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Abstract.  This work is focused on the definition and the analysis of both complete and incomplete 
similitudes for the dynamic responses of thin shells. Previous numerical and experimental investigations on 
both structural and structural-acoustic systems motivated this further analysis, mainly centred on the 
incomplete (distorted) similitudes. These similitudes and the associated scaling laws are defined by using the 
classical modal approach (CMA) and by invoking also the Energy Distribution Approach (EDA) in order to 
take into account both the cinematic and energetic items. The whole procedure is named SAMSARA: 
Similitude and Asymptotic Models for Structural-Acoustic Research and Applications. A brief summary of 
the procedure is herein given and the attention is paid to the analytical models of thin stiffened and 
unstiffened cylindrical shells. By using the well-known smeared model, the stiffened cylinder equations are 
used as general framework to analyse the possibility to define exact (replicas) or distorted similitudes 
(avatars). Despite the extreme simplicity of the proposed models, the results are really encouraging. The 
final aim is to define equivalent models to be used in laboratory measurements. 
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1. Introduction 

 

All the researchers and analysts, involved in scientific and engineering activities, would like to 

work on prototypes which are able to reproduce the desired behaviour or to modify the scales of 

investigations. In this last case, very large models as well as very small ones could be studied at 

convenient sizes, hopefully keeping the original characteristics.  

This is the reason for which one of the most important branches of the physics and engineering 

studies is related to the similitudes, that is the possibility to work on an artefact able to reproduce a 

given response. It is soon needed a lexical clarification: in the similitude theory the analyst 

translates the same problem on different scales whereas, within the analogies, a given class of 

problems is solved by looking for similar equations. The work by Szucs (1980) remains the main 

reference but further general views of both the similitude and analogies problems are also in Kline 

(1986), Kroes (1989). 

This specific point emerges with even stronger evidence in the field of transportation 

engineering (naval, aerospace, civil and railway ones) where the relative importance of some 
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parameters is a relevant step and thus some experimental investigations on new prototypes are 
highly desired, often mandatory. In this case, it would be often preferred to reduce the original 
sizes so that a laboratory accommodation would be more comfy.  

In the literature, restricting the field to the simulation of the structural components only, it is 
possible to find applications related to the analysis of buckling Frostig and Simitses (2004) and the 
response of beams, plates and shells made of different materials, Rezaeepazhand and Yazdi (2011), 
Rezaeepazhand, Simitses and Starnes (1996), Rezaeepazhand (2008), Singhatanadgid and 
Songkhla (2008), Yazdi and Rezaeepazhand (2010). 

An interesting framework for scaled models, by using the modal approach, is given in Wu 
(2006). In the present work, it is used a generalisation of the modal approach, the Energy 
Distribution Approach (EDA), Mace (2003), which allows this kind of investigation by using the 
classical modal approach (CMA). In fact, the mode shapes and the natural frequencies are used to 
determine the power input and the energy associated to each subsystem belonging to a given 
system. Thus, the similitude can be defined by using relationships among mode shapes, natural 
frequencies, damping loss factors and energies. 

EDA has been already used in order to predict the original and scaled responses of linear 
dynamic systems. In detail, in De Rosa et al. (2011) the case of two plates is presented and in De 
Rosa et al. (2014) the scaling between structural components with different modal density is 
introduced. Recent and successful steps involved simple vibro-acoustic systems: infinite flexural 
cylinder/finite flexural coupled with the internal acoustics, De Rosa et al. (2012). 

The complete procedure is named SAMSARA, Similitude and Asymptotic Models for 
Structural-Acoustic Researches and Applications. 

The focus of this work is just on structural similitudes for cylindrical shells and more 
specifically, it is investigated the possibility to define exact and distorted similitudes and the 
related scaling laws for the analysis of the dynamic response.  

Some highlights about the distribution of the natural frequencies and the forced response are 
given; further, some possibilities to assembly specific distorted models are discussed being these 
latter very interesting from an engineering point of view. Analytical models are used throughout 
the whole work for producing both the original and distorted model responses. 

