the equilibrium equation with respect to thickness direction which 

ascertains the continuity of the transverse shear stress at layer interface. This relation can be 

expressed as 

1
/2

kz
x

xz
h

dz C
x







 


                            

(45) 

In above expression the relation for inplane normal stress is used for individual layer. The 

constant of integration is obtained from boundary conditions. Since, higher order theories predicts 

inplane normal stress accurately, it is expected that these relations will produce accurate transverse 

shear stress. 

 

4.1 Numerical results 
 

Different configurations of the laminates are used for the cylindrical bending analysis of plate 

as shown in Fig. 3. (a) Single layered (0
0
) orthotropic plates (b) Two layered (0

0
/90

0
) anti-

symmetric cross-ply laminated plates (c) Four layered (0
0
/90

0
/0

0
/90

0
) anti-symmetric cross-ply 

laminated plates (d) Three layered (0
0
/90

0
/0

0
) symmetric cross-ply laminated plates (e) Four 

layered (0
0
/90

0
/90

0
/0

0
) symmetric cross-ply laminated plates (f) Five layered (0

0
/90

0
/0

0
/90

0
/0

0
) 

symmetric cross-ply laminated plates (g) Five layered (90
0
/0

0
/0

0
/90

0
/0

0
) arbitrary cross-ply 

laminated plates (p) Three layered (0
0
/core/0

0
) symmetric sandwich plate (r) Five layered 

(0
0
/90

0
/core/90

0
/0

0
) symmetric sandwich plate (s) Five layered (0

0
/90

0
/core/0

0
/90

0
) anti-symmetric 

sandwich plate. Following examples are solved for the numerical study.   

Example 1: Cylindrical bending of single layer orthotropic plate 

Example 2: Cylindrical bending of anti-symmetric cross-ply laminated composite plates 

Example 3: Cylindrical bending of symmetric cross-ply laminated composite plates 

Example 4: Cylindrical bending of arbitrary cross-ply laminated composite plates 
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Example 5: Cylindrical bending of symmetric sandwich plates 

Example 6: Cylindrical bending of anti-symmetric sandwich plates 

The material properties used in various problems to obtain the numerical results are presented 

in Table 1. 

Displacements and stresses of various laminate configurations obtained by using present theory 

(SSNPT) are compared with those obtained by classical plate theory (CPT), FSDT of Mindlin 

(1951), HSDT of Reddy (1984), exact 3D solution given by Pagano (1969). When FSDT is used, a 

shear correction factor K has been introduced equal to 5/6.The displacements and stresses are 

obtained at typical important locations and presented in the following non-dimensional form. 
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          

          

(46) 

The through-the-thickness profiles for in-plane displacement ( u ), in-plane normal stress (
x ) 

and transverse shear stress ( zx ) for laminated and sandwich plates subjected to sinusoidally  

distributed load (SDL) and uniformly distributed load (UDL) are obtained at the following 

locations (shown in brackets) 

 0,u x z ,     / 2,x x a z     and    0,zx x z                (47) 

 

 

Table 1 Elastic properties of materials 

Material 1 2 3 4 5 6 

E1 (GPa) 172.5 181 224.25 131.1 0.002208 0.04 

E2 (GPa) 6.9 10.3 6.9 6.9 0.002001 0.04 

E3 (GPa) 6.9 10.3 6.9 6.9 27.60 0.5 

G12 (GPa) 3.45 7.17 56.58 3.588 0.1656 0.016 

G13 (GPa) 3.45 7.17 56.58 3.588 5.451 0.06 

G23 (GPa) 1.38 2.87 1.38 3.088 4.554 0.06 

μ12 0.25 0.25 0.25 0.32 0.99 0.25 

μ13 0.25 0.25 0.25 0.32 0.00003 0.25 

μ23 0.25 0.33 0.25 0.49 0.00003 0.25 

 

 
Plate (a) 

 
Plate (b) 

 
Plate (c) 

 
Plate (d) 

Fig. 3 Laminate configurations 
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Plate (e) 

 
Plate (f) 

 
Plate (g) 

 
Plate (p) 

 
Plate (r) 

 
Plate (s) 

Fig. 3 Continued 

 

 

4.2 Discussion of numerical results 
 

Example 1: In this example cylindrical bending analysis of single layer orthotropic plate 

shown in Fig. 3(a) is carried out. The plate has overall thickness „h‟ and made up of material 1. 

The plate is analyzed for different static loadings (SDL, UDL and PL) as shown in Fig. 2. The non-

dimensional displacements and stresses are reported in Table 2. It is pointed out that the present 

theory predicts excellent values of displacements and stresses compared to those obtained by 3D 

exact solution given by Pagano (1969) when plate is subjected SDL. In case of other static 

loadings (UDL and PL) results obtained by present theory are in good agreement with those given 

by HSDT of Reddy (1984), however, numerical results from Pagano and Wang (1971) are not 

available for the purpose of comparison. 

Example 2: In this example an efficiency of present theory is demonstrated for cylindrical 

bending analysis of two layered (0
0
/90

0
) and four layered (0

0
/90

0
/0

0
/90

0
) anti-symmetric laminated 

composite plates. Figs. 3 (b) and (c) show laminate configurations and distribution of overall 
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Table 2 Comparison of displacements and stresses of single layered (0
0
) orthotropic plates 

a/h Theory Model u (0, -h/2) w  (a/2, 0) x  ( a/2, -h/2) 
zx  (0, 0) 

