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Abstract.  In this paper, the condensation method which is based on the Rayleigh-Ritz method, is described 
for the free vibration analysis of axially loaded slightly curved beams subject to partial axial restraints. If the 
longitudinal inertia is neglected, some of the Rayleigh-Ritz minimization equations are independent of the 
frequency. These equations can be used to formulate a relationship between the weighting coefficients 
associated with the lateral and longitudinal displacements, which leads to “connection coefficient matrix”. 
Once this matrix is formed, it is then substituted into the remaining Rayleigh-Ritz equations to obtain an 
eigenvalue equation with a reduced matrix size. This method has been applied to simply supported and 
partially clamped beams with three different shapes of imperfection. The results indicate that for small 
imperfections resembling the fundamental vibration mode, the sum of the square of the fundamental natural 
and a non-dimensional axial load ratio normalized with respect to the fundamental critical load is 
approximately proportional to the square of the central displacement. 
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1. Introduction 

 

Some eigenvalue problems can be formulated based on variational methods in terms of two or 

more independent field variables but simplifications make it possible to reduce the matrix size by 

formulating the relationship between two or more of the field variables that are independent of the 

eigenvalue and using this relationship in the variational equation. This method has already been 

used in post-buckling and vibration behaviour of in-plane loaded rectangular plates with geometric 

out-of-plane initial imperfections by one of the authors two decades ago (Ilanko and Dickinson 

1987 and Ilanko 2002) but it does not appear to have been widely used since then, possibly 

because the focus of the publications that used this approach were more on the vibratory 

behaviour. This paper shows this method through application to a simpler problem, namely the 

linear eigenvalue equations for the lateral vibration of slightly curved beams. It is shown how the 

Rayleigh-Ritz minimisation, together with the condensation method can be used to find the natural 
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frequencies of slightly curved beams with results for simply supported and clamped beams having 

different shapes of initial imperfection subject to axial force. The beam is assumed to be slender 

and the longitudinal inertia is neglected and the standard assumptions for Euler-Bernoulli beams 

are also made. The Rayleigh-Ritz minimisation equations are obtained in terms of the coordinates 

associated with the two field variables namely, longitudinal and lateral displacements. These 

displacements forms are expressed as a product of a series of admissible functions and 

undetermined weighting coefficients the Rayleigh-Ritz minimisation is first carried out with 

respect to the weighting coefficients. Then the frequency independent equations are solved 

analytically to obtain a relationship between the coefficients associated with the longitudinal and 

lateral displacement series. This relationship is then substituted into the remaining frequency 

dependent Rayleigh-Ritz equations to obtain am eigenvalue equation in which the eigenvectors are 

the lateral displacement coefficients.  

The effect of geometrical imperfections on the flexural natural frequencies of beams has been 

reported in (Kim and Dickinson 1986, Ilanko 1990 and Ilanko and Dickinson 1987). Kim and 

Dickinson (1986) presented experimental and theoretical results for slightly curve beams under 

static axial force. The influence of partial axial end restraints on the natural frequencies of simply 

supported beams using a Newtonian approach is discussed in (Ilanko 1990) In this paper, a general 

procedure based on the Rayleigh-Ritz method is described, for the free vibration analysis of axially 

loaded slightly curved beams subject to partial axial restraints. Initially, both lateral and 

longitudinal dynamic displacements are expressed as the summation of the product of permissible 

functions and undetermined weighting coefficients. The Rayleigh-Ritz minimization equations are 

then obtained by minimizing the Rayleigh quotient with respect to all undetermined coefficients. 

Neglecting the longitudinal inertia of the beam yields some frequency independent equations 

(those obtained by minimizing with respect to the weighting coefficients associated with 

longitudinal motion). This set of equations is then reformulated to obtain the frequency 

independent relationship between the longitudinal and lateral displacement coefficients. This 

approach was used to analyse the post buckling and vibration behaviour of plates (Ilanko and 

Dickinson 1987), in which a matrix called “connection coefficient matrix” gives the relationship 

between the out-of-plane and in-plane displacement coefficients. A similar connection coefficient 

matrix is used in the present work to express the relationship between the longitudinal and lateral 

displacement coefficients. Once this matrix is formed, it is then substituted into the remaining 

Rayleigh-Ritz equations to obtain an eigenvalue equation with a reduced matrix size. This method 

has been applied to simply supported and partially clamped beams with three different shapes of 

imperfection. The results indicate that for small imperfections resembling the fundamental 

vibration mode, the sum of the square of the fundamental natural frequency and a non-dimensional 

axial load ratio normalized with respect to the fundamental critical load is approximately 

proportional to the square of the central displacement. 