The results are very encouraging and they represent a good step toward the desired applications 
to laboratory measurements, even if the definition of SAMSARA is far to be considered a 
concluded topic. 

The managements of the symbols is very challenging when working with this kind of problems: 
it is decided, here, to avoid a huge list of symbols and to introduce and define them when used in 
order to guarantee a continuity in the reading of the theoretical developments. 

After these remarks, in Section 2, the equations are defined for both stiffened and unstiffened 
shells. The stiffened models refer to the well-known smeared approximation as in Mikulas and 
McElman (1965) and within the well-known framework defined in Leissa (1973). The same 
approach is used for the unstiffened case. EDA is introduced in Section 3 with some principles for 
defining the complete and distorted similitudes. These are fully defined in Section 4 where some 
choices are also presented in order to generate meaningful engineering models. The results are in 
Section 5 for both cases and in Section 6 some considerations are given about the overall approach 
and possible follow-ups. A concluding summary closes the work in Section 6. 

It has to be highlighted that the work published by Torkamani et al. (2009) is the ideal 
companion of the present developments. 
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Fig. 1 Reference system for the thin shell from Mikulas and McElman (1965) 

 
 

2. Cylinder response 
 

 The linear response of a thin uniform simply supported cylindrical shell can be obtained by 
analytical models, as reported in Mikulas and McElman (1965), Leissa (1973). 

For the developments herein presented, the reference system is reported in Fig. 1, where it is 
considered the stiffened case. In a cylindrical reference system, the x-axis is the longitudinal 
coordinate, while y is the circumferential one; z is always oriented along the outward normal. 

The bases for the associated set of displacements are u, v and w, respectively and they are 
expressed by expanding a given number of radial, NR, and longitudinal components, NL 
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where R and L are the symbols for the radius and the length of the cylinder. 
The general structural solutions can be found by using the Donnell-Mushtari equations, LDM(ω) 
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with or without some modifiers, LMOD(ω), which can refine the representation by adopting an 
improved stress-strain state, Leissa (1973). 

In terms of operators 
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where h is the thickness of the shell; F is a generic excitation vector acting at the point PF(xF, yF). 
It is preferred here to give the due detail to the operator as defined in Mikulas and McElman 

(1965), directly referring to the orthogonally stiffened cylinder, named L(s) (,m,n)



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(5)

where the following dimensionless groups are usually defined 
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;  =

mR

L  
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(7)

The term  is often indicated as . The pedices S and R denote properties belonging to 
circumferential and radial stiffeners, respectively; E, ES and ER are the normal elasticity modules; 
D is the flexural stiffness; G, GS and GR are the shear elasticity modules;  is the Poisson elasticity 
module; IS, IR, JS and JR are the inertia moments; ,  S and  R are the mass densities; l and d are 
the spacing among longitudinal and radial stiffeners (Fig. 1); zS and zR are the distances of 
centroids of the stiffeners from the middle surface of the shell; AS and AR are the section areas of 
the stiffeners. 

The term L
33
(s)  is rather complicated 
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The mass per unit area is M (s) = h
S

A
S

d


R

A
R

l
. 

It is useful to rewrite the operator for the unstiffened case by simply eliminating the presence of 
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the stiffening members in Eq. (5) 
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Even the term uL3,3
 is simplified 

     
L

3,3
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being M (u) = h . It has to be noted that the operators in Eq. (5) and Eq. (9) are both symmetrical. 

More refined models can be computed by introducing the inertial effects, 
M (s)2R2 (1 2 )

E  h
 not 

only in the radial degrees of freedom but also in the longitudinal and tangential ones. This choice 
leads to a complicated interlacing of modes for each frequency. For the unstiffened case, this is 
well reported and discussed in del Rosario and Smith (1996). This refinement of the models is not 
relevant for the present developments and thus it is neglected. 

The analysis of the determinants of the problems in Eq. (5) and Eq. (9) allows determining the 
natural frequencies of the related operators. Thus, looking for similitude models means as first step 
to find the sets of parameters, which are able to get the same or scaled eigenfrequencies. 