Sinusoidally distributed load 

4 

Present SSNPT 0.7523 1.9233 14.9471 1.6374 

Reddy (1984) HSDT 0.7397 1.9574 14.5613 1.6725 

Mindlin (1951) FSDT 0.4941 1.7580 9.72682 1.9099 

Kirchhoff CPT 0.4941 0.4915 9.72682 1.9099 

Pagano (1969) Elasticity 0.7215 1.9420 14.4091 1.7314 

10 

Present SSNPT 8.3737 0.7314 66.0994 4.6638 

Reddy (1984) HSDT 8.3539 0.7333 65.7759 4.6768 

Mindlin (1951) FSDT 7.7210 0.6942 60.7927 4.7746 

Kirchhoff CPT 7.7210 0.4915 60.7927 4.7746 

Pagano (1969) Elasticity 8.3140 0.7317 65.7120 4.6826 

100 

Present SSNPT 175522.0 0.4939 6087.28 47.729 

Reddy (1984) HSDT 176115.5 0.4940 6084.32 47.737 

Mindlin (1951) FSDT 176129.5 0.4936 6079.34 47.747 

Kirchhoff CPT 176129.5 0.4915 6079.34 47.747 

Uniformly distributed load 

4 

Present SSNPT 1.0114 2.4069 17.3065 2.5711 

Reddy (1984) HSDT 0.9894 2.4425 17.0148 2.4641 

Mindlin (1951) FSDT 0.6384 2.1860 12.0003 2.9533 

Kirchhoff CPT 0.6384 0.6234 12.0003 2.9533 

10 

Present SSNPT 10.9632 0.9198 80.3520 6.2912 

Reddy (1984) HSDT 10.9249 0.9220 80.0392 6.4799 

Mindlin (1951) FSDT 9.9749 0.8734 75.0022 7.3831 

Kirchhoff CPT 9.9749 0.6234 75.0022 7.3831 

100 

Present SSNPT 9984.65 0.6264 7509.00 73.6407 

Reddy (1984) HSDT 9984.81 0.6264 7505.40 73.6711 

Mindlin (1951) FSDT 9975.03 0.6259 7500.32 73.8323 

Kirchhoff CPT 9974.90 0.6234 7500.22 73.8310 

Patch load 

4 

Present SSNPT 0.0548 0.1638 2.4563 0.1167 

Reddy (1984) HSDT 0.0543 0.1712 2.3096 0.1155 

Mindlin (1951) FSDT 0.0383 0.1621 0.9387 0.1218 

Kirchhoff CPT 0.0383 0.0399 0.9387 0.1218 

10 

Present SSNPT 0.6394 0.0621 8.8783 0.2907 

Reddy (1984) HSDT 0.6383 0.0626 8.5141 0.2919 

Mindlin (1951) FSDT 0.5982 0.0594 5.8667 0.3045 

Kirchhoff CPT 0.5982 0.0399 5.8667 0.3045 

100 

Present SSNPT 598.5865 0.0401 591.6621 3.0375 

Reddy (1984) HSDT 598.6016 0.0401 591.1219 3.0388 

Mindlin (1951) FSDT 598.1996 0.0401 586.6761 3.0448 

Kirchhoff CPT 598.1917 0.0399 586.6696 3.0448 
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Table 3 Comparison of displacements and stresses of two layered (0
0
/90

0
) anti-symmetric laminated 

composite plates 

a/h Theory Model u (0, -h/2) w (a/2, 0) x ( a/2, -h/2) 
zx (0, -0.24h) 

Sinusoidally distributed load 

4 

Present SSNPT 1.7155 4.3904 33.855 2.9900 

Reddy (1984) HSDT 1.7071 4.4444 33.606 2.9770 

Mindlin (1951) FSDT 1.4176 4.7900 27.905 2.9468 

Kirchhoff CPT 1.4176 2.6188 27.905 2.9468 

Pagano (1969) Elasticity 1.5500 4.3276 30.029 2.7000 

10 

Present SSNPT 22.892 2.9066 180.66 7.3879 

Reddy (1984) HSDT 22.886 2.9159 180.20 7.3780 

Mindlin (1951) FSDT 22.150 2.9662 174.40 7.3670 

Kirchhoff CPT 22.150 2.6188 174.40 7.3670 

Pagano (1969) Elasticity 23.423 2.9569 175.00 7.3000 

100 

Present SSNPT 22137.74 2.6198 17470.0 73.743 

Reddy (1984) HSDT 22158.77 2.6219 17447.0 73.674 

Mindlin (1951) FSDT 22151.56 2.6224 17441.4 73.674 

Kirchhoff CPT 22205.98 2.6188 17441.4 73.674 

Uniformly distributed load 

4 

Present SSNPT 2.2640 5.5166 40.5293 5.0804 

Reddy (1984) HSDT 2.2534 5.5817 40.2535 5.0008 

Mindlin (1951) FSDT 1.8315 6.0002 34.4272 4.5567 

Kirchhoff CPT 1.8315 3.3216 34.4272 4.5567 

10 

Present SSNPT 29.7435 3.6769 221.5495 11.5918 

Reddy (1984) HSDT 29.7327 3.6883 221.0314 11.5446 

Mindlin (1951) FSDT 28.6165 3.7502 215.1701 11.3918 

Kirchhoff CPT 28.6165 3.3216 215.1701 11.3918 

100 

Present SSNPT 28602.04 3.3227 21552.17 114.0521 

Reddy (1984) HSDT 28629.14 3.3254 21523.89 113.9404 

Mindlin (1951) FSDT 28617.95 3.3260 21518.13 113.9230 

Kirchhoff CPT 28688.27 3.3216 21517.03 113.9184 

Patch load 

4 

Present SSNPT 0.1290 0.3726 4.6914 0.1894 

Reddy (1984) HSDT 0.1284 0.3791 4.7085 0.1891 

Mindlin (1951) FSDT 0.1098 0.4219 2.6929 0.1879 

Kirchhoff CPT 0.1101 0.2124 2.6929 0.1879 

10 

Present SSNPT 1.7628 0.2396 20.4896 0.4728 

Reddy (1984) HSDT 1.7628 0.2406 20.4318 0.4720 

Mindlin (1951) FSDT 1.7161 0.2459 16.8307 0.4698 

Kirchhoff CPT 1.7204 0.2124 16.8307 0.4698 

100 

Present SSNPT 1715.033 0.2125 1690.7250 4.7033 

Reddy (1984) HSDT 1716.668 0.2127 1688.3180 4.6988 

Mindlin (1951) FSDT 1716.212 0.2128 1683.1380 4.6982 

Kirchhoff CPT 1720.425 0.2124 1683.0700 4.6979 
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Table 4 Comparison of displacements and stresses of four layered (0
0
/90

