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Abstract.  Simple solutions are obtained for the fuel required by internal combustion engine airplanes on 
trajectories with a constant rate of climb or descent. Three modes of flight are considered: constant speed, 
constant Mach number and constant angle of attack. Starting from the exact solutions of the equations of 
motion for the modes of motion considered, approximate solutions are obtained that are much easier to 
compute while still being quite precise. Simpler formulas are derived for the weight of fuel, speed, altitude, 
horizontal distance, time to climb, and power required. These formulas represent a new important 
contribution since they are fundamental for the analysis of aircraft dynamics and thus have direct 
applications for the analysis of aircraft performances and mission planning. 
 

Keywords:  airplane fuel consumption; airplane equation of motion; climbing airplanes; descending 
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1. Introduction 

 

Building on the work of Labonté (2011), this article presents simple formulas for the amount of 

fuel that propeller driven airplanes, with an internal combustion engine, will use on rectilinear 

climbing and descending trajectories. Our motivation for this study is the necessity of such 

formulas, which are preferably easy to calculate, for automatic mission planning of unmanned 

aerial vehicles (UAVs). Whereas the flight programs of passenger airplanes are fairly 

predetermined and constant from one flight to another, those of UAVs are generally much more 

complex, especially when they are flying in cluttered operational areas and also, they generally 

vary with each mission. Furthermore, it is desirable that UAVs be able to perform on board 

automatic trajectory re-planning in response to unforeseen events. We recall that one of the 

preferred approaches to automatic trajectory planning consists in starting by constructing a 

skeleton trajectory as a continuous sequence of rectilinear segments at various inclinations. In a 

second phase, the connections between these segments are rounded off so that the velocity of a 

vehicle traveling the trajectory is continuous; see for example Judd (2001), Anderson et al. (2005), 

Zheng et al. (2003), Yang and Sukkarieh (2010). Even after this process is completed, most of the 

trajectory will still consist of rectilinear segments. With uneven terrain, the trajectory will have 
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many climbing and descending segments together with some horizontal segments. This is why 

formulas are needed for the power and the fuel required by airplanes to follow arbitrary rectilinear 

segments. These formulas are fundamental for determining whether or not the planned trajectory is 

compatible with the dynamics of the airplane in question.  

An important side benefit of this study is that the formulas obtained are actually applicable to 

all propeller driven aircrafts with internal combustion engines, and thus constitute a valuable tool 

in the analysis of their performance. The importance of flight planning has to be appreciated, even 

for passenger line airplanes. Typical commercial flights are composed of many segments, some 

climbing and descending segments, and some longer essentially horizontal cruising segments. 

Most of the time, the inclined segments are decomposed in segments with different flight modes, 

and it also often happens that a long horizontal flight will be decomposed into segments flown at 

different altitudes and speeds, calculated to optimize resources following the changing weight of 

the fuel in the airplane. One can appreciate the importance of fuel management in commercial 

airlines when looking at the Airbus Customer Services (2004) brochure on fuel economy for the 

Airbus airplanes. It introduces the subject with the statement: “Fuel Consumption is a major cost 

to any airline, and airlines need to focus their attention on this in order to maintain their 

profitability”. It then discusses the many factors that affect fuel consumption, considering in 

particular the optimization of climb, cruise and descent techniques and the altitude and speed of 

cruise flight, which are precisely the subjects we discuss here.  

In this study, we are not concerned with finding the values of the flight parameters that 

correspond to an “optimal trajectory” because each trajectory planning problem is an individual 

optimization problem in its own right. The notion of “best” trajectory depends entirely on the 

mission at hand. In one mission flying very fast may be preferred over saving fuel, if a danger 

zone has to be evaded. In another mission, saving fuel may be preferred. In automatic mission 

planning, trajectories are assigned a cost by a function that weights the length of the trajectory, the 

flying altitude, the traversing of danger zones or no-fly zones, etc. The relative costs of the 

variables considered can be adjusted according to the mission at hand. The formulas we presented 

in this article constitute basic tools that allow determining the feasibility of a trajectory and 

calculating its cost. 

Level rectilinear flight is discussed in essentially all manuals on airplane performance; as, in 

particular, Hale (1984), Anderson (2000), Eshelby (2000), Yechout et al. (2003), Stengel (2004) 

and Filippone (2006). Fundamental formulas that are always given are the so-called Bréguet 

formulas for rectilinear flight at constant angle of attack. Yechout et al. (2003), Stengel (2004) also 

discuss flight at constant airspeed-constant lift coefficient (i.e., Cruise-climb). Hale (1984) 

presents a thorough analysis of the three flight modes with: constant altitude-constant lift 

coefficient, constant airspeed-constant lift coefficient, constant altitude-constant airspeed.  

Because they are equally important, climbing and descending flights are also always discussed. 

However, in our survey of some classical manuals, we did not find any that provided a complete 

solution of the climbing flight equations even for simple flight modes. The discussions presented 

usually consider steady-state or quasi-steady-state motion and only deal with local aspects of a 

climbing flight, and never with the entire flight. For example Yechout et al. (2003) simply define 

the local climbing rate and, although Torenbeek (1976), Hale (1984), Anderson (2000), Eshelby 

(2000), Stengel (2004), Filippone (2006) all derive conditions for the climb angle or the climb rate 

to be maximum, these conditions are also only local in the sense that they depend on the specific 

altitude and weight of the airplane. Such local conditions are not very useful as such because 

conditions are needed for the entire trajectory, and implementing them requires the values of the 
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weight of the airplane at each altitude. Before Labonté (2011), one could not find formulas for the 

time evolution of the speed, the altitude, the power and the fuel required for the airplane to travel 

an entire climbing or descending trajectory. This fact is recognized in Section 2.6 of Stengel 

(2004) and in Section 8.6 of Filippone (2006), where it is explicitly stated that steady state models 

cannot be correct because the climb rate and the optimal climb conditions change with changing 

altitude so that the airplane in fact accelerates. It was one of the main contributions of Labonté 

(2011) to derive complete exact solutions for the three different modes of climb and descent on a 

rectilinear trajectory with constant angle of attack, or constant speed, or constant Mach number. 