It is easy to demonstrate that for stiffened cylinder, the definition of an exact similitude needs 
16 conditions as reported in Torkamani et al. (2009). These become 14 when neglecting the in-
plane stress (Nx, Ny). For the unstiffened cylinder, Eq. (9), they are 6.  

The fulfilment of the 14 (or 6) conditions generates a new cylinder that exactly replicates the 
natural frequencies of the original model. If only one condition is violated, the new cylinder 
reproduces the natural frequencies in an approximated way. 

The cited conditions of perfect similitude are herein reported, by noting also that the symbol g  

is the parameter g in similitude and the associated scaling law is r
g

=
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g
. In both the cases, the 

similitudes of the natural frequencies have to be discussed according with the chosen set of 
parameters and thus is not reported in these initial sets. 

For the stiffened case 
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For the unstiffened case 
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At this point to avoid confusion, it is necessary to introduce and define two terms.  
It is intended as a replica a new cylinder that fulfils all the similitude conditions. In this case, it 

will be shown that all the natural frequencies are scaled by the same parameter: a replica 
represents an exact similitude. 

A distorted similitude, a situation in which at least one of the parameters is not perfectly scaled 
is named as avatar. The main attention of the work is just on the definition of some avatars, since 
the replicas could be very difficult to obtain, as later shown. 

It has to be also highlighted that the natural frequencies are only a part of the response problem. 
A full set of parameters is so needed in order to guarantee that the replicas and/or the avatars allow 
reading also the response and to this aim EDA is invoked. 
 
 
3. Summary of energy distribution approach (EDA) 

 
Full similitudes can be defined by invoking the energy distribution approach, a tool that 

represents a starting point for defining the needed parameters. 
 
3.1 Background 
 
A generic linear structural-acoustic dynamic model can be assembled by using the mode shapes 

and natural frequencies: with these information, the distribution of energy in each subsystem can 
be obtained, being a subsystem defined as a spatial domain characterised by specific waves. Thus, 
the whole system can be thought as an assembly of NS subsystems in which NM modes are 
resonating at each excitation frequency. 

Through the energy influence coefficient matrix, AEIC it is possible to estimate the energy 
unknown vector, E, for a given power input vector, Pinput 
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EDA allows the estimation of such matrix, AEIC. The spatial coupling parameter for the generic 
r-th subsystem is the following 
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     xxxx
x

dkj
r

r
jk )()()(=)(   

 (15)

Here, the term x denotes the generic spatial dependence. The 
jk
(r )  depends on the interaction 

between the global mode shapes, φj and φk, when acting within the r-th subsystem. The global 
mode shapes are considered mass-normalized: the ψjk terms are dimensionless. 

The frequency dependent members are here recalled 
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where the modal frequency dependent receptance for the j-th mode j is given by 

     


j
  =

1


j
2 2  iu 

j


j
2

 
(17)

The terms  and represent generic frequency interval and excitation frequency, respectively; 
the j and j are the natural frequencies and the associated modal damping. The imaginary unit is 
iu.  is the interval in which the system response is analysed for a given excitation. 

The generic cross-modal term, jk, is a frequency integral whose magnitude depends primarily 
on the natural frequencies and the bandwidths of the j-th and k-th modes. For small damping, the 
modal terms can be approximated, (Mace 2003); the auto terms 
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The analysis of the cross terms is rather complicated and two further approximations can be 
used that allow separating the cross terms in large and small terms 
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(20)

In EDA, the loading is assumed to be proportional to mass density with zero cross-spectral 
density, Sf, further, it has to be noted that the units are such that [Sf]=[F LT-1]. The expressions of 
the input power, P into to the q-th subsystem and the kinetic energy, T, for the r-th one subsystem, 
do complete the dynamic set for the analysis 
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3.2 Similitude 

 
It is possible to study any similitude by looking at the variation of the main parameters defined 

in EDA:  involves the natural frequencies and the damping; the  involve the global mode 
shapes; Sf involves the spectrum of the excitation and the mass of the system. 