0
/0

0
/90

0
) anti-symmetric laminated 

composite plates 

a/h Theory Model u (0, -h/2) w (a/2, 0) x ( a/2, -h/2) 
zx (0, -0.1h) 

Sinusoidally distributed load 

4 

Present SSNPT 1.2298 3.3416 24.2756 2.2025 

Reddy (1984) HSDT 1.2127 3.3438 23.8705 2.2091 

Mindlin (1951) FSDT 0.8700 3.2962 17.1247 2.2821 

Kirchhoff CPT 0.8722 1.1250 17.1247 2.2821 

10 

Present SSNPT 14.4884 1.4857 114.357 5.6715 

Reddy (1984) HSDT 14.4656 1.4864 113.897 5.6734 

Mindlin (1951) FSDT 13.5933 1.4724 107.029 5.7054 

Kirchhoff CPT 13.6274 1.1250 107.029 5.7054 

100 

Present SSNPT 13575.31 1.1264 10713.94 57.0612 

Reddy (1984) HSDT 13602.34 1.1286 10710.02 57.0514 

Mindlin (1951) FSDT 13593.63 1.1285 10703.17 57.0548 

Kirchhoff CPT 13627.41 1.1250 10702.94 57.0548 

Uniformly distributed load 

4 

Present SSNPT 1.6454 4.1737 28.4633 3.7133 

Reddy (1984) HSDT 1.6222 4.1744 28.0294 3.6618 

Mindlin (1951) FSDT 1.1239 4.1055 21.1274 3.5289 

Kirchhoff CPT 1.1267 1.4269 21.1274 3.5289 

10 

Present SSNPT 18.9205 1.8722 139.4595 8.4872 

Reddy (1984) HSDT 18.8824 1.8731 138.9880 8.5055 

Mindlin (1951) FSDT 17.5615 1.8555 132.0461 8.8223 

Kirchhoff CPT 17.6055 1.4269 132.0461 8.8223 

100 

Present SSNPT 17540.51 1.4286 13216.65 88.1829 

Reddy (1984) HSDT 17575.30 1.4314 13211.91 88.1767 

Mindlin (1951) FSDT 17561.83 1.4312 13204.90 88.2249 

Kirchhoff CPT 17605.47 1.4269 13204.61 88.2249 

Patch load 

4 

Present SSNPT 0.0906 0.2915 4.0039 0.1426 

Reddy (1984) HSDT 0.0894 0.2934 3.9833 0.1424 

Mindlin (1951) FSDT 0.0674 0.3008 1.6526 0.1455 

Kirchhoff CPT 0.0676 0.0912 1.6526 0.1455 

10 

Present SSNPT 1.1095 0.1253 14.6558 0.3579 

Reddy (1984) HSDT 1.1084 0.1255 14.5304 0.3579 

Mindlin (1951) FSDT 1.0532 0.1248 10.3287 0.3638 

Kirchhoff CPT 1.0558 0.0912 10.3287 0.3638 

100 

Present SSNPT 1051.63 0.0914 1039.746 3.6368 

Reddy (1984) HSDT 1053.73 0.0916 1039.031 3.6365 

Mindlin (1951) FSDT 1053.17 0.0916 1032.888 3.6383 

Kirchhoff CPT 1055.79 0.0912 1032.869 3.6383 
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Table 5 Comparison of displacements and stresses of three layered (0
0
/90

0
/0

0
) symmetric laminated 

composite plates 

a/h Theory Model u (0, -h/2) w (a/2, 0) x ( a/2, -h/2) 
zx (0, 0) 

Sinusoidally distributed load 

4 

Present SSNPT 0.8885 2.7342 17.5753 1.5278 

Reddy (1984) HSDT 0.8640 2.6985 17.0063 1.5565 

Mindlin (1951) FSDT 0.5124 2.4094 10.0854 1.7690 

Kirchhoff CPT 0.5124 0.5097 10.0854 1.7690 

Pagano (1969) Elasticity 0.9500 2.8870 17.9500 1.4300 

10 

Present SSNPT 8.9765 0.8802 70.8563 4.3214 

Reddy (1984) HSDT 8.9197 0.8738 70.2307 4.3342 

Mindlin (1951) FSDT 8.0057 0.8136 63.0339 4.4226 

Kirchhoff CPT 8.0057 0.5097 63.0339 4.4226 

Pagano (1969) Elasticity 9.1850 0.8900 71.5000 4.2500 

100 

Present SSNPT 8003.87 0.5127 6312.71 44.2092 

Reddy (1984) HSDT 8014.88 0.5133 6310.65 44.2172 

Mindlin (1951) FSDT 8005.65 0.5127 6303.38 44.2260 

Kirchhoff CPT 8005.65 0.5097 6303.38 44.2260 

Uniformly distributed load 

4 

Present SSNPT 1.1930 3.3916 20.3081 1.7602 

Reddy (1984) HSDT 1.1600 3.3664 19.6888 1.8298 

Mindlin (1951) FSDT 0.6619 2.9902 12.4428 2.7355 

Kirchhoff CPT 0.6619 0.6464 12.4428 2.7355 

10 

Present SSNPT 11.7920 1.1044 85.6845 6.0143 

Reddy (1984) HSDT 11.7075 1.0963 85.0477 6.0887 

Mindlin (1951) FSDT 10.3426 1.0214 77.7673 6.8388 

Kirchhoff CPT 10.3426 0.6464 77.7673 6.8388 

100 

Present SSNPT 10342.85 0.6501 7786.573 68.2126 

Reddy (1984) HSDT 10356.90 0.6509 7784.159 68.2428 

Mindlin (1951) FSDT 10342.64 0.6502 7776.720 68.3877 

Kirchhoff CPT 10342.64 0.6464 7776.720 68.3877 

Patch load 

4 

Present SSNPT 0.0645 0.2338 2.8058 0.1082 

Reddy (1984) HSDT 0.0628 0.2358 2.7521 0.1081 

Mindlin (1951) FSDT 0.0397 0.2247 0.9733 0.1128 

Kirchhoff CPT 0.0397 0.0413 0.9733 0.1128 

10 

Present SSNPT 0.6817 0.0757 9.8016 0.2728 

Reddy (1984) HSDT 0.6783 0.0754 9.6201 0.2729 

Mindlin (1951) FSDT 0.6202 0.0707 6.0830 0.2820 

Kirchhoff CPT 0.6202 0.0413 6.0830 0.2820 

100 

Present SSNPT 619.9702 0.0400 615.3944 2.8137 

Reddy (1984) HSDT 620.8328 0.0417 614.7140 2.8149 

Mindlin (1951) FSDT 620.2444 0.0416 608.2980 2.8203 

Kirchhoff CPT 620.2444 0.0413 608.2980 2.8203 
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Table 6 Comparison of displacements and stresses of four layered (0
0
/90