We further note that in all studies of climbing or descending flight found in airplane dynamics 

manuals, the approximation is made that  the angle of the trajectory with the horizontal plane, is 

small so that cos()1. Although this is true for most conventional propeller-driven airplanes for 

which  is limited to roughly 10°-15° or less, it is not true for UAVs. These come in a wide range 

of sizes and agilities and they can fly much more daring manoeuvres as inhabited airplanes. For 

example, some commonly available radio-controlled planes can easily climb at 45° or steeper, as 

for example, the Carl Goldberg Falcon 56 described by Granelli (2007) and the Hangar 9 Twist 40 

described by Horizon Hobby (2004). Thus, as in Labonté (2011), we do not make the 

approximation of small angles and all the formulas we derive are applicable for any angle of climb 

and descent. 

We shall not consider horizontal trajectories in the present article. In Labonté (2011), the 

equations of motion were solved for two modes of flight at constant altitude, namely flight at 

constant angle of attack and flight at constant speed. The formulas obtained are relatively simple, 

containing only some square roots and the functions In and tan. We therefore see no need to try 

and obtain simpler ones. In the same document, formulas describing climbing or descending 

flights at constant angle of attack, at constant speed and at constant Mach number were also 

derived. These, on the other hand, involve rather complex functions to calculate and will gain 

much in the simplifications that we present hereafter. The simpler formulas we obtain are 

illustrated by explicit calculations of many trajectories with the following three very different 

hypothetical airplanes. We present measures of the precision of these formulas as the discrepancy 

between the values they yield and those of the exact formulas. 
The first one is the CP-1 airplane, described in Section 6 of Anderson (2000). It is similar to the 

Cessna Skylane and has the characteristics shown in Table 1. Note that all the parameters used in 

this article can be found defined in a Nomenclature Section at the end. 

The second one is a Silver Fox-like Unmanned Aerial Vehicle (UAV). Some specifications for 

the Silver Fox can be found at the Faculty of Engineering, University of Porto (2013). The power 

available PA(0) for the Silver Fox is only about 370 W, which allows it to climb only at low 

angles. Meanwhile, it is common for Radio Controlled (RC) airplanes to climb at very steep angles 

(See for example Bell (2005) and Granelli (2007)). Thus, upon taking advantage of motors that 

 

 
Table 1 Characteristics of the CP-1 airplane from Anderson (2000). The parameters listed are W1=the weight 

of the airplane without fuel, Wf=the initial weight of fuel, η=the propeller efficiency, c=the specific fuel 

consumption, b=the wingspan, S=the wing area, e=Oswald's efficiency factor, CD0=the global drag 

coefficient at zero lift, CLmax=the maximum global lift coefficient 

W1=9,454 N Wf=1,343 N PA(0)=137,209 W η=0.8 

c=7.447510
-7

 b=10.9118 m S=16.1653 m
2
 e=0.8 

CD0=0.025 CLmax=2.10   
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Table 2 Characteristics of the Silver Fox-Like airplane. The parameters are the same one as in Table 1 

W1=113 N Wf=19 N PA(0)=1850 W η=0.8 

c=7.447510
-7

 b=2.4 m S=0.768 m
2
 e=0.8 

CD0=0. 0251 CLmax=1.26
 

  

 
Table 3 Characteristics of the Hercules-Like airplane. The parameters are the same one as in Table 1 

W1=337,120 N Wf=266,717 N PA(0)=11,113,200 W η=0.81 

c=7.447510
-7

 b=40.4 m S=162.1 m
2
 e=0.92 

CD0=0.0138 (1) CLmax=2.7 (2)   

 

 

have been developed in this domain, a Silver Fox-like airplane could be endowed with much more 

power in order to improve considerably its manoeuvre envelope. One such motor is the O.S. 

120AX 20cc that outputs 3.1hp, i.e., 2312 W, and weights only 650 g; so we shall consider a 

Silver Fox-like UAV with this particular motor. 

The last one is a Lockheed C-130 Hercules-like airplane. Some of its specifications are those of 

the Hercules itself, as can be found in Lockheed Martin (2013), Stewart Air Force Base (2005) and 

Sadraey (2013) and some parameters have been set at plausible values, by comparison with other 

available transport airplanes Filippone (2000). 

This article is organized as follows. It starts by recalling the equations of motion for an airplane 

traveling on an inclined rectilinear trajectory, and the concepts of power available, power required 

and fuel consumption that are fundamental to the subject studied. It then considers in turn the three 

climbing modes in which the speed, the Mach number or the angle of attack is constant. For each 

of these modes of flight, it recalls the exact solution of the equations of motion and presents an 

approximate formula for the speed of the airplane, its altitude, its weight, and the power it requires 

for the motion. In each case, many examples of trajectories are considered for the three reference 

airplanes and, for each one of them, the precision of the approximate formula is calculated. These 

test trajectories are the longest ones that are possible for the initial conditions considered. The 

proposed formulas are then expected to be also precise for all other trajectories that are necessarily 

shorter. 

 

 

2. Flight at constant climb or descent angle 
 

Let us consider an airplane that moves on a rectilinear trajectory making an angle  with a 

horizontal plane. When the wind effects are neglected, the forces acting on that airplane have two 

components: a tangential component, along the unit tangent vector to the trajectory, and a normal 

component, along the unit vector N normal to . The total force vector F can be written as 

F = [TR - D - W sin()]  + [ L - W cos()] N        (1) 

in which, TR is the thrust that the propeller must provide, D is the total drag, W is the weight of the 

airplane and L is the lift. L and D are given by the equations 

2
V

L
CS

2

1
L   and  

2
V

D
CS

2

1
D  .    (2) 
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In Labonté (2011), one can find the Newton equation of motion for an airplane, the weight of 

which changes due to the burning of fuel with the air to fuel ratio AFR. It is 

 Fv
v

 








dt

dM
AFR

dt

d
M                            (3) 

in which M is the mass of the airplane and v is its velocity. Note that both the velocity and the 

acceleration are in the direction of the tangent vector . Thus, upon substituting the force vector 

given in Eq. (1) into Eq. (3), and projecting the resulting equation along the vectors N and , one 

obtains the following two equations. 