It is useful to highlight the working hypotheses: 
1. The material constants do not change in the replicas and avatars: any material variation can 

be interpreted as a modification in the distribution of the natural frequencies.  
2. The boundary conditions remain the same in the replicas and avatars.  
3. The global mode shapes remain unaffected: jj  = ; as consequence, one gets that the 

scaled spatial coupling parameters are equal to the original ones: )()( = r
jk

r
jk  .  

4. The structural excitations are concentrated harmonic forces acting at the point generic point 
PF and time t: f(P, ω)=F(ω)δ(P−PF).  

5. The system response is obtained by using real mode shapes and natural frequencies.  
It is desired to have variations of these latters, which can be re-modulated in a univocal way so 

that from the replicas or avatars one can recover the original response. 
The scaled auto and cross-modal frequency response operators are here defined without further 

details and by invoking directly the approximations for the small damping (for the sake of brevity 
the  dependence has also omitted) 
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The excitation is scaled according to its units 

     
S
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= S
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r
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r
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(26)

Through EDA, the relevant scaling laws according to the previous hypotheses are: the natural 

frequencies, r =


j


j

, the damping, r =



, the excitation spectrum, r
F

=
F

F
 and the structural 

mass being: r
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=
M

M
. 
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For the sake of completeness, it is useful to list all the remaining EDA parameters when 
approached with the scaling procedure 
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(27)

The effect of a given damping modification on the parent models can be observed from Eqs. 
(23), (24) and (25). The role of the cross modal terms is not exactly reproduced if rη≠1, even for 
the same distribution of the natural frequencies. This has been already studied and discussed for a 
number of cases, De Rosa et al. (2011, 2012). 

It can be stated now that  
rη≠1: it is impossible to get a replica but only avatars;  
rη=1: replicas do exist and can be found. 
 
 

4. Analysis of shells 
 

It is useful to underline again that as engineering choice, in all this work, it is decided to keep 
the original material constants even in the parent models. In principle, it is possible to include also 
this further degree of freedom but this can lead to a huge subset of parameters to be taken into 
account and/or to mathematical solution impossible to replicate in a lab. In any case all the 
material variations can be interpreted as a modification in the distribution of the natural 
frequencies. 

 
4.1 Unstiffened 

 
In the present development, the cylinder is studied adopting as set of geometrical parameters 

the length, the radius and the thickness (L, R and h), respectively1, Fig. 1.  

Thin shells represent the models under investigations and thus it is assumed that 
h2

12R2
<< 1.  

The field of investigation is restricted to the analysis of the influence of the geometrical 
parameters and the force one, F: a similitude has been searched with this following a set of 
parameters 
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L
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F

F  
(28)

Another key parameter is the ratio of the natural frequencies, which is derived according with 
the other ones 

     j

jr



 =
 

(29)

                                                      
1Here it is preferred L rather than a as symbol for the length. 
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The condition of a perfect similitude in the present hypotheses can be written as follows 
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(30)

It has to remembered that: 
(i) the terms m and n are the mode indexes, Eqs. (1)-(3); the first and second relations preserve 

the sequence on the modes in both the original cylinder and replicas/avatars;  

(ii) the third relation expresses the parameter 
L

Rm
=

 
(the alpha in Eq. (6));  

(iii) the fourth allows keeping the parameter 
2

=
L

Rh
 .   

The first two conditions are respected in any case since the analytical modal expansions are 
interrogated for any of mn-th structural mode. The natural frequencies remain to be discussed.  

In Torkamani et al. (2009) they are assumed such as rω=rhrL
-2, but they represent a very 

simplified model. In Blevins (1987), the natural frequencies for a thin simply supported cylindrical 
shell without axial constraints are simplified and classified as: torsion, axial, radial, bending and 
axial-radial modes. All the natural frequencies scale with rR, that is 

    r = r
R
1

 (31)

with the only exception of the axial-radial ones which - under the hypothesis 2
2

<< n
L
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(32)

These are the distorted natural frequencies 
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(33)

It has to be highlighted that in Eqs. (32) and (33) the modes with n=1 and a generic m are the 
pure bending modes. 