0
/90

0
/0

0
) symmetric laminated 

composite plates 

a/h Theory Model u (0, -h/2) w (a/2, 0) x ( a/2, -h/2) 
zx (0, 0) 

Sinusoidally distributed load 

4 

Present SSNPT 1.0957 2.7530 15.2548 1.5687 

Reddy (1984) HSDT 1.0790 2.7293 14.9452 1.5777 

Mindlin (1951) FSDT 0.7961 2.0912 11.0267 1.6546 

Kirchhoff CPT 0.7961 0.7919 11.0267 1.6546 

10 

Present SSNPT 13.1301 1.1086 73.2341 4.1007 

Reddy (1984) HSDT 13.1589 1.1074 72.9052 4.1053 

Mindlin (1951) FSDT 12.4391 0.9998 68.9171 4.1366 

Kirchhoff CPT 12.4391 0.7919 68.9171 4.1366 

100 

Present SSNPT 12414.10 0.7930 6898.142 41.3518 

Reddy (1984) HSDT 12446.88 0.7951 6896.028 41.3643 

Mindlin (1951) FSDT 12439.09 0.7940 6891.714 41.3656 

Kirchhoff CPT 12439.09 0.7919 6891.714 41.3656 

Uniformly distributed load 

4 

Present SSNPT 1.4648 3.4354 17.9237 2.3734 

Reddy (1984) HSDT 1.4401 3.4033 17.6119 2.3250 

Mindlin (1951) FSDT 1.0285 2.6074 13.6041 2.5586 

Kirchhoff CPT 1.0285 1.0044 13.6041 2.5586 

10 

Present SSNPT 17.1903 1.3986 89.3921 6.0174 

Reddy (1984) HSDT 17.1607 1.3939 89.0567 6.0575 

Mindlin (1951) FSDT 16.0703 1.2609 85.0255 6.3965 

Kirchhoff CPT 16.0703 1.0044 85.0255 6.3965 

100 

Present SSNPT 16039.93 1.0057 8509.589 63.8913 

Reddy (1984) HSDT 16082.14 1.0084 8507.056 63.9154 

Mindlin (1951) FSDT 16070.26 1.0069 8502.562 63.9646 

Kirchhoff CPT 16070.26 1.0044 8502.562 63.9646 

Patch load 

4 

Present SSNPT 0.0809 0.2404 2.5097 0.1023 

Reddy (1984) HSDT 0.0798 0.2409 2.4272 0.1023 

Mindlin (1951) FSDT 0.0617 0.1896 1.0641 0.1055 

Kirchhoff CPT 0.0617 0.0642 1.0641 0.1055 

10 

Present SSNPT 1.0097 0.0943 9.2962 0.2572 

Reddy (1984) HSDT 1.0093 0.0941 9.1016 0.2577 

Mindlin (1951) FSDT 0.9637 0.0843 6.6507 0.2638 

Kirchhoff CPT 0.9637 0.0642 6.6507 0.2638 

100 

Present SSNPT 961.685 0.0644 669.122 2.6350 

Reddy (1984) HSDT 964.233 0.0645 668.667 2.6360 

Mindlin (1951) FSDT 963.727 0.0644 665.073 2.6378 

Kirchhoff CPT 963.727 0.0642 665.073 2.6378 
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Table 7 Comparison of displacements and stresses of five layered (0
0
/90

0
/0

0
/90

0
/0

0
) symmetric laminated 

composite plates 

a/h Theory Model u (0, -h/2) w (a/2, 0) x ( a/2, -h/2) 
zx (0, 0) 