 

 

2. Theory 
 

Consider the small amplitude flexural vibration of an axially loaded, partially restrained Euler-

Bernoulli beam with initial curvature v0(x) as shown in Fig. 1. The vibration is assumed to be in 

the plane containing the curvature. The beam has flexural rigidity EI, cross sectional area A, length 

L and density ρ. Let v(x) be the deflected shape of the beam under static compressive axial force P. 

For vibration in a principal mode, the dynamic lateral displacement (measured from the static  

46



 

 

 

 

 

 

Condensation of independent variables in free vibration analysis of curved beams 

 

Fig. 1 Laterally vibrating beam 

 

 

equilibrium position) may be written as v’(x) sin(ωt+β), where ω is a natural frequency. The 

corresponding longitudinal dynamic displacement is u(x) sin(ωt+β). It is assumed that the 

vibration is primarily lateral. 
Let the dynamic displacement measured from the static equilibrium state be 

            1,2..

(  ( ))’
i

i iv x d x


 
 

(1) 

where i(x) are permissible displacement forms that satisfy the geometrical constraints on the 

beam. The maximum total potential energy of the beam is given by  

V = Ub + Ua + Va + Vs + Vb + Ve                                                (2) 

in which the energy terms Ub etc are defined as follows: 

The maximum strain energy due to dynamic bending is  

xx/vEI=U
L

b d))(2/(
222

0                                                   (2a) 

The maximum strain energy associated with the non-flexural axial straining is (Ilanko and 

Dickinson 1987) 

xx/vxv/+ xu/EA=U
L

0a d]))(()[/2(
2

                                       (2b) 

The maximum potential energy due to the static axial force is 

xx/v?P-=V
L

0a d))(/2(
2

                                                       (2c) 

The maximum potential energy due to the longitudinal springs at the ends is 

)()1/2(+)0()1/2( 2
2

2
1 Lukuk=V S                                                (2d) 

For beams partially or fully restrained against rotation the following additional term is need 
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in which, k3, k4 are the rotational stiffnesses of the partial restraints and v’ is the slope of the 
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maximum lateral displacement. By setting these stiffness coefficients to zero or very high values, 

simply supported and laterally clamped boundary conditions may be obtained. 

Ve is the total potential energy of the statically loaded beam at equilibrium.  

Let the dynamic longitudinal displacement at the time of maximum excursion be 

            
   

1,2..

  
m

m mu x x 


 
 

(3) 

Neglecting the longitudinal inertia, the maximum kinetic energy is given by 

T = ω
2
ψ                                                                    (4) 

where ψ is a kinetic energy function which is defined by 

x ’Av1=
L

0
d)/2( 2                                                           (4a) 

Using the Rayleigh-Ritz procedure, the natural frequencies are obtained by solving the 

following equations 

            0 /  mV   (5a) 

        
      2/  /   0i iV d d      

 
(5b) 

If there are nα number of terms in u and nd number of terms in the series for v’, the total number 

of equations is nα+nd. However, the problem can be condensed by solving it in two steps reducing 

the number of eigenvalue equations to nd. 

Eq. (5a) yields a relationship between α and d. This may be written in matrix form as 

{α} = [C] {d}                                                                (6) 

where [C] may be called a connection coefficient matrix since it connects the longitudinal and 

lateral displacement coefficients. Similar matrices have been used in the post-buckling and 

vibration analysis of imperfect plates (Ilanko and Dickinson 1987). Substituting Eq. (6) into Eq. 

(5b) results in an equation of the form 

[K]{d} - ω
2
[M]{d} = {0}                                                      (7) 

where [K] is a stiffness matrix and [M] is a mass matrix.  

The number of simultaneous eigenvalue equations has been reduced from the total number of 

weighting coefficients to the number of coefficients associated with lateral displacement. 