A complete similitude of the original cylinder, a replica, can be obtained by simply selecting 
rh=rL=rR. In this way, all the conditions are satisfied and the natural frequencies rω scaled as rr

-1. 
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This a trivial combination, since the larger (or smaller) cylinder can be rather difficult (or 
impossible) to manufacture due to the thickness values in the replicas. 

Thus, it would be highly efficient to look for an avatar, that is a model in which some 
relaxations in similarity conditions can be applied in order to get a good parent on which perform 
measurements and/or evaluations. 

A generic avatar can be thought as obtained with three different values of the three geometrical 
parameters. This is associated to a superposition of the longitudinal and radial waves completely 
different from the original one. In general, they could not be useful for engineering purposes, but it 
is later discussed a specific case when the three different values are close to a replica. 

A more useful combination can be obtained by imposing that: rL=rR. This is a good engineering 
set of parameters in view of Eq. (33) and one gets 
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(34)

The third condition is a violation of the complete similitude and this expresses the distortion of  
the avatar: the dimensionless parameters   and   are not the same. Thus, the avatar  
cylinder, can be used only in the frequency range where the couple of wave-forms allows the 
following condition 
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(35)

In this case the avatar is a good approximated model for representing the original cylinder 
being valid Eq. (31).  

Thanks to EDA is thus possible to build a similitude for any choice of scaling laws. Table 1 just 
reports one of this for a specific combination. 

In the present developments, the condition rη=1 is preserved in order to reduce the possible 
variation of the avatars and again, to avoid situation in which experimentally difficulties could be 
hard to manage. 

 
 

Table 1 Similitude parameters rL, rR, rh and rF 

Conditions: rL=rR and rη=1 

natural frequencies  1 Rrr  

mass  hRM rrr 2=  

frequency terms Eq. (23), (24), (25) 2

Rrr   

spectral density Eq. (26) 122= 

hRFS rrrr  

input power Eq. (27) 12  hRFP rrrr  

energies Eq. (27) 12  hFT rrr  

response 
M

T
v 2  

22

RFsr rrr   
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Now, an avatar response can be fully defined by using the contents similar to Table 1, which 
reports the most important parameters for the elastic response and the related scaling laws. The 
parameters allow re-modulating the response from the avatars (or replicas) to the original ones, 
since the scaling laws, r, represent the constants to be used to recover the investigated original 
response.  

 
4.2 Stiffened 
 
The main choice for the stiffened cylinder is again to keep the same materials and damping 

constants. The condition of perfect similitudes simplifies as follows 
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(36)

The discussion here is much more complicated even working with the set of Eq. (36). In fact, 
the avatars can be built by using different scaling laws for each class (longitudinal and 
circumferential) and this can be made independently from the skin length, radius and thickness. 
From an engineering point of view rather than investigate the possible solutions in similitude of 
the determinant in Eq. (5), together with conditions in Eq. (36) respected or violated, it is preferred 
to work directly with engineering acceptable solutions. These are discussed in Section 5.2.  

 
 
5. Results 
 

It is useful to report the main parameters used for the numerical interrogations of the test case. 
The number of the radial components has been set to NR=18; the longitudinal are NL=18, too. The 
structural damping is assumed constant, =0.02. All the cylinders are made in aluminium: E=70 
GPa, =0.33, =2750 kg m-3.  

The white-noise structural excitation is located at x=L/4 and y=R/4. The force components are 
Fy=Fz=1. The response is acquired at x=L/7 and y=R/3. 
 

5.1 Unstiffened shell 
 
Three unstiffened cylinders are considered and their sizes are in Table 2. The choice of these is 

made in order to take into account the variations of the main dimensionless groups (and). 
 