Sinusoidally distributed load 

4 

Present SSNPT 0.8893 2.5673 17.5614 1.5044 

Reddy (1984) HSDT 0.8791 2.5872 17.3034 1.5078 

Mindlin (1951) FSDT 0.6174 2.6139 12.1537 1.6533 

Kirchhoff CPT 0.6174 0.6142 12.1537 1.6533 

Pagano (1969) Elasticity 0.9509 3.0440 18.4615 --- 

10 

Present SSNPT 10.3246 0.9324 81.4962 4.0686 

Reddy (1984) HSDT 10.3183 0.9380 81.2431 4.0735 

Mindlin (1951) FSDT 9.6474 0.9341 75.9605 4.1332 

Kirchhoff CPT 9.6716 0.6142 75.9605 4.1332 

100 

Present SSNPT 9633.854 0.6161 7602.827 41.3212 

Reddy (1984) HSDT 9654.246 0.6174 7601.430 41.3263 

Mindlin (1951) FSDT 9647.451 0.6174 7596.080 41.3305 

Kirchhoff CPT 9671.590 0.6142 7596.080 41.3305 

Uniformly distributed load 

4 

Present SSNPT 1.1907 3.1932 20.5494 2.3808 

Reddy (1984) HSDT 1.1738 3.2255 20.3076 2.3018 

Mindlin (1951) FSDT 0.7977 3.2462 14.9944 2.5565 

Kirchhoff CPT 0.7997 0.7790 14.9944 2.5565 

10 

Present SSNPT 13.4906 1.1719 99.3115 5.8002 

Reddy (1984) HSDT 13.4739 1.1789 99.0537 5.8098 

Mindlin (1951) FSDT 12.4636 1.1737 93.7152 6.3913 

Kirchhoff CPT 12.4949 0.7790 93.7152 6.3913 

100 

Present SSNPT 12447.91 0.7813 9378.722 63.8002 

Reddy (1984) HSDT 12474.18 0.7830 9377.051 63.8148 

Mindlin (1951) FSDT 12463.70 0.7829 9371.564 63.9107 

Kirchhoff CPT 12494.88 0.7790 9371.564 63.9107 

Patch load 

4 

Present SSNPT 0.0654 0.2268 2.9008 0.1002 

Reddy (1984) HSDT 0.0648 0.2276 2.7327 0.1010 

Mindlin (1951) FSDT 0.0478 0.2428 1.1729 0.1054 

Kirchhoff CPT 0.0480 0.0498 1.1729 0.1054 

10 

Present SSNPT 0.7900 0.0799 10.5489 0.2530 

Reddy (1984) HSDT 0.7899 0.0803 10.2789 0.2548 

Mindlin (1951) FSDT 0.7474 0.0807 7.3304 0.2636 

Kirchhoff CPT 0.7493 0.0498 7.3304 0.2636 

100 

Present SSNPT 746.2938 0.0501 738.1019 2.6314 

Reddy (1984) HSDT 747.8774 0.0501 737.7702 2.6320 

Mindlin (1951) FSDT 747.4434 0.0501 733.0467 2.6356 

Kirchhoff CPT 749.3135 0.0498 733.0467 2.6356 

133



 

 

 

 

 

 

Atteshamuddin S. Sayyad and Yuwaraj M. Ghugal 

Table 8 Comparison of displacements and stresses of five layered (90
0
/0

0
/0

0
/90

0
/0

0
) arbitrary laminated 

composite plates 

a/h Theory Model u (0, -h/2) w (a/2, 0) x ( a/2, -h/2) 
zx (0, 0) 

Sinusoidally distributed load 

4 

Present SSNPT 0.7063 1.0028 0.5712 1.9474 

Reddy (1984) HSDT 0.6976 0.9812 0.5492 1.9525 

Mindlin (1951) FSDT 0.6173 0.9342 0.4861 1.9767 

Kirchhoff CPT 0.6173 0.6088 0.4861 1.9767 

10 

Present SSNPT 9.8523 0.6703 3.0993 4.9302 

Reddy (1984) HSDT 9.8471 0.6686 3.1013 4.9319 

Mindlin (1951) FSDT 9.6457 0.6608 3.0379 4.9416 

Kirchhoff CPT 9.6458 0.6088 3.0379 4.9416 

100 

Present SSNPT 9631.7500 0.6083 301.1299 49.4171 

Reddy (1984) HSDT 9648.5190 0.6094 303.8768 49.4192 

Mindlin (1951) FSDT 9645.2670 0.6093 303.7744 49.4222 

Kirchhoff CPT 9645.7660 0.6088 303.7901 49.4222 

Uniformly distributed load 

4 

Present SSNPT 0.9368 1.2502 0.6835 2.7554 

Reddy (1984) HSDT 0.9184 1.2321 0.6635 2.8250 

Mindlin (1951) FSDT 0.7975 1.1736 0.5997 3.0566 

Kirchhoff CPT 0.7975 0.7721 0.5997 3.0566 

10 

Present SSNPT 12.7886 0.8480 3.8047 7.4271 

Reddy (1984) HSDT 12.7709 0.8460 3.8125 7.5023 

Mindlin (1951) FSDT 12.4615 0.8364 3.7480 7.6414 

Kirchhoff CPT 12.4615 0.7721 3.7480 7.6414 

100 

Present SSNPT 12443.98 0.7715 371.4964 76.3974 

Reddy (1984) HSDT 12465.58 0.7729 374.8915 76.4026 

Mindlin (1951) FSDT 12460.88 0.7727 374.7771 76.4212 

Kirchhoff CPT 12460.88 0.7721 374.7771 76.4212 

Patch load 

4 

Present SSNPT 0.0534 0.0847 0.1041 0.1217 

Reddy (1984) HSDT 0.0529 0.0845 0.0825 0.1224 

Mindlin (1951) FSDT 0.0478 0.0808 0.0469 0.1260 

Kirchhoff CPT 0.0478 0.0494 0.0469 0.1260 

10 

Present SSNPT 0.7602 0.0552 0.3743 0.3077 

Reddy (1984) HSDT 0.7601 0.0551 0.3434 0.3111 

Mindlin (1951) FSDT 0.7473 0.0544 0.2932 0.3151 

Kirchhoff CPT 0.7473 0.0494 0.2932 0.3151 

100 

Present SSNPT 746.1965 0.0494 29.1314 3.1506 

Reddy (1984) HSDT 747.5002 0.0494 29.3755 3.1509 

Mindlin (1951) FSDT 747.2731 0.0494 29.3155 3.1517 

Kirchhoff CPT 747.2731 0.0494 29.3155 3.1517 
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Table 9 Comparison of displacements and stresses of three layered (0
0
/core/0

0
) symmetric sandwich plates 

a/h Theory Model u (0, -h/2) w (a/2, 0) x ( a/2, -h/2) 
zx (0, 0) 