    L = W cos()     (4) 










V

dt

dM
AFR

dt

dV
M TR - D - W sin().        (5) 

Upon multiplying Eq. (5) by 


 V
c

, it becomes 

  )sin(WD
cV

dt

Wd

dt

Wd

g

2
V)AFR(c

dt

Vd

g

VWc











 























     (6) 

so that Eqs. (4) and (6) can be taken to be the two fundamental equations of motion to solve.  

For simplicity, in the present study, we consider only flights below 11 km, so that a1, the rate of 

variation of the temperature with the altitude, is constant, with 

  T(h) = Ts - a1 h. with a1 = 6.5  10
-3

      (7) 

Our results can be readily generalized to flights at higher altitudes by solving the equations of 

motion inside each of the zones of the atmosphere that are traversed, in which the temperature 

gradients differ, and then requiring that their solutions match continuously at the zone boundaries. 

For such trajectories, the following equations for the altitude h, the horizontal distance traveled x, 

and the air density  will hold 

)sin(V
dt

dh
    x = h cot()    (8) 

)h(T

V
)sin(

1
a2433.4

dt

d  , since  

2433.4

sT

)h(T
s)h( 








    (9) 

in whichs and Ts are the air density and the temperature at sea level.  

 

 

3. Power available, power required and fuel consumption 
 

Chapter 9 of Anderson (2000) explains that when the power PP produced by an internal 

combustion engine is transferred to a propeller of efficiency η, the power available to move the 
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airplane PA will be: PA=ηPP. When this power is produced, the rate of fuel usage is 

  
A

P
c

P
Pc

dt

dW


        (10) 

in which c is the specific fuel consumption. We note that there is always an upper bound PA max to 

the power an engine can generate and a lower bound PA min below which it shuts down. 

How much power should the engine produce depends on the motion that the airplane has to 

perform. From Classical Mechanics we know that to move a body with the velocity v under the 

action of a force F, the power that is required from the mechanism that causes this motion is 

PR=Fv, where “ ∙ ” denotes the scalar product of two vectors. If this body is an airplane with a 

propeller that produces a thrust T along the direction of its motion, then T is parallel to v and the 

power that is required from the propeller action to move this airplane is PR=T V where T and V are 

the magnitudes of T and v. This airplane's engine should then provide the power PA=PR. Finally, 

we recall that the power produced by a combustion engine varies with the altitude according to the 

equation 

PA(h) = PA(0) 
s

)h(




.       (11) 

 

 

4. Formulas for climb or descent at constant speed 
 

In a flight at constant speed, the rate of climb is constant and the altitude and temperature are 

linear functions of time 

h(t) = hi + v3 (t - ti) and T(t) = Ti - a1v3 (t - ti)  with  v3 = V sin(). (12) 

where hi is the altitude at the initial time ti. Thus, in particular, the time required to climb from hi to 

hf is simply tc=(hf - hi) /v3.  

Eq. (4) determines how the lift coefficient CL should change in terms of W and the altitude, 

while Eq. (6) yields the weight W as a function of time. When the speed is constant, the latter 

equation becomes the following Riccatti equation 

 2
W

2433.4
TW

2433.4
T

dt

dW 
       (13) 

in which the constants  are defined as 

G
2433.4

i
T2

3
V

0D
CS)

i
h(gc 

    
G

3
vgc

  

GVS)
i

h(ARe

2433.4
i

T)(
2

cosgc2




   with  2

V)AFR(cgG  .          (14) 

In Labonté (2011), it was shown that the solution to Eq. (13) is 
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W(t) = 
 


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
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
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
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


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2
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y
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2
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1

y

2

A411T
d

            (15) 

with 

d = 4.2433,   A = 
2




   )t(T

3
v

1
a

z


  

)
0

z('
2

y)
0

z(
2

By

)
0

z('
1

y)
0

z(
1

By




   

2

A41

2

1

d
0

T

0
W

B






             (16) 

with two different possibilities for the functions y1 and y2. 

Case 1: A = 1/4 

 zd2
1d

J
2/)d1(

z)z(
1

y



          (17) 

 zd2
1d

Y
2/)d1(

z)z(
2

y



          (18) 

where Jdand Yd are Bessel functions. 

Case 2: A  1/4 

y1(z) =  zA41,d,
1

k
1

F
1

  with 











A41

1
1

21
k

d
        (19) 

y2(z) =  zA41,d2,d1
1

k
1

F
1

d1
z 


              (20) 

in which 1F1 is the confluent hypergeometric function (See Section 9.2 of Gradshteyn and Ryzhik 

1965). 

Fig. 1 illustrates the behavior of this solution. It shows the weight of fuel Wf as a function of 

time for the CP-1 airplane when it starts with 425 N of fuel, climbs at the constant speed of 25 m/s 

at an angle of 20°, until it reaches the altitude of 2190 m . 