 

Table 2 Main geometrical and dimensionless parameters 

Cylinder L R h m 
A 10 m 1 m 1 mm  0.1 10-5 

B 10 m 2 m 1 mm  0.2 2 10-5 

C 5 m 2 m 1 mm  0.4 8 10-5 
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Table 3 Unstiffened avatars 

Avatars rL rR rh m  Figure 

A-Av1 0.5 0.5 1  0.1 2 10-5 2 

A-Av2 0.3 0.3 1  0.1 3.33 10-5 3 

A-Av3 0.3 0.4 0.5  0.133 2.22 10-5 4 

B-Av1 0.5 0.5 1  0.2 4 10-5 5 

B-Av3 0.3 0.4 0.5  0.2667 4.44 10-5 6 

C-Av1 0.5 0.5 1  0.4 16 10-5 7 

C-Av3 0.3 0.4 0.5  0.533 17.76 10-5 8 
 

Fig. 2 Unstiffened cylinder (L=10 m, R=1 m, h=1 mm, rL=rR=0.5, rh=1); upper figure: natural 
frequencies, lower left and right parts: comparisons of the forced responses; avatar: A-Av1 

 
 

The list of avatars is reported in Table 3, which includes the scaling laws, the 
anddimensionless groups and the Figures related to the results. In the avatars, the first letter 
of the acronyms refers to the original cylinder and the last digit denotes the set of scaling laws. 

Each figure of the set related to the unstiffened cylinders presents three charts. The top is 
related to the distribution of the natural frequencies in the original and avatar configurations before 
and after the re-modulation with r. The horizontal axis reports for the first 324 modes 
(combination of 18 radial and 18 longitudinal) the original natural frequencies; the vertical axis 
reports the avatar ones, after re-modulating them. It has be highlighted that the distortion results 
not only in an alteration of the natural frequencies, but in their sequence too. 
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Fig. 3 Unstiffened cylinder (L=10 m, R=1 m, h=1 mm, rL=rR=0.3, rh=1); upper figure: natural 
frequencies, lower left and right parts: comparisons of the forced responses; avatar: A-Av2 
 

 
Fig. 4 Unstiffened cylinder (L=10 m, R=1 m, h=1 mm, rL=0.3, rR=0.4, rh=0.5); upper figure: natural 
frequencies, lower left and right parts: comparisons of the forced responses; avatar: A-Av3 
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Fig. 5 Unstiffened cylinder (L=10 m, R=2 m, h=1 mm, rL=0.5, rR=0.5, rh=1); upper figure: natural 
frequencies, lower left and right parts: comparisons of the forced responses; avatar: B-Av1 
 

 
Fig. 6 Unstiffened cylinder (L=10 m, R=2 m, h=1 mm, rL=0.3, rR=0.4, rh=0.5); upper figure: natural 
frequencies, lower left and right parts: comparisons of the forced responses; avatar: B-Av2 
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Fig. 7 Unstiffened cylinder (L=5 m, R=2 m, h=1 mm, rL=0.5, rR=0.5, rh=1); upper figure: natural 
frequencies, lower left and right parts: comparisons of the forced responses; avatar: C-Av1 
 
 
For this specific item, Eq. (32) and Eq. (33) should be analysed. In fact, the proposed avatars do 

not alter the original distribution only when rL=rR=rh; this is the generation of the replicas and this 
case is not discussed here. 

In case of rh=1, the natural frequencies are well reproduced according to the condition in Eq. 
(35). Figs. 2, 3, 5 and 7 present just these cases in which above a limit frequency, the avatars well 
replicate the original natural frequencies. The diagonal of these log-log charts is reported for the 
sake of convenience. In all other cases, the distortions are greater then the case of rh=1 and they 
are rather also difficult to interpret.   

For all the numerical interrogations concerning the modal expansion, the same convergence is 
guaranteed for all the models (original and avatars). This is well visible in the lower left charts of 
each figure. There, the original and avatar responses are plotted together without any scaling law 
corrections and therefore they work in different frequency ranges.  

The lower right parts of each figure report the original and avatar responses after re-modulating 
this latter with the scaling laws. 