Sinusoidally distributed load 

4 

Present SSNPT 1.8901 8.4532 28.9670 1.3841 

Reddy (1984) HSDT 1.9081 8.5369 28.6061 1.3855 

Mindlin (1951) FSDT 1.3295 5.4694 19.9320 1.4089 

Kirchhoff CPT 1.3295 1.3225 19.9320 1.4089 

10 

Present SSNPT 22.0925 2.4739 133.7540 3.5122 

Reddy (1984) HSDT 22.2353 2.4889 133.3406 3.5128 

Mindlin (1951) FSDT 20.7736 1.9860 124.5752 3.5223 

Kirchhoff CPT 20.7736 1.3225 124.5752 3.5223 

100 

Present SSNPT 20680.22 1.3272 12477.56 35.2203 

Reddy (1984) HSDT 20788.46 1.3342 12466.41 35.2221 

Mindlin (1951) FSDT 20773.27 1.3291 12457.30 35.2216 

Kirchhoff CPT 20773.27 1.3225 12457.30 35.2216 

Uniformly distributed load 

4 

Present SSNPT 2.5545 10.5016 33.7147 2.4767 

Reddy (1984) HSDT 2.5717 10.5978 33.3963 2.3642 

Mindlin (1951) FSDT 1.7176 6.7935 24.5909 2.1786 

Kirchhoff CPT 1.7176 1.6774 24.5909 2.1786 

10 

Present SSNPT 28.8841 3.0984 163.0148 5.3152 

Reddy (1984) HSDT 29.0666 3.1170 162.5669 5.3305 

Mindlin (1951) FSDT 26.8378 2.4960 153.6930 5.4466 

Kirchhoff CPT 26.8378 1.6774 153.6930 5.4466 

100 

Present SSNPT 26720.74 1.6830 15392.13 54.4470 

Reddy (1984) HSDT 26860.67 1.6918 15378.42 54.4506 

Mindlin (1951) FSDT 26837.32 1.6855 15369.02 54.4643 

Kirchhoff CPT 26837.32 1.6774 15369.02 54.4643 

Patch load 

4 

Present SSNPT 0.1384 0.7554 5.9734 0.0882 

Reddy (1984) HSDT 0.1399 0.7743 5.5542 0.0883 

Mindlin (1951) FSDT 0.1030 0.5075 1.9235 0.0898 

Kirchhoff CPT 0.1030 0.1073 1.9235 0.0898 

10 

Present SSNPT 1.6915 0.2165 18.7023 0.2215 

Reddy (1984) HSDT 1.7021 0.2184 18.0517 0.2221 

Mindlin (1951) FSDT 1.6095 0.1713 12.0219 0.2246 

Kirchhoff CPT 1.6095 0.1073 12.0219 0.2246 

100 

Present SSNPT 1606.02 0.1078 1211.38 2.2454 

Reddy (1984) HSDT 1610.40 0.1084 1210.05 2.2456 

Mindlin (1951) FSDT 1609.42 0.1079 1202.17 2.2460 

Kirchhoff CPT 1609.42 0.1073 1202.17 2.2460 
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Table 10 Comparison of displacements and stresses of five layered (0
0
/90

0
/core/90

0
/0

0
) symmetric sandwich 

plates 

a/h Theory Model u (0, -h/2) w (a/2, 0) x ( a/2, -h/2) 
zx (0, 0) 

Sinusoidally distributed load 

4 

Present SSNPT 2.19416 10.7889 43.3903 1.3382 

Reddy (1984) HSDT 2.20259 10.9251 43.3562 1.3376 

Mindlin (1951) FSDT 1.76165 7.11890 34.6766 1.3470 

Kirchhoff CPT 1.76165 1.75230 34.6766 1.3469 

10 

Present SSNPT 28.48009 3.1979 225.1449 3.3629 

Reddy (1984) HSDT 28.63345 3.2271 225.4502 3.3623 

Mindlin (1951) FSDT 27.52578 2.6110 216.7288 3.3674 

Kirchhoff CPT 27.52578 1.7523 216.7288 3.3674 

100 

Present SSNPT 27379.71 1.7569 21641.47 33.6837 

Reddy (1984) HSDT 27536.97 1.7671 21681.69 33.6734 

Mindlin (1951) FSDT 27525.88 1.7609 21672.96 33.6739 

Kirchhoff CPT 27525.88 1.7523 21672.88 33.6739 

Uniformly distributed load 

4 

Present SSNPT 2.92799 13.3846 51.5722 2.2126 

Reddy (1984) HSDT 2.93813 13.5511 51.5548 2.1906 

Mindlin (1951) FSDT 2.27590 7.50150 42.7818 2.0828 

Kirchhoff CPT 2.27590 2.2226 42.7818 2.0828 

10 

Present SSNPT 37.06437 4.0061 275.8507 5.1684 

Reddy (1984) HSDT 37.26111 4.0423 276.2472 5.1653 

Mindlin (1951) FSDT 35.56100 3.0672 267.3861 5.2071 

Kirchhoff CPT 35.56100 2.2226 267.3861 5.2071 

100 

Present SSNPT 35375.11 2.2279 26698.03 52.0776 

Reddy (1984) HSDT 35578.27 2.2408 26747.67 52.0622 

Mindlin (1951) FSDT 35561.13 2.2311 26739.46 52.0706 

Kirchhoff CPT 35561.00 2.2226 26738.63 52.0710 

Patch load 

4 

Present SSNPT 0.16375 0.9876 8.0693 0.0854 

Reddy (1984) HSDT 0.16443 1.0042 7.9922 0.0853 

Mindlin (1951) FSDT 0.13649 0.6600 3.3464 0.0859 

Kirchhoff CPT 0.13649 0.1421 3.3464 0.0859 

10 

Present SSNPT 2.19095 0.2807 27.7508 0.2133 

Reddy (1984) HSDT 2.20288 0.2835 27.6826 0.2133 

Mindlin (1951) FSDT 2.13258 0.2250 20.9150 0.2147 

Kirchhoff CPT 2.13258 0.1421 20.9150 0.2147 

100 

Present SSNPT 2121.11 0.1427 2095.533 2.1477 

Reddy (1984) HSDT 2133.29 0.1436 2099.334 2.1470 

Mindlin (1951) FSDT 2132.58 0.1430 2091.511 2.1474 

Kirchhoff CPT 2132.58 0.1421 2091.505 2.1473 
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Table 11 Comparison of displacements and stresses of five layered (0
0
/90

0
/core/0

0
/90

0
) anti-symmetric 

sandwich plates 

a/h Theory Model u (0, -h/2) w (a/2, 0) x ( a/2, -h/2) 
zx (0, 0) 