 

4.1 Power and lift constraints 
 

According to Eqs. (10) and (13), the power required to climb at angle , at constant speed is  

   22433.42433.4

R WTWT
c

P 


                    (21) 

For a flight to be possible, the power required PR must be smaller or equal to the maximum 

power PAmax that can be produced by the motors and propellers. We recall that the power available 

is given by Eq. (11). Fig. 2 shows the graph of PR as a solid line and PAmax as a dotted line, in the 

sample flight of the CP-1 airplane described above. The two curves intersect at about 2190 m, 

which indicates that the CP-1 airplane will not have enough power to climb above this altitude on 

this particular trajectory. 
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Fig. 1 Fuel of the CP-1 airplane as it climbs at 20°, at the speed of 25 m/s, up to 2190 m 

 

 

Fig. 2 Required power PR and maximum available power PAmax as a function of altitude h, for the 

climbing airplane CP-1 at 20°, with a constant speed of 25 m/s 

 

 

Another constraint is implied in Eq. (4). Since in the flight mode considered V is constant, 

while  and W change with the altitude, the angle of attack, i.e., the lift coefficient CL must be 

constantly adjusted for Eq. (4) to keep on holding. Because the lift coefficient is bounded above by 

CLmax, the following inequality must be satisfied at all times. 

   maxL
SC

2
V

2

1
maxL)cos(W      (22) 

Fig. 3 shows the graph of both sides of Inequality (22) as a function of the altitude h. The left-

hand side is represented by the solid line and the right-hand side by the dotted line. The two curves 

intersect at about 3418 m, therefore from this altitude on there is not enough lift for the CP-1 

airplane to climb higher. 
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Fig. 3 Wcos(), represented by the solid line, and Lmax, represented by the dotted line, as a 

function of the altitude, for the climbing airplane CP-1 at 20°, with a constant speed of 25 m/s 

 

 

Thus, the examination of the power and lift constraints, for the particular flight considered, 

indicates that the maximum altitude attainable is 2190 m.  

 
4.2 Simpler formulas for the fuel used  
 

Examination of the graph of W as a function of time for different trajectories, such as that 

shown in Fig. 1, indicates that W is almost a function linear in t. This suggests the possibility of 

finding a simpler expression for W(t) than that given in Eq. (14), which would be much welcomed 

from the point of view of minimizing the calculation requirements. We present here two 

possibilities: one is a linear approximation and the other one is a Runge-Kutta one step 

approximation. 

 

4.2.1 Linear formula 
Let us approximate W(t) by Wa(t)=Wi+m(t−ti), in which m is a constant. A value for the slope m 

can be obtained by requiring that Wa satisfies Eq. (13) at a particular instant of time. This can be 

realized as follows. Select an instant of time ta, between ti and tf, and set W(ta)=Wa(ta) in Eq. (13) 

that is evaluated at time ta. There results a quadratic equation for the slope m that is readily solved. 

Experimentation suggested that a particularly good choice for ta is at the mid-point, where ta=tm=(tf 

+ti)/2. We have tested this procedure for many trajectories (the set of test trajectories is described 

below) and found that, at the end of the trajectories, the maximum relative error in fuel used Wf, 

was never higher than −2.74% for the three airplanes: CP-1, Silver Fox-Like, and Hercules-Like.  

More precision can be obtained with the linear approximation by performing more than one 

step, the two-step approximation being done as follows. A first linear approximation, as described 

above, with ta=(ti+tm)/2, is used to obtain the intermediate value Wa(tm). In a second phase, this 

value of the weight is used as initial value for a second linear step that goes from tm to tf, with 

ta=(tm+tf)/2. For all our test trajectories, the overall relative errors then fall below 1.4% for all the 

airplanes. Fig. 4 shows the relative error made by approximating W(t) by a one-step and a two-step 

linear expression. The trajectories considered to produce this graph were for the Hercules-like  

375



 

 

 

 

 

 

Gilles Labonté 

 
Fig. 4 Relative error in the approximation of the amount of fuel in % for a 2.5°

 
climb-angle of 

the Hercules-Like airplane, in terms of the total fuel used in the trajectory. The curve with the 

square markers and that with the round markers correspond respectively to the one-step and the 

two-step linear approximation. 

 

 

airplane, that climbs at 2.5°, starting with a weight of W1+133,358 N, with different constant 

speeds with values from 45 m/s to 165 m/s, taken by steps of 10 m/s. 

 

4.2.2 Runge-Kutta formula 
The linear approximation procedure we have just described is essentially the midpoint or 

improved Euler numerical method for the solution of differential equations that can be found 

described in most textbooks on numerical methods. (See, for example, Chapter 19 of Kreyzig 

1979). What is remarkable here is that the final solution is obtained with just one or two steps. This 

makes the method very efficient for fast and simple computations. A still better method than the 

Euler method is also described in most references on numerical methods: it is the Runge-Kutta 

method of order four. For the origin of this method, see Butcher (1996). This method gives much 

more precise results than the Euler method, and given the relative simplicity of the expression on 

the right-hand side of Eq. (13), it will also prove very easy to apply. We recall that the Runge-

Kutta (R-K) method applies to ODE dy/dx=f(x,y), for which f is a continuous function of x and y, 

and y is analytic, i.e., can be expanded in a Taylor series (see Lotkin (1951)). Given the explicit 

form of W(t), it is easy to see that these two conditions are verified here so that the R-K procedure 

can be applied. According to this procedure, a sequence of points (tn, Wn), for n=0,1,2... is 

constructed that lie close to the exact solution (t, W(t)) of the differential equation, as follows. 

Denote the right-hand side of Eq. (13) as F(t, W) 

 2
W

2433.4
))t(h(TW

2433.4
))t(h(T)W,t(F


     (23) 

and select a time step t. Then, starting from the initial condition (t0, W0), the sequence of points is 

constructed as 

An = t F(tn, Wn ),   Bn = t F(tn + t /2, Wn + An/2) 

Cn =t F(tn + t /2, Wn + Bn /2)  Dn = t F(tn + t, Wn + Cn) 

tn+1 = tn + t   nDnC2nB2nA
6

1
nW

1n
W 


       (24) 
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Simple formulas for the fuel of climbing propeller driven airplanes 

What is remarkable with Eq. (13), and the values of its parameters in the problem we are 

considering, is that a single step of the R-K procedure yields an approximate solution Wa of 

remarkable precision. This can be seen by considering the estimate of the truncation error, given in 

Lotkin (1951), for a sequence of steps of the R-K method. To obtain this estimate, let Wa1=WN be 

the approximate value of W(t+Nt) constructed by a sequence of N steps of size t, and Wa2=W2N 

that obtained with 2N steps of size t/2. Then the truncation error E1=W(tN) −Wa1 is of the order of 