 

 

3. Application 
 

For simply supported beams, the initial imperfection and all lateral deflections may be written 

in the form of a sine series. Initially all series are taken as having infinite number of terms. 

            1,2..
0 ( / )

i
iv a sin i x L



 
 

(8) 

The lateral static deflection is given by (Home and Merchant 1965) 

           1,2..

/( )
i

iv b sin i x L


 
 

(9) 
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where 

 bi = ai/(1-P/Pci)                                                             (9a) 

in which Pci is the i
th
 critical load and is given by  

Pci = EI(iπ/L)
2
                                                             (9b) 

The lateral dynamic deflection at the time of maximum excursion may be written as 

        1,2..

(’ / )
i

iv d sin i x L


 
 

(10) 

The sine functions satisfy the geometrical constraints that the lateral displacement v’=0 at x=0 

and at x=L, and are therefore permissible in a Rayleigh-Ritz formulation. Similarly permissible 

functions are required for the longitudinal displacement u(x). For partially longitudinally restrained 

beams, since no geometrical constraints exist, any continuous function would be permissible. The 

Newtonian approach used in reference (Ilanko and Dickinson 1986) yielded a combination of a 

linear function of x and a sine series. Therefore the same type of functions are used in the present 

analysis. Let 

u(x) = (α1 + α2 x + ∑m=1,2αm+2 sin (mπx/L))                                       (11) 

The maximum strain energy due to dynamic bending is  

di
L

EI
=U i.i3b

24
=1,2.

4

4



                                                     (12a) 

The maximum strain energy due to the non flexural axial straining is 

x
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+
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22
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        (12b) 

The maximum potential energy associated with the axial force is 

di
L

P
-=V i=i

2

a
22

1,2..
4




                                                     (12c) 

The maximum potential energy due to the longitudinal supports is 

))L+(k+k(1/2)(=V
2

212
2
11S                                              (12d) 

The kinetic energy function ψ is 

d
4

AL
= 2

ii


                                                              (13) 

The derivatives of the energy terms with respect to the weighting coefficients are as follows 

∂Ub/∂αm =0; ∂Va/∂αm =0; ∂Vb/∂αm =0; ∂V/∂αm =0, for all m,                       (14a-d) 

∂Ua/∂α1 = 0; ∂VS/∂α1 =(k1 + k2) ∂1 + k2Lα2, for m=1                           (14e, f) 

∂Ua/∂α2 = EAα2L +(EAπ
2
/4L) ∑i i

2
bidi; ∂VS/∂α2 = k2L(α1+α2L) for m = 2,           (14g, h) 

And finally for m>2 
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∂VS/∂αm = 0;                                                             (14i) 

∂Ua/∂αm = EAαm((m-2)
2
π

2
/2L) + ((m-2)EAπ

3
/L

3
)∑j∑iij ∫dibj cos((m-2)πx/L) cos(iπx/L) cos(jπx/L) dx 

 (14j) 

Substituting Eqs. (14a-j) into Eq. (5a) yields the following relationship between α and d 

{α} = [C] {d}                                                              (15) 

where the elements of the connection coefficients matrix [C] are given by 

)EAL)k+k(+Lkk4(

bEAik
=C

21
2

21

i
22

2
1i


,                                           (15a) 

)EAL)Lk+k(+Lkk4(

bEAi)k+k(
=C

21
2

21

i
22

21
2i


_ ,                                       (15b) 

and for m>2 

Cmi = -(2πi/(m-2)L
2
)∑j j bj ∫ cos((m-2) πx/L) cos(iπx/L) cos(jπx/L) dx,              (15c) 

In all derivations up to Eq. (14j), the deflections were taken as infinite sine series. For actual 

calculations the series may be truncated. If there are nb number of terms in the series for initial 

imperfection (and hence for the static deflection v), and nd terms in the series for v’, then the 

integers j and i in Eq. (15c) would be limited to nb and nd respectively. Since the integral in Eq. 

(15c) would be zero for m-2>nb+nd, the maximum number of longitudinal displacement 

coefficients n may be set to nb+nd+2. [C] is a matrix of size n×nd. 