Sinusoidally distributed load 

4 

Present SSNPT 2.31898 11.4753 45.8549 1.4093 

Reddy (1984) HSDT 2.32380 11.5300 45.7420 1.4091 

Mindlin (1951) FSDT 1.85731 7.3023 36.5596 1.4157 

Kirchhoff CPT 1.85731 1.9358 36.5596 1.4157 

10 

Present SSNPT 30.03568 3.4597 237.4371 3.5346 

Reddy (1984) HSDT 30.19151 3.4772 237.7180 3.5347 

Mindlin (1951) FSDT 29.02044 2.7944 228.4972 3.5394 

Kirchhoff CPT 29.02044 1.9358 228.4972 3.5394 

100 

Present SSNPT 28861.13 1.9392 22812.24 35.3963 

Reddy (1984) HSDT 29032.40 1.9512 22859.14 35.3934 

Mindlin (1951) FSDT 29019.82 1.9443 22849.23 35.3937 

Kirchhoff CPT 29020.44 1.9358 22849.72 35.3942 

Uniformly distributed load 

4 

Present SSNPT 3.09699 14.2369 54.4799 2.3778 

Reddy (1984) HSDT 3.10187 14.3026 54.3845 2.3538 

Mindlin (1951) FSDT 2.39949 9.0762 45.1049 2.1892 

Kirchhoff CPT 2.39949 2.4552 45.1049 2.1892 

10 

Present SSNPT 39.0934 4.3353 290.8927 5.4484 

Reddy (1984) HSDT 39.2909 4.3573 291.2801 5.4461 

Mindlin (1951) FSDT 37.4919 3.5146 281.9054 5.4730 

Kirchhoff CPT 37.4919 2.4552 281.9054 5.4730 

100 

Present SSNPT 37289.17 2.4590 28142.33 54.7261 

Reddy (1984) HSDT 37510.41 2.4743 28200.24 54.7225 

Mindlin (1951) FSDT 37491.18 2.4657 28189.91 54.7301 

Kirchhoff CPT 37491.90 2.4552 28190.54 54.7301 

Patch load 

4 

Present SSNPT 0.17299 1.0516 8.7285 0.0899 

Reddy (1984) HSDT 0.17345 1.0609 8.6450 0.0902 

Mindlin (1951) FSDT 0.14390 0.6749 3.5281 0.0903 

Kirchhoff CPT 0.14390 0.1570 3.5281 0.0903 

10 

Present SSNPT 2.31044 0.3032 29.4328 0.2247 

Reddy (1984) HSDT 2.32273 0.3049 29.3245 0.2246 

Mindlin (1951) FSDT 2.24838 0.2399 22.0507 0.2257 

Kirchhoff CPT 2.24838 0.1570 22.0507 0.2257 

100 

Present SSNPT 2235.87 0.1575 2208.99 2.2569 

Reddy (1984) HSDT 2249.14 0.1585 2213.36 2.2567 

Mindlin (1951) FSDT 2248.33 0.1578 2205.03 2.2570 

Kirchhoff CPT 2248.38 0.1570 2205.07 2.2570 
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Fig. 4 Through thickness variation of in-plane displacement ( u ) at (x=0, z), in-plane normal stress (
x ) 

at (x=a/2, z) and transverse shear stress (
zx ) at (x=0, z) for two layered (0

0
/90

0
) antisymmetric laminated 

composite plates subjected to sinusoidally distributed load (SDL) and uniformly distributed load (UDL) 

 

  
Fig. 5 Through thickness variation of in-plane displacement ( u ) at (x = 0, z), in-plane normal stress (

x ) 

at (x=a/2, z) and transverse shear stress (
zx ) at (x = 0, z) for four layered (0

0
/90

0
/0

0
/90

0
) antisymmetric 

laminated composite plates subjected to sinusoidally distributed load (SDL) and uniformly distributed 

load (UDL) 
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Fig. 5 Continued 

 

  

 

Fig. 6 Through thickness variation of in-plane displacement ( u ) at (x = 0, z), in-plane normal stress (
x ) 

at (x=a/2, z) and transverse shear stress (
zx ) at (x = 0, z) for three layered (0

0
/90

0
/0

0
) symmetric laminated 

composite plates subjected to sinusoidally distributed load (SDL) and uniformly distributed load (UDL) 
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Fig. 7 Through thickness variation of in-plane displacement ( u ) at (x = 0, z), in-plane normal stress (

x ) 

at (x=a/2, z) and transverse shear stress (
zx ) at (x = 0, z) for four layered (0

0
/90

0
/90

0
/0

0
) symmetric 

laminated composite plates subjected to sinusoidally distributed load (SDL) and uniformly distributed 

load (UDL) 

 

  
Fig. 8 Through thickness variation of in-plane displacement ( u ) at (x=0, z), in-plane normal stress 

(
x ) at (x=a/2, z) and transverse shear stress (

zx ) at (x=0, z) for five layered (0
0
/90

0
/0

0
/90

0
/0

0
) sy

mmetric laminated composite plates subjected to sinusoidally distributed load (SDL) and uniformly 

distributed load (UDL) 
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Fig. 8 Continued 

 

  

 
Fig. 9 Through thickness variation of in-plane displacement ( u ) at (x = 0, z), in-plane normal stress (

x ) 

at (x=a/2, z) and transverse shear stress (
zx ) at (x=0, z) for five layered (90

0
/0

0
/0

0
/90

0
/0

0
) arbitrary 

laminated composite plates subjected to sinusoidally distributed load (SDL) and uniformly distributed 

load (UDL) 
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Fig. 10 Through thickness variation of in-plane displacement ( u ) at (x=0, z), in-plane normal stress (
x ) 

at (x=a/2, z) and transverse shear stress (
zx ) at (x=0, z) for three layered (0

0
/core/0

0
) symmetric sandwich 

plates subjected to sinusoidally distributed load (SDL) and uniformly distributed load (UDL) 

 

  
Fig. 11 Through thickness variation of in-plane displacement ( u ) at (x=0, z), in-plane normal str

ess (
x ) at (x=a/2, z) and transverse shear stress (

zx ) at (x=0, z) for five layered (0
0
/90

0
/core 

/90
0
/0

0
) symmetric sandwich plates subjected to sinusoidally distributed load (SDL) and uniformly 

distributed load (UDL) 
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Fig. 11 Continued 

  

  

 

Fig. 12 Through thickness variation of in-plane displacement ( u ) at (x=0, z), in-plane normal stress (
x ) 

at (x=a/2, z) and transverse shear stress (
zx ) at (x=0, z) for five layered (0

0
/90

0
/core/0

0
/90

0
) antisymmetric 

sandwich plates subjected to sinusoidally distributed load (SDL) and uniformly distributed load (UDL) 
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thickness among the layers. Both the plates are made up of orthotropic material 1. The static 

loadings acting on plates are shown in Fig. 2. The comparison of non-dimensional displacements 

and stresses for these plates are presented in Tables 3 and 4.Through thickness distributions of in-

plane displacement at support, normal stress at mid span and transverse shear stress at boundary 

edges under SDL and UDL are plotted in Figs. 4 and 5. It is observed from Table 3 that the results 

obtained using present theory for two layered anti-symmetric laminated composite plates are in 

excellent agreement with respect to those obtained by 3D elasticity solution (Pagano 1969). 