 
2a

W
1a

W
15

16

1
E  .       (25) 

Consider, for example, the CP-1 airplane, that starts at ti=0 with 425 N of fuel, at sea level and 

climbs at the constant speed of 25 m/s at an angle of 20°, until it reaches the altitude of 2190 m at 

time tf=256.13 s. At the end of the trajectory, the estimate of W, given by the R-K method with a 

single step of t=tf−ti is Wa1=9853.476394 N. That given by the R-K method with two steps of size 

(tf−ti)/2 is Wa2=9853.476404. Thus, E1≈−0.00001 N and consequently the one-step R-K estimate 

should be precise enough for all practical purposes. Upon rewriting equations (24) in a somewhat 

simpler notation, we propose to obtain the estimate for W(t), at any time t, as 

A(t) = t F(ti, Wi ),  B(t) = t F(ti+t /2, Wi + A(t)/2) 

C(t) = t F(ti+t /2, Wi + B(t) /2) D(t) = t F(ti+t, Wi + C(t)) 

t = t - ti   )t(D)t(C2)t(B2)t(A
6

1
Wi)t(aW            (26) 

Fig. 5 shows the difference between the exact value of W(t) and the approximate value Wa, 

given by Eq. (26). One can see that this difference is always below 0.00005 N. Note that the 

number of points used in drawing these two graphs was limited because using many points yields a 

dense band of values instead of a discernible curve. 

We have performed extensive testing to verify the precision of these formulas compared to the 

exact values given by Eq. (14). Our tests covered the three selected reference airplanes on various 

climbing trajectories. In each case, the climb starts at the sea level and the final altitude is the  

 

 

 

Fig. 5 Difference between the exact value of the weight W(t) and the approximate value Wa(t), for 

the trajectory of the CP-1 at 20° with the speed of 25 m/s 
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Table 4 Characteristics of the test set of trajectories for the CP-1 airplane. Each block of four lines 

corresponds to a same climb angle  that is given in degrees. In the line headed by V∞ are listed the constant 

speeds for the trajectory studied in m/s. In the line with the header hmax are the maximum altitude possible 

for the corresponding trajectory in m, and under these values are the amount of fuel used to reach that hmax in N 

 25          

V 25          

hmax 811          

Fuel 9.03          

 20          

V 25 30         

hmax 2190 988         

Fuel 25.95 40.99         

 15          

V 25 30 35 40       

hmax 3152 2857 1785 511       

Fuel 40.99 34.79 21.06 6.01       

 10          

V 25 30 35 40 45 50     

hmax 2967 4925 4279 3402 2289 906     

Fuel 44.58 69.29 56.98 44.42 30.11 12.30     

 5          

V 25 30 35 40 45 50 55 60 65  

hmax 2870 6343 7066 6752 6220 5438 4343 2814 614  

Fuel 60.24 124.28 128.11 116.47 105.80 93.99 78.39 54.54 13.22  

 2.5          

V 25 30 35 40 45 50 55 60 65 70 

hmax 2876 6379 8579 8592 8433 8078 7479 6540 5075 2648 

Fuel 94.39 191.31 239.70 222.55 211.25 202.72 193.85 180.23 153.57 92.19 

 

 

highest one possible, given the constraints on the power and the lift. The first trajectory we 

considered has close to the steepest angle and the lowest speed allowed. The last speed we 

considered is close to the upper bound speed allowed by the airplane available power. Our results 

clearly show that the difference between the exact value W(t) and the approximate value Wa(t) is of 

no practical significance. 

For the CP-1 airplane, all our tests were made with the initial weight of W1+425 N. Table 4 

shows the characteristics of the 32 trajectories used in our tests. We note that these cover a wide 

range of speeds, of final altitudes and of amount of fuel used. In all these trajectories, the 

maximum percent relative difference between the exact value of fuel used and that produced by 

the R-K one-step method is less than 0.04%. This value occurs for the trajectory at 2.5° and speed 

of 35 m/s. This corresponds to a discrepancy of 13 ml of fuel over the 34 liters used. 

For the Silver Fox-Like airplane, 32 trajectories were also examined: all trajectories started at 

sea level with an initial weight of W1+19 N. Table 5 shows the characteristics of the six steepest 

trajectories. The other trajectories studied were for four climb-angles: 15°, 10°, 5° and 2.5°. For 

these angles, trajectories were respectively considered in the intervals of speeds between 15 m/s  
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Simple formulas for the fuel of climbing propeller driven airplanes 

Table 5 Characteristics of the 6 steepest trajectories of the Silver Fox-Like airplane.  is the 

angle of climb in degrees, V∞ is the constant speed in m/s, hmax is the maximum altitude 

attainable in m and Fuel is the amount of fuel used in this trajectory in N 

 V hmax Fuel 

65 10 634 0.0810 

55 10 847 0.109 

45 15 2071 0.274 

35 15 2160 0.296 

 15 5602 0.830 

" 25 1305 0.188 

 

Table 6 Characteristics of the 6 steepest trajectories of the Hercules-Like airplane.  is the angle 

of climb in degrees, V∞ is the constant speed in m/s, hmax is the maximum altitude attainable in 

m and Fuel is the amount of fuel used in this trajectory in N 

 V hmax Fuel 

30 40 132 66 

25 40 62 33 

" 45 529 269 

20 45 1965 1059 

" 50 1342 698 

" 55 676 343 

 

 

and 35 m/s, 15 m/s and 40 m/s, 15 m/s to 45 m/s, and 15 m/s to 50 m/s, always by steps of 5 m/s. 

For all the trajectories studied, the maximum percent relative difference between the exact value of 

the fuel used and that calculated with the R-K one-step method is less than 0.047%. This value 

occurs with the trajectory at 2.5° and speed of 25 m/s in which the airplane reach the altitude of 

9782 m. This corresponds to a discrepancy of 0.2 ml of fuel over the 463 ml used. 