At this stage minimization with respect to dm may be carried out. This yields 

     d
L2

EIi
=

d

U
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44
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     ∂VS/∂di = ∂ Ve/∂di = 0; (16c, d) 
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Also 

∂ψ/∂di =½ ρAL di                                                         (16g) 

Substituting Eqs. (16a-g) into Eq. (5b) gives 
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Q+  d)
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where 

Q1i = 0                                                                (17a) 

Q2i = ½ EAπ
2
m

2
bi/L                                                      (17b) 

and for m>2 

Qmi = (m-2)i(EAπ
3
/L

3
)∑jj bj∫0

L
cos((m-2)πx/L)cos(jπx/L)cos(iπx/L) dx             (17c) 

Substituting Eq. (15) into the above equation, and some lengthy algebraic and trigonometrical 

manipulations result in the following equation 

(EI(iπ/L)
4
 - (iπ/L)

2
P - ρAω

2
) di + ke (π

4
/2L

3
) bi i

2
 ∑j=1,2..j

2
bjdj = 0, (18) 

where ke is an effective end stiffness parameter given by  

ke = 1/(1/k1+1/k2+L/(EA))                                                   (18a) 

Eq. (18) may be written in matrix form as 

[K]{d}-ω
2
[M]{d} = {0}                                                    (19) 

where Kij=ke(i
2
j
2
π

4
/2L

3
)bibj +Rij, in which Rij=0 if i≠j, and Rii=EI(iπ/L)

4
-(iπ/L)

2
 P 

The mass matrix [M] is diagonal. All of its diagonal elements are given by 

 Mii =ρA                                                                   (20) 

If [K]-ω
2
[M]=[G], where [G] is a dynamic stiffness matrix, then for non-trivial solution  

 det[G] = 0                                                                 (21) 

This is the frequency equation. For an initial imperfection in the form of a buckling mode 

sin(iπx/L), the stiffness matrix would also be diagonal. This leads to the following expression for 

the natural frequency 

 (ωi/Ωi)
2
 = 1-(P/Pci) + ½ ke’(bi/r)

2
                                               (22) 

where Ωi is the i
th
 natural frequency of a stress free straight beam and is given by 

Ωi =(iπ/L)
2
r(E/ρ)

½
, r is the radius of gyration about the relevant neutral axis, and ke’ is a non-

dimensional effective end stiffness parameter given by ke’=keL/(EA).  

The slope of the straight line representing the relationship between (ωi/Ωi)
2
 + (P/Pci) and (bi/r)

2
 

is ke’/2 and not ke’/(2i
4
) as in (Ilanko and Dickinson 1986) which had an error. 

For initial imperfections of other shapes, the coefficients ai in Eq. (8) are given by 

          0
(2 / ) sin( / )

L

i oa L v i x L dx   
(23) 

The coefficients bi would be obtained from Eqs. (9a), (b). From Eq. (18) it may be noted that 

the stiffness matrix has non-zero off-diagonal terms which means that the simple relationship 
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given by Eq. (22) would no longer be valid. It is however interesting to show how the relationship 

between the frequency and curvature, may be obtained for other types of imperfections. For 

longitudinally fully restrained (i.e., ke=1), simply supported beams, the first frequency 

corresponding is also computed for the other types of imperfection. Labelling the sinusoidal 

imperfection as Type (1), the other types are: 
Type (2): Parabolic imperfection given by v0=4b0(1-x/L)(x/L) 

Type (3): Approximate vibration mode of a clamped beam, v0=b0 (1-cos (2x/L)) 

In both cases, b0 is the magnitude of imperfection at the centre.  
 
 
4. Results and discussion 

 
The variation of the square of the fundamental natural frequency for simply supported beams 

with the square of the magnitude of imperfection at the centre for three cases and sinusoidal shape 

imperfection are presented in Fig. 2(a) and (b), which show the results when P is 0 and P is 80% 

of the first critical buckling load of a simply supported beam respectively. The numerical results 

are also presented in Table 1. While this relationship for the beam with parabolic imperfection is 

approximately linear, for Type (3) imperfection a highly non-linear relationship between the 

frequency squared and the square of central deflection is observed. Type (3) imperfection 

resembles the fundamental vibration mode of a clamped-clamped beam, and is an unusual form for 

a simply supported beam. The parabolic imperfection has a shape similar to the half-sine wave, the 

fundamental mode of simply supported straight beams. The deviation of the results from the linear 

relationship obtained for the sinusoidally curved beams is due to the contribution from other terms 

in the series for v0. For beams that have small imperfections, the relationship may be regarded as 

approximately linear. It is also worth mentioning that in the cases of axially compressed beams, 

the initial imperfection increases with axial load, and tends to take the shape of the first buckling 

mode which is sinusoidal. Therefore the fundamental natural frequencies of axially compressed 

simply supported imperfect beams may be calculated using the simple linear relationship given by 

Eq. (22). 
 