Examination of Table 4 reveals that the present results are in good agreement with those of HSDT 

of Reddy (1984). 

Example 3: To check the efficiency of present theory for symmetric laminates, three different 

problems are considered. Figs. 3 (d), (e) and (f) show the laminate configurations and distributions 

of overall thickness among the layers. In first problem, three layered (0
0
/90

0
/0

0
) symmetric 

laminated composite plate made up of material 1 is analyzed under different static loadings. The 

non-dimensional numerical results are presented in Table 5 and graphically in Fig. 6. In second 

problem, four layered (0
0
/90

0
/90

0
/0

0
) symmetric laminated composite plate made up of material 2 

is analyzed under same loading conditions and obtained results are presented in Table 6 and Fig. 7. 

In the third and the last example of symmetric laminates, five layered (0
0
/90

0
/0

0
/90

0
/0

0
) laminated 

plate made up of material 1 is considered. Results of this plate are shown in Table 7 and Fig. 8. 

The numerical results obtained by using present theory for these problems are compared with 

those generated by using CPT, FSDT of Mindlin (1951) and HSDT of Reddy (1984); and found to 

agree well with those of exact solution wherever applicable. 

Example 4: In this section, an arbitrarily layered laminated composite plate is analyzed using 

present theory. The laminate configurations and distribution of overall thickness among the layers 

(0.1h/0.25h/0.15h/0.2h/0.3h) is shown in Fig. 3(g). The layers are made up of materials 

1/3/1/1/1.Table 8 shows the comparison of non-dimensional displacements and stresses obtained 

by present theory and other theories under various static loadings (SDL, UDL and PL). Through 

thickness distributions of in-plane displacement, in-plane normal stress and transverse shear stress 

are plotted in Fig. 9. Examination of Table 8 reveals that the results obtained by present theory and 

theory of Reddy (1984) are in close agreement with each other. FSDT of Mindlin (1951) and CPT 

underestimate the values of in-plane displacement, transverse displacement and in-plane normal 

stress and overestimate the values of transverse shear stress. 

Example 5: To study the efficiency of the present theory for symmetric sandwich plates under 

cylindrical bending two different problems are solved. In first problem a three layered (0
0
/core/0

0
) 

sandwich plate is considered. The distribution of overall thickness among all the layers as 

(0.1h/0.8h/0.1h) is shown Fig. 3(p). The plate is made up of materials 4/5/4. The non-dimensional 

displacements and stresses are reported in Table 9. Through thickness distributions of in-plane 

displacement, in-plane normal stress and transverse shear stress are plotted in Fig. 10. In second 

problem a five layered (0
0
/90

0
/core/90

0
/0

0
) symmetric sandwich plate is considered. The layers are 

of thickness (0.05h/0.05h/0.8h/0.05h/0.05h) and are made up of materials 1/1/6/1/1. The numerical 

results are reported in Table 10 whereas graphical results are plotted in Fig. 11. Since exact results 

are not available in the literature for these problems, authors have generated the results by using 

CPT, FSDT of Mindlin (1951) and HSDT of Reddy (1984). From the numerical results presented 

in Tables 9 and 10, it is observed that the present theory results are in good agreement with those 

obtained by using HSDT of Reddy. 

Example 6: In this example, efficiency of present theory is checked for anti-symmetric 

sandwich plates. A five layer (0
0
/90

0
/core/0

0
/90

0
) anti-symmetric sandwich plate is analyzed under 
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various static loadings as shown in Fig. 2. The laminate configuration is shown in Fig. 3(s). The 

distribution of overall thickness and material properties are similar to five layer symmetric 

sandwich plate. The numerical results of non-dimensional displacements and stresses are reported 

in Table 11 and through thickness distributions are plotted in Fig. 12. These results are not 

available in the literature and presented for the first time in this paper. To prove the validity of 

present theory similar results are also generated by using CPT, FSDT of Mindlin (1951) and HSDT 

of Reddy (1984). From Table 11 it is seen that the results obtained by present theory and theory of 

Reddy (1984) are in close agreement with each other for all aspect ratios (a/h). 

 
 
5. Conclusions 
 

In the present study, the effect of transverse normal strain on cylindrical bending of 

multilayered laminated composite and sandwich plates is examined. A sinusoidal shear and normal 

deformation plate theory (SSNPT) has been developed for the analysis. The theory is built upon 

the classical plate theory in which in-plane displacement includes the effects of shear deformation 

and transverse displacement includes the effect of transverse normal strain/stress. The theory is 

variationally consistent and obviates the need of shear correction factor. Several problems on 

laminated composite and sandwich plates are solved and obtained results are compared with the 

results available in the literature. For the comparison purpose, the numerical results are also 

generated by using higher order shear deformation theory of Reddy, first-order shear deformation 

plate theory of Mindlin and classical plate theory. From the examples studied it is observed that the 

present theory is in good agreement with the exact theory wherever applicable for predicting the 

static response of laminated composite and sandwich plates under cylindrical bending. The present 

study also successfully presents the unavailable results of sandwich plates which can be served as 

benchmark solutions for future research. Therefore, the present theory is recommended for the 

accurate structural analysis of laminated composite and sandwich plates under cylindrical bending. 
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