For the Hercules-Like airplane, 48 trajectories were examined: in all our tests the initial weight 

was W1+133,358 N, which corresponds to about one half tank of fuel and no cargo; we considered 

these conditions because we wanted to test our formulas for climb angles that included rather steep 

angles. Table 6 shows the characteristics of the six steepest trajectories. The other trajectories 

studied were for four climb-angles: 15°, 10°, 5° and 2.5°. For these angles, trajectories were 

respectively constructed in the intervals of speeds between 45 m/s and 75 m/s, 45 m/s and 105 m/s, 

45 m/s to 145 m/s, and 45 m/s to 165 m/s, by steps of 5 m/s in the first two sets and of 10 m/s in 

the last two sets. For all the trajectories studied, the maximum percent relative difference between 

the exact value of the fuel used and that produced by the R-K one-step method is less than 0.04%. 

This value occurs for the trajectory at 2.5° and speed of 75 m/s, where the airplane reaches a final 

altitude of 8884 m. This corresponds to a discrepancy of one half liter of fuel over the 1261 liters 

used. 

 

 

5. Formulas for climb or descent at constant Mach number 
 

In a flight at constant Mach number M, the speed of the aircraft varies as 
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V(h) = k T(h)
1/2 

 with   k = RM   being a constant.     (27) 

The equation for the altitude 

)hh(aT)sin(k)sin(V
dt

dh
i1i   .                (28) 

can easily be solved and yields for h the following quadratic expression in t 

h(t) = 
2

i

21

2

iii )tt()(sin
4

ak
)tt()sin()h(Vh   .    (29) 

This expression is readily inverted to yield the time required to climb from hi to h as 

 
 

)sin(
1

ak

2/1
)h(T

2/1
)

i
h(T2

i
tt




                         (30) 

Eqs. (27) and (28) imply that 

)sin(
1

a
2

k
2

1

dt

dh2/1
)h(T

2

1
ak

dt

dV













 = a constant.     (31) 

Thus, the speed is a linear function of time 

)tt()sin(ak
2

1
)t(V)t(V i1

2

i       (32) 

 

5.1 Fuel consumption 
 

In Labonté (2011), it was shown that the weight of the airplane, when constant Mach number is 

considered, is given by the following equation 

  
2

W
7433.4

TW
5.0

T
7433.5

T
dt

dW 









         (33) 

with  
2433.4

i
T2

3
k)

i
h(

0D
CSc




 , 





















g2

1
a

2
k

1
)sin(kc

, 
)

i
h(SARek

2433.4
i

T)(
2

cosc2




  

 

Its solution is given by the same formula as that for the climb at constant speed, given in Eqs. 

(14) and (15), except that in the present case 

 d = 5.2433  A = 
2


    )t(hT

)sin(ka
z

1 


     (34) 

Fig. 6 shows the graph of the weight of fuel Wf as a function of time for the CP-1 airplane that 

starts with 425 N of fuel at sea level and climbs up to 2335 m, at an angle of 20°, while keeping a  
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Simple formulas for the fuel of climbing propeller driven airplanes 

 

Fig. 6 Fuel of the CP-1 airplane as it climbs at 20°, with the initial speed of 25 m/s, up to 2335 m, 

with a constant Mach number of 0.0735. 

 

 

constant Mach number, with initial speed of 25 m/s. Note that climbs at other angles yield a 

similarly looking curve.  

 

5.2 Power and lift constraints 
 

In all modes of climb, there will always be the same two constraints to satisfy for the power 

and the lift, as we discussed for climbs at constant speeds. For flights at constant Mach number, 

Eqs. (10) and (33) give the power required for a climb at angle , as  

 27433.45.07433.5

R WTWTT
c

P 


         (35) 

In order to visualize the constraint on the power, we can draw the graph that corresponds to that 

shown in Fig. 2 in which PR is given by Eq. (35). In the case of a flight for the CP-1 airplane, that 

starts with 425 N of fuel, with the initial speed of 25 m/s at sea level and climbs at 20°
 
with the 

constant Mach number of 0.0735, one then sees the two curves for Pr and or PAmax intersecting at 

about 2335 m, which indicates that the CP-1 airplane cannot climb higher that this altitude.  

Just as in the climb at constant speed, there is also a constraint on the lift that comes from Eq. 

(4). With the flight mode presently considered V,  and W change with the altitude so that the 

angle of attack, i.e., the lift coefficient CL must be constantly adjusted for Eq. (4) to keep on 

holding. The upper bound on the lift coefficient implies an upper bound on the lift that is translated 

into an upper bound on the altitude. For the particular flight of the CP-1 airplane mentioned above, 

the graph that corresponds to Fig. 3 will show that the curve for W cos and that for Lmax 

intersect at about 2781 m, indicating that, after this altitude, the airplane cannot provide enough lift 

to climb higher.  

Thus, for the particular flight considered, the stronger constraint on the altitude comes from the 

upper bound on the power available. It indicates that the maximum altitude attainable is 2335 m. 

This altitude is reached after 4 minutes 37 seconds. The amount of fuel remaining at the end of this 
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trajectory is 27.82 N. 

  

5.3 Simpler formulas for the fuel used 
 

Because the solution of the fuel equation for a climb at constant Mach number, Eq. (33), is the 

same as that for a climb at constant speed, Eq. (14), the formulas developed for the latter case will 

also apply to the present case. Thus, in particular, the Runge-Kutta formulas listed in Eq. (24) can 

be used to provide an approximate solution Wa, when using the function F, defined as 

2
W

7433.4
))t(h(TW

5.0
))t(h(T

7433.5
))t(h(T)W,t(F


        (36) 

We have performed the same series of tests as for the climbs at constant speeds, in order to 

verify the precision of these formulas as compared to the exact values of W(t). In each case, the 

climb starts at the sea level and the final altitude is the highest one possible, given the constraints 

on the power and the lift, mentioned in the above section on that subject. For the climbs at constant 

Mach number, the initial speeds considered were the same ones as the constant speeds used in the 

tests for climbs at constant speeds. 