 

 
(a) 

Fig. 2 The frequency–static deflection relationship for a simply supported beam (a) P=0, (b) P=0.8Pc1 
 

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

Sinusoidal

Parobolic

Clamped

 
𝝎𝟏

𝜴𝟏

 
𝟐

 

 𝒃𝟏 𝒓  𝟐 

52



 

 

 

 

 

 

Condensation of independent variables in free vibration analysis of curved beams 

 
(b) 

Fig. 2 Continued 

 
Table 1 The frequency-static deflection relationship for a simply supported beam for P=0, and P=0.8Pc1 

 
        

0 1 4 9 16 25 

 
  

  

 
 

 

P=0 

Sinusoidal 1.0000 1.5321 3.1235 5.7579 9.4052 14.015 

Parabolic 1.0000 1.4996 2.9941 5.4691 8.8985 13.239 

Clamped 1.0000 1.4898 2.8441 4.7657 6.8979 8.9493 

P=0.8Pc1 

Sinusoidal 0.2000 0.7325 2.3299 4.9912 8.7148 13.498 

Parabolic 0.2000 0.7000 2.1997 4.6984 8.1946 12.686 

Clamped 0.2000 0.6994 2.1911 4.6539 8.0484 12.309 

 

 

Results for a beam that is fully laterally restrained against translation, and partially restrained 

against rotation are also obtained. The lateral displacement functions used in the Rayleigh-Ritz 

procedure are sinusoidal and are not valid permissible functions for a clamped-clamped beam. 

However, the frequencies of straight beams increase with rotational end stiffness parameters, and 

asymptotically approach the frequencies of a clamped-clamped beam for very high values of the 

stiffnesses. It should be noted here that with the sinusoidal functions a number of terms need to be 

used in order to obtain results close to those of a clamped-clamped beam. The results 

corresponding these nearly clamped beams for the three different types of imperfection are 

presented in Table 2 and Fig. 3(a) and (b) which show the results when P is 0 and P is 80% of the 

first critical buckling load of a clamped-clamped beam. 

For the nearly clamped beam, the frequency squared - central imperfection squared relationship 

is approximately linear for beams having a sinusoidal and parabolic type imperfections but the 

clamped beam type. The slope of lines is much smaller than that of a simply supported beam case. 

As the axial load increase the lines move closer to each other and become approximately straight 

lines 

Tables 3-8 and Figs. 4-9 show the variation of the sum of the square of the non-dimensional 

natural frequency and the axial load ratio with the square of the non-dimensional amplitude of 

deflection corresponding to the first sinusoidal shape (b1/r). From this, it may be seen that the 
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Table 2 The frequency-static deflection relationship for a clamped beam for P=0, and P=0.8Pc1 

 
        

0 1 4 9 16 25 

 
  

  

 
 

 

P=0 

Sinusoidal 1.0033 1.0979 1.3816 1.8542 2.5152 3.3637 

Parabolic 1.0033 1.0861 1.3341 1.7453 2.3164 3.0424 

Clamped 1.0033 1.1688 1.6520 2.4126 3.3869 4.4941 

P=0.8Pc1 

Sinusoidal 0.2077 0.3015 0.5826 1.0505 1.7045 2.5431 

Parabolic 0.2077 0.2986 0.5707 1.0235 1.6554 2.4641 

Clamped 0.2077 0.3174 0.6462 1.1936 1.9587 2.9402 

 

 
(a)  

 
(b) 

Fig. 3 The frequency-static deflection relationship for a clamped beam (a) P=0, (b) P=0.8Pc1 

 