The analysis of the responses starts involving the avatars A-Av1, B-Av1 and C-Av1: in fact, the 
y-axes have the same scaling laws. They all present a frequency, which discriminates the 
applicability of the avatars as before mentioned for the natural frequencies. Among them, the A-
Av1 is the best of the group since its response is related to the most slender one. Furthermore, the 
distortions of both  the  parameters are the smallest. In the responses, one can easily find the 
results of these considerations, being the C-Av1 the worst of the group. 
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The A-Av2, Fig. 3, presents a huge distortion since rL=rR=0.3 and thus the avatar reproduces the 
original response at frequency higher than the interval assured by the given number of modes. 

The most interesting group is A-Av3, B-Av3 and C-Av3. In fact, in principle they are associated 
with high degree of variation of the original cylinders, but at the same time they are very close to a 
replica (rL=rR=rh). Again in this group, C-Av3 is the worst for the reasons already discussed. 

 
5.2 Orthogonally stiffened shell 
 
To take into account the stiffened cylinders, the configurations under investigation are the same 

as Table 2. In this case, a presence of NCR longitudinal and NCL circumferential stiffeners. They 
are set to NCR=8 and NCL=20. The stiffeners material is aluminium, too. The section of these 
beams is rectangular and the areas are 12×17 mm2 and 10×15 mm2, longitudinal and 
circumferential values respectively.  

 
 

Table 4 Stiffened avatars 

Avatars rL rR rh Figure 

A-Av1S 0.5 0.5 1 9 
A-Av2S 0.2 0.2 1 10 
A-Av3S 0.4 0.3 0.5 11 
B-Av1S 0.5 0.5 1 12 
C-Av1S 0.5 0.5 1 13 

 

 
Fig. 8 Unstiffened cylinder (L=5 m, R=2 m, h=1 mm, rL=0.3, rR=0.4, rh=0.5); upper figure: natural 
frequencies, lower left and right parts: comparisons of the forced responses; avatar: C-Av2 
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Fig. 9 Stiffened cylinder (L=10 m, R=1 m, h=1 mm, rL=0.5, rR=0.5, rh=1); upper figure: natural 
frequencies, lower left and right parts: comparisons of the forced responses; avatar: A-Av1S 
 

 
Fig. 10 Stiffened cylinder (L=10 m, R=1 m, h=1 mm, rL=0.2, rR=0.2, rh=1); upper figure: natural 
frequencies, lower left and right parts: comparisons of the forced responses avatar: A-Av2S 
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Fig. 11 Stiffened cylinder (L=10 m, R=1 m, h=1 mm, rL=0.4, rR=0.3, rh=0.5); upper figure: natural 
frequencies, lower left and right parts: comparisons of the forced responses avatar: A-Av3S 
 
 
Even for these configurations, the results presented in Figs. from 9 to 13 are in the same format 

used for the unstiffened cases, that is (i) the distribution of the natural frequencies, (ii) the 
responses before modulation and (iii) after using the scaling laws. 

It is useful to firmly precise that the stiffeners in the avatars presented in Table 4 are scaled 
accordingly with the related directions. This point is later discussed when presenting the final 
comparisons. 

Again, as done before, the A-Av1S, the B-Av1S and C-Av1S allow a joint analysis because they 
use the same scaling laws. In general, the presence of the stiffeners improves the agreement 
between the originals and the avatars, Figs. 9, 12 and 13.  

In fact, the modal density is lower than the unstiffened cases and the regularity of the modes is 
broken from the first natural frequencies. Both these considerations emerge form the well-known 
sequence of modes in the cylindrical shell, Leissa (1973).  

As consequence of these effects, it is now difficult to choose the best avatar in this class since 
all of them replicate rather well the original responses. 

The avatar A-Av2S is investigated just to understand the limits of a configuration in which rL 
and rR are largely reduced; from the comparison of Figs. 3 and 10, it is clear that even in an 
extreme configurations the stiffened cylinder works in an acceptable manner accordingly with the 
previous considerations. 