For the CP-1 airplane, in all the 32 trajectories examined, the maximum percent relative 

difference between the exact value of fuel used and that produced by the R-K one-step method is 

less than 0.04 %. This value occurs for the trajectory at 2.5° and speed of 40 m/s. This corresponds 

to a discrepancy of 13 ml of fuel over the 33 liters used. 

For the Silver Fox-Like airplane, in all the 32 trajectories studied, the maximum percent 

relative difference between the exact value of W and that produced by the R-K one-step method is 

less than 0.067 %. This occurs for the trajectory at 2.5° and speed of 30 m/s in which the airplane 

reach the altitude of 10,000 m. This corresponds to a discrepancy of 0.3 ml of fuel over the 484 ml 

used. These results clearly show that the difference between the exact value of the fuel used and it 

approximate value is inconsequentially small. 

For the Hercules-Like airplane, 48 trajectories were examined: in all our tests the maximum 

percent relative difference between the exact value of the fuel used and that produced by the R-K 

one-step method is less than 0.04%. This value occurs for the trajectory at 2.5° and speed of 75 

m/s, where the airplane reaches a final altitude of 8830 m. This corresponds to a discrepancy of 

541 ml of fuel over the 1311 liters used. 

 

 

6. Formulas for climb or descent at constant angle of attack 
 

In a flight at a constant angle of attack, Eq. (2) for L combined with Eq. (4) yield 

2/1
W

kV 









  with  

2/1

L
SC

)cos(2
k











 
  being a constant. (37) 

In Labonté (2011), Eq. (6) for the weight of the airplane was examined and it was shown to 

reduce to 

KW
dz

dW
                                 (38) 
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with 

)]t(h[T)t(z     and  















 1)cot(

L
C

D
C

1
a

c
K  a constant.      (39) 

The solution of Eq. (38) is simply 

)
i

zz(K
e

i
WW


 .       (40) 

in which Wi is the initial weight of the airplane at time ti, and zi=T[hi] with hi being the initial 

altitude. Since the rate of climb is V sin(), Eqs (8), (37) and (40) imply 










2

)h(TK
exp

12165.2
)h(T

1
a

B

dt

dh
                    (41) 

in which the constant B is defined as 








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2

i
KT

exp
12165.2

i
T)sin()

i
t(V

1
aB .      (42) 

Upon changing variables from h to T(h), Eq. (41) becomes the following separable equation 

dtBdT
2

KT
exp

12165.2
T 









           (43) 

This equation can be integrated to yield 

  t)T(y)
i

T(y
B

1
       (44) 

with y(x) = 









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
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

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6.1 Power and lift constraints 
 

From Eqs. (10), (38) and (39), one obtains the following expression for the power required for 

the motion 

2/1
3

W
)sin(kK

1
a

cdt

dz

dz

dW

cdt

dW
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
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

















      (45) 

In order for a trajectory to be possible, the power required PR must be smaller or equal to the 

maximum power the engine can provide for the airplane motion: PAmax. Upon drawing the graph of 

both PAmax and PR as functions of h, as was done in Fig. 2, one can see how the available power 

limits the altitude. For example, in the case of the climbing airplane CP-1 at 10°, with a constant  
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Fig. 7 Time as a function of altitude, for the CP-1 airplane climbing at 10°, starting at the speed of 

25 m/s, up to 4748 m 

 

 

angle of attack, and an initial speed of 25 m/s, PR reaches PAmax at about 4748 m, so that the 

airplane cannot climb higher than this altitude. For this particular mode of flight, there is no 

explicit constraint on the lift to examine because Eq. (37) for the speed already insures that Eq. (4) 

will always hold. 

 

6.2 Simpler formulas 
 

Eq. (44) gives the time t in terms of the altitude h. However, it would be useful to have 

available the inverse relation that gives the altitude as a function of time. Unfortunately, Eq. (44) 

cannot be readily inverted. Furthermore, calculating t with Eq. (44) requires sophisticated 

computational power that would not presently be available on board smaller UAVs. For these 

reasons, we have endeavored to find a simpler formula than Eq. (44). We started by examining the 

graph of t as a function of h as produced with Eq. (44). Fig. 7 shows this graph for the CP-1 

airplane climbing at 10° from sea level, with the initial speed of 25 m/s. We further observed that 

for all the other trajectories examined, the corresponding curve always had the same appearance as 

that in Fig. 7.  

Given the behavior of this curve, one is inclined to try to approximate the value h(t) by a 

quadratic expression, such as 

 h(t) = hi + p(t - ti) + q(t - ti)
2
      (46) 

in which p and q are constants. This formula already incorporates the initial condition that h(ti)=hi. 

Upon substituting this expression for h(t) in the left-hand side of Eq. (41), one obtains 

p + 2 q (t - ti) = F(h).    (47) 

in which F(h) represents the left-hand side of Eq. (41). The parameter p is readily determined by 

evaluating this equation at t=ti, which yields 

p = F(hi)                                 (48) 
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Upon solving Eq. (46) for (t - ti) in terms of h, and substituting the value obtained in Eq. (47), 

one obtains 

)
i

hh(4

2
)

i
h(F

2
)h(F

q



      (49) 

Obviously, this equation cannot be satisfied for all values of h because its right-hand side is not 

constant. Thus a particular value has to be selected that will determine the value of the constant q. 

Unfortunately, there is no rule for selecting such a value. We have performed experiments that 

showed that if hf is the final altitude at which Eq. (46) would be applied, the choice of the mid-

point 0.5 (hi+hf) in Eq. (49) yields a very good value for q. Finally, we found that still better results 

can be obtained by taking q to be the average of the value Eq. (49) yields with h=0.5 (hi+hf) and 

h=0.75 (hi+hf). Once a value is obtained for q, Eq. (47) can be solved for the time in terms of the 

altitude, which yields 

)
i

hh(q4
2

pp

)
i

hh(2
)

i
tt(




                       (50) 

 

6.2.1 Example 
Consider the trajectory described above for the CP-1 airplane that starts at sea level with the 

speed of 25 m/s, and climbs at 10° up to the limit imposed by its available power that is 4748 m. 