 

relationship between these two parameters is approximately linear. The linearity is exact for a 
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Table 3 The variation of the sum of the square of the non-dimensional natural frequency and the axial load 

ratio with the square of the non-dimensional amplitude of deflection for the simply supported beam with the 

sinusoidal imperfection 

 
Initial imperfection at the centre 

0.1r 

(b1/r)
2
 0.01 0.04 0.16 0.25 1 4 

(ω1/ Ω1)
2
+(P/ Pc1) 1.0053 1.0213 1.0852 1.1331 1.5326 3.1302 

 0.3r 

(b1/r)
2
 0.09 0.25 1 4 9 36 

(ω1/ Ω1)
2
+(P/ Pc1) 1.0479 1.1331 1.5325 3.1300 5.7926 20.170 

 0.5r 

(b1/r)
2
 0.25 1 4 6.25 25 100 

(ω1/ Ω1)
2
+(P/ Pc1) 1.1331 1.5324 3.1297 4.3276 14.310 54.204 

 

 

Fig. 4 The variation of the sum of the square of the non-dimensional natural frequency and the axial 

load ratio with the square of the non-dimensional amplitude of deflection for the simply supported 

beam with the sinusoidal imperfection 

 
Table 4 The variation of the sum of the square of the non-dimensional natural frequency and the axial load 

ratio with the square of the non-dimensional amplitude of deflection for the simply supported beam with 

Type (2) imperfection 

 
Initial imperfection at the centre 

0.1r 

(b1/r)
2
 0.0107 0.0252 0.0869 0.2663 1.0651 4.2605 

(ω1/ Ω1)
2
+(P/ Pc1) 1.0053 1.0126 1.0435 1.1331 1.5326 3.1302 

 0.3r 

(b1/r)
2
 0.1062 0.2663 1.0651 4.2605 9.5861 38.345 

(ω1/ Ω1)
2
+(P/ Pc1) 1.0531 1.1331 1.5325 3.1300 5.7926 20.170 

 0.5r 

(b1/r)
2
 0.2663 1.0651 4.2605 6.6570 26.628 106.51 

(ω1/ Ω1)
2
+(P/ Pc1) 1.1331 1.5324 3.1297 4.3276 14.310 54.204 

 

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0.1r

0.3r

0.5r

 𝜔
 

𝛺
 

  

+
 
𝑃 𝑃
𝑐 

  

 𝑏 𝑟    

55



 

 

 

 

 

 

Yusuke Mochida and Sinniah Ilanko 

 

Fig. 5 The variation of the sum of the square of the non-dimensional natural frequency and the axial 

load ratio with the square of the non-dimensional amplitude of deflection for the simply supported 

beam with Type (2) imperfection 

 
Table 5 The variation of the sum of the square of the non-dimensional natural frequency and the axial load 

ratio with the square of the non-dimensional amplitude of deflection for the simply supported beam with 

Type (3) imperfection 

 
Initial imperfection at the centre 

0.1r 

(b1/r)
2
 0.0100 0.0450 0.1801 0.3202 0.7205 2.8820 

(ω1/ Ω1)
2
+(P/ Pc1) 1.0050 1.0225 1.0900 1.1601 1.3602 2.4407 

 0.3r 

(b1/r)
2
 0.1013 0.1535 0.2594 1.0375 6.4846 25.938 

(ω1/ Ω1)
2
+(P/ Pc1) 1.0506 1.0766 1.1295 1.5179 4.2361 13.940 

 0.5r 

(b1/r)
2
 0.2493 0.5004 1.1258 4.5032 18.013 72.051 

(ω1/ Ω1)
2
+(P/ Pc1) 1.1242 1.2491 1.5603 3.2404 9.9551 36.668 

 
Table 6 The variation of the sum of the square of the non-dimensional natural frequency and the axial load 

ratio with the square of the non-dimensional amplitude of deflection for the clamped beam with the 

sinusoidal imperfection. 