The avatar A-Av3S is very close to a replica and thus it is able to furnish a good response in a 
wide frequency range keeping the average of the response and respecting the bounds even with a 
high degree of distortion. 
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Fig. 12 Stiffened cylinder (L=10 m, R=2 m, h=1 mm, rL=0.5, rR=0.5, rh=1); upper figure: natural 
frequencies, lower left and right parts: comparisons of the forced responses avatar: B-Av1S 
 

 
Fig. 13 Stiffened cylinder (L=5 m, R=2 m, h=1 mm, rL=0.5, rR=0.5, rh=1); upper figure: natural 
frequencies, lower left and right parts: comparisons of the forced responses avatar: C-Av1S 
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Table 5 Type of avatars 

Avatars rL rR rh NCR, NCL 
A-Av1S 

0.5 0.5 1 

8, 20 
B-Av1S 8, 20 

A-Av1S-II 4, 10 
B-Av1S-II 4, 10 

 

 
Fig. 14 Stiffened cylinders (L=10 m, R=1 m, h=1 mm, rL=0.5, rR=0.5, rh=1); forced responses; avatars: 
A-Av1S and A-Av1S-II 
 

 
Fig. 15 Stiffened cylinders (L=10 m, R=2 m, h=1 mm, rL=0.5, rR=0.5, rh=1); forced responses avatars: 
B-Av1S and B-Av1S-II 
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In all above avatars the areas of the stiffeners are scaled too, according to the scaling laws 
while the number is kept. This choice can create some manufacturing problems as well as the 
variation of the thickness in the skins. For this reason the last two charts involve a comparison of 
the avatars A-Av1S and B-Av1S with another couple of avatars generated by varying the number of 
the stiffeners and keeping the original areas, Table 5. 

Figs. 14 and 15 show the comparison of the original responses for A and B configurations and 
the related avatars obtained by keeping the number of stiffeners or by keeping their areas (and thus 
by changing their number). 

In both the cases, in the first frequency ranges both the avatars give the same and good results. 
In presence of local modes, both the avatars represent good approximations of the response in 
average sense.   

 
 

7. Conclusions 
 

Some analyses of a similitude for thin cylindrical shells are discussed by using analytical 
models and the energy distribution approach. 

It is investigated the modification of the distribution of the natural frequencies as result of a 
modification of the length, radius and thickness of the shells. The material and the damping are 
kept unaltered. The responses of given configurations and the distorted similitude models, named 
avatars, are presented together with the proper scaling laws. The test-case is particularly 
challenging because the cylindrical shells have a well-known complex sequence of structural 
modes. The distorted similitudes alter this sequence among longitudinal and circumferential 
modes. 

In the presented case, the attention is concentrated on the possible choices which allow 
conceiving laboratory models. Thus, configurations with reduced lengths (and radii) are 
investigated while keeping the original thickness. 

It is demonstrated that there is frequency range in which the response of the original and the 
avatar cylinders are the same. The effect of the different choices for the thickness and the length 
(and radius) parameters influence only the first axial-radial modes. 

All results refer to local responses. No average operation is carried out over the structural 
domain. Therefore, the results are compared versus the highest level of complexity. Any average 
could smooth the discrepancy between the original and distorted model.    

The same quality of the results has been obtained for a stiffened cylindrical shell. In a first set 
of results, the stiffeners are scaled in longitudinal, radial and circumferential direction according to 
the analogous laws for the shell. A second set of results is discussed too, in order to simulate a 
more realistic laboratory condition: the section properties of the stiffeners remain unchanged but 
their number is changed in a way to keep constant the total section area of the stiffeners.  

The results are very encouraging for all presented configurations in view of desired laboratory 
measurement campaigns. In addition, the configurations with the stiffeners benefit of their 
stiffening effect of the sequence of the structural modes. 

It is useful to underline that the structural model adopted in the present analysis for the 
stiffened structure is based on the smeared stiffness approach. SAMSARA could be used 
considering also more complex models, able to detect also local modes since it is based on the 
modal decomposition. For the same reason even models made with composite materials can be 
considered. In both the cases, the future tests will reveal the degree of efficacy and accuracy of the 
avatars. 
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