Its climb lasts 16 minutes and 16 seconds. The above procedure to compute the constant 

parameters a and b, at the end of the climb, yields: 
 

p = 4.3412  and   q = 0.5340e-3 
 

Upon using Eq. (50) to calculate tf, the time at which hf=4748 m is reached, one obtains 

tf=976.4248656 s, whereas, the exact value of tf, according to Eq. (44) is 976.0306877 s. The 

difference between the two values is −0.3942 s and the relative error made in using the  

 

 

 
Fig. 8 The error t(h)−ta(h) as a function of the altitude h, for a climb of the CP-1 airplane at 10°, 

climbing from sea level with a speed of 25 m/s, up to 4748 m 
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approximate form is about −0.0404 %. Fig. 8 shows the graph of the difference [t(h) −ta(h)], where 

t is the exact value and ta is the value given by Eq. (50) 

We have performed equivalent series of tests as those for the climbs at constant speeds, and 

constant Mach number, to verify the precision of these formulas compared to the exact values. We 

have considered the three very different CP-1, Silver Fox-Like and Hercules-Like airplanes. In 

each case, the climb starts at the sea level and the final altitude is the highest one possible, given 

the constraints on the power and the lift, mentioned in the above section on that subject. For the 

climbs at constant Mach number, the initial speeds considered were the same ones as the constant 

speeds used in the tests for climbs at constant speeds. In all these tests, we have observed that the 

procedure described above produces a quadratic form for h(t) that is accurate to a very good 

approximation and the resulting difference between the exact value t(h) and the approximate value 

ta(h) should be negligible in most practical applications. 

For the CP-1 airplane, in all the 32 trajectories examined, the maximum percent relative 

difference between the exact value of tf and its approximate value is less than 0.084%. This occurs 

for the trajectory at 2.5° and speed of 25 m/s. This corresponds to a discrepancy of 5.4 seconds 

over the 1 hour, 47 minutes and 27 seconds that lasts the trajectory. 

For the Silver Fox-Like airplane, in all the 32 trajectories studied, the maximum percent 

relative difference between the exact value of tf and its approximate value is less than 0.227%. This 

occurs for the trajectory at 5° and speed of 15 m/s in which the airplane reach the altitude of 

10,000 m. This corresponds to a discrepancy of 13.6 s over the 1 hour, 39 minutes and 57 seconds 

for the whole trajectory. 

For the Hercules-Like airplane, 48 trajectories were examined: in all our tests the maximum 

percent relative difference between the exact value of tf and its approximate value is less than 

0.110 %. This occurs for the trajectory at 2.5° and speed of 55 m/s, where the airplane reaches a 

final altitude of 8830 m. This corresponds to a discrepancy of 3.3 s over the 49 minutes and 54 

seconds for the whole trajectory. 

 

 

7. Descending flights 
 

The formulas obtained above, for the three flight mode considered, are also valid for 

descending flights, i.e., for trajectories for which the angle  is negative. It can be verified that 

descents at any angle are possible in these flight modes. In such flights, gravity’s pull has a 

component in the same direction as the engine thrust so it could eventually by itself cancel the 

drag. Because of this, care must be taken to keep the flight parameters in ranges such that the 

formula for the power required does not yield a negative value.  

 

 

8. Conclusions 
 

We have found approximations for the exact solutions to the equations of motion for airplanes 

that fly on rectilinear trajectories, inclined at an arbitrary angle, for three different modes of flight, 

namely flight at constant  

• speed, 

• Mach number, 

• angle of attack. 
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For each of these modes, we have obtained formulas for the weight of fuel, speed, altitude, 

horizontal distance, and power required as a function of time, and the time to climb or descent at a 

given altitude. For the simplified formulas based on the Runge-Kutta method, we have shown their 

accuracy by calculating the Lotkin (1951) estimate for the truncation error. Furthermore, we have 

calculated the discrepancy in the values obtained with these simpler formulas and with the exact 

ones, for three very different reference airplanes on many representative trajectories with different 

speeds and inclinations. These discrepancies are small enough to be inconsequential; in actual 

situations, their deviation from the exact values will be smaller than those due to inhomogeneities 

in the atmosphere. These formulas are original, and constitute important tools for the analysis of 

airplane performances. 
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EC 

 

 

Nomenclature 
 

a =speed of sound in air. At altitude h, p =power of the engine in Watt 

a(h) = .)(hRT At sea level, a(0)=340.3029 m/s 
R =specific gas constant for air=287.058 

J/(kg K) 

a1 =absolute value of the slope of the 

temperature as as function of altitude, 

below 11 km, a1=6.5×10
-3

 K/m 

S =wing area 

AFR =air fuel ratio (about 14.7) t =time variable 

AR =aspect ratio=b
2
/S Ts =temperature at sea level=288.16 K 

b =wingspan T =temperature 

c =specific fuel consumption in Newton per 

Watt-second, that is in m
-1

 
v3 =vertical component of airplane velocity 

CD =global drag coefficient for the aircraft 

= CD0+
eAR

CL



2

(Drag polar) 

V∞ =airplane speed with respect to the 

undisturbed air in front of it 

CD0 =drag coefficient at zero lift W =weight of the airplane 

CL =global lift coefficient for the global aircraft W1 =weight of the airplane without fuel 

D =drag=
2

2

1
 VSCD  

Wf =total weight of fuel at the time of 

departure 

e =Oswald’s efficiency factor 
W0 =W1+Wf=total weight of the airplane at 

departure 
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g =gravitational constant=9.8 m/s
2
 

γ =ratio of the constant pressure specific 

heat to the constant volume specific 

heat=cp/cv=1.4 for air 

h =altitude of airplane η =propeller efficiency 

L =lift=
2

2

1
 VSCL  ρs =air density at sea level=1.225 kg/m

3
 

M =Mach number=V/a(h) 
ρ∞ =density of undisturbed air in front of 

airplane 
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