 
Initial imperfection at the centre 

0.1r 

(b1/r)
2
 0.01 0.04 0.16 0.25 1 4 

(ω1/ Ω1)
2
+(P/ Pc1) 1.0042 1.0145 1.0237 1.0312 1.0988 1.3774 

 0.3r 

(b1/r)
2
 0.09 0.25 1 4 9 36 

(ω1/ Ω1)
2
+(P/ Pc1) 1.0118 1.0340 1.1034 1.3811 1.8465 4.3498 

 0.5r 

(b1/r)
2
 0.25 1 4 6.25 25 100 

(ω1/ Ω1)
2
+(P/ Pc1) 1.0269 1.1049 1.3838 1.5932 3.3362 5.0859 
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Condensation of independent variables in free vibration analysis of curved beams 

 

Fig. 6 The variation of the sum of the square of the non-dimensional natural frequency and the axial 

load ratio with the square of the non-dimensional amplitude of deflection for the simply supported 

beam with Type (3) imperfection 

 

 

Fig. 7 The variation of the sum of the square of the non-dimensional natural frequency and the axial 

load ratio with the square of the non-dimensional amplitude of deflection for the clamped beam with 

the sinusoidal imperfection 

 
Table 7 The variation of the sum of the square of the non-dimensional natural frequency and the axial load 

ratio with the square of the non-dimensional amplitude of deflection for the clamped beam with Type (2) 

imperfection 

 
Initial imperfection at the centre 

0.1r 

(b1/r)
2
 0.0107 0.0426 0.1704 0.2663 1.0651 4.2605 

(ω1/ Ω1)
2
+(P/ Pc1) 1.0041 1.0145 1.0241 1.0319 1.1032 1.3985 

 0.3r 

(b1/r)
2
 0.0959 0.2663 1.0651 4.2605 9.5861 38.345 

(ω1/ Ω1)
2
+(P/ Pc1) 1.0112 1.0334 1.1049 1.3959 1.8864 4.5329 

 0.5r 

(b1/r)
2
 0.2663 1.0651 4.2605 6.6570 26.628 106.51 

(ω1/ Ω1)
2
+(P/ Pc1) 1.0253 1.1039 1.3927 1.6115 3.4437 5.0859 
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Fig. 8 The variation of the sum of the square of the non-dimensional natural frequency and the axial 

load ratio with the square of the non-dimensional amplitude of deflection for the clamped beam with 

Type (2) imperfection 

 
Table 8 The variation of the sum of the square of the non-dimensional natural frequency and the axial load 

ratio with the square of the non-dimensional amplitude of deflection for the clamped beam with Type (3) 

imperfection. 

 
Initial imperfection at the centre 

0.1r 

(b1/r)
2
 0.0100 0.0450 0.1801 0.3202 0.7205 2.8820 

(ω1/ Ω1)
2
+(P/ Pc1) 1.0085 1.0161 1.0275 1.0404 1.0784 1.2847 

 0.3r 

(b1/r)
2
 0.1013 0.1535 0.2594 1.0375 6.4846 25.938 

(ω1/ Ω1)
2
+(P/ Pc1) 1.0235 1.0320 1.0451 1.1265 1.6642 3.5312 

 0.5r 

(b1/r)
2
 0.2493 0.5004 1.1258 4.5032 18.013 72.051 

(ω1/ Ω1)
2
+(P/ Pc1) 1.0460 1.0803 1.1512 1.5013 2.8359 5.0859 

 

 
Fig. 9 The variation of the sum of the square of the non-dimensional natural frequency and the axial 

load ratio with the square of the non-dimensional amplitude of deflection for the clamped beam with 

Type (3) imperfection 
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Condensation of independent variables in free vibration analysis of curved beams 

For the case of a simply supported beam, the Rayleigh-Ritz procedure described here is more 

tedious than the Newtonian approach. However, as can be seen from the example presented here, it 

is more versatile since it permits inclusion of extra partial (lateral) restraints.  

 

 
4. Conclusions 
 

A Rayleigh-Ritz procedure for calculating the natural frequencies of slightly curved axially 

loaded beams has been presented. It has been shown that, if the longitudinal inertia is neglected, 

some of the Rayleigh-Ritz minimization equations are independent of the frequency. These 

equations can be used to formulate a relationship between the weighting coefficients associated 

with the lateral and longitudinal displacements. Substituting this relationship into the remaining 

minimization equations yields a condensed matrix equation in the standard form of an eigenvalue 

problem. The natural frequencies of the simply supported and partially clamped beams with three 

different shapes of imperfection are obtained using this method. The results indicate that for small 

imperfections, there exists an approximate linear relationship between the square of the 

fundamental natural frequency and the square of the central displacement. 
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