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Abstract.  Frame structures have been traditionally represented as an assembling of components, these last 
described within the beam theory framework. In the case of frames involving complex components in which 
classical beam theory could fail, 3D descriptions seem the only valid route for performing accurate enough 
analyses. In this work we propose a framework for frame structure analyses that proceeds by assembling the 
condensed parametric rigidity matrices associated with the elementary beams composing the beams 
involved in the frame structure. This approach allows a macroscopic analysis in which only the condensed 
degrees of freedom at the elementary beams interfaces are considered, while fine 3D parametric descriptions 
are retained for local analyses. 
 

Keywords:  PGD; parametric solutions; model reduction; frame structures; shape optimization 

 
 
1. Introduction 

 

Frame structures are composed of structural components fastened together. They are very 

common in nature and thus they inspired engineers that used many variants from the very 

beginning of structural mechanics. Many times they are assembled in complex structural systems 

that also involve plates and shells, as usually encountered in aircraft fuselages, as the one depicted 

in Fig. 1. 

In general the design of such structures requires the calculation of stresses, strains and 

displacements for the design loads. The so-called constitutive law relates strains and stresses. The 

simplest one consists in linear elasticity. Despite its simplicity many structures are designed for 

working precisely within the elastic domain. Other designs require considering more complex 

behaviors not addressed in the present work.  

Design problems always involve the solution of a set of partial differential equations in the 

domains of interest, these ones ranging from beams, columns, plate or shells, to complex 

assembling of them, with appropriate initial and boundary conditions. The structural elements 

involved in such mechanical models are degenerated because at least one of its characteristic 

dimensions is much lower that the other ones. We will understand the consequences of such  
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Fig. 1 Floor-frame structure of an aircraft fuselage. When considering Nastran in the analysis, beams 

are composed 2D elements where colors identify regions with identical properties. The horizontal 

lines are 1D elements representing the rails on which seats are located. The vertical lines are 1D 

elements representing struts stabilizing floor under pressure. In our case we consider these data 

coming from Nastran but we are performing a 3D elastic analysis using a radically different 

computational strategy 

 

 

degeneracy later. When analytical solutions are neither available nor possible because the 

geometrical or behavior complexities, the solution must be calculated by using any of the available 

numerical techniques. 

Within the numerical framework the solution will be only obtained in a discrete number of 

points, usually called nodes, distributed in the domain. The solution at those points can be 

interpolated at any other point in the domain. In general regular nodal distributions are preferred 

because they offer the best accuracy. In the case of degenerated structural elements one could 

expect that if the solution evolves significantly in the smallest directions, a large enough number 

of nodes must be distributed along these dimensions to ensure the accurate representation of the 

field evolution. In that case, a regular nodal distribution in the whole domain will imply the use of 

an extremely large number of nodes with the consequent impact on the numerical solution 

efficiency.   

When simple behaviors and domains are addressed semi-analytical models could be considered 

(see Timoshenko 1955, Timoshenko and Woinowsky-Krieger 1959). For addressing more complex 

scenarios plate and shell theories were developed allowing, through the introduction of some 

hypotheses, reducing the 3D complexity to the 2D related to the problem now formulated by 

considering the in-plane coordinates. There are thousand of papers concerning the proposal and 

application of plate and shell models (the interested reader can refer to the recent reviews - see 

Zhang and Yang 2009, Quatu 2012, and the numerous references therein -). Some models are 

based on the introduction of kinematic hypotheses in the thickness (see Reddy and Arciniega, 

2004, among many others). Transverse shear can be also taken into account as described in Viola 

et al. (2013). Recent zig-zag representations (Carrera 2003, Sedira et al. 2012), layer-wise models 

(Kratzig and Jun 2002, Carrera 2002, 2003) and solid-shell approaches (Trinh et al. 2011, Naceur 
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et al. 2013) allow addressing accurately more complex scenarios, by increasing the computational 

complexity slightly. Stiffeners require an appropriate coupling of beam and shell models in order 

to perform calculations at a moderate computational cost (Quatmann et al. 2013).  

When considering beams and assembling of them, strength of materials (Timoshenko 1955, 

Timoshenko and Young 1982) leads to 1D models. The use of these theories has been extended 

gradually for addressing larger and more complex geometries and behaviors. However, as soon as 

richer physics are involved in the models and the considered geometries differ of those ensuring 

the validity of the different reduction hypotheses, efficient simulations are compromised. In these 

circumstances as just indicated the reduction from the 3D model to a 2D or 1D simplified one is 

not obvious, and 3D simulations appear many times as the only valid route for addressing such 

models, that despite the fact of being defined in degenerated geometries (beam, plate or shell) they 

seem requiring fully 3D solutions. However in order to integrate such calculations (fully 3D and 

implying an impressive number of degrees of freedom) in usual design procedures, a new efficient 

(fast and accurate) solution procedure is urgently needed.  

Historically, the Saint-Venant’s principle was extensively used in the Ladeveze’s works for 

defining elegant and efficient 3D simplified models (Hochard et al. 1993). This technique was then 

generalized to dynamics (Ladeveze et al. 2001) and it allowed a significant reduction of the 

computational complexity. 

Later, a new discretization technique based on the use of separated representations was 

proposed for addressing space-time nonlinear models by Ladeveze (1999) and then it was 

generalized for defining general separated representations of solutions involving conformational 

coordinates (Ammar et al. 2006), space and time, and even parameters were considered as extra-

coordinates. This technique was called Proper Generalized Decomposition – PGD-. The interested 

reader can refer to the recent reviews (Chinesta et al. 2010, Ammar et al. 2011, Ladeveze and 

Cueto 2011, Chinesta et al. 2013, and the primer Chinesta et al. 2014) and the references therein. A 

direct consequence was the separated representations involving the space coordinates. Thus in 

plate domains an in-plane-out-of-plane decomposition was proposed for solving flow problems in 

laminates (Ghnatios et al. 2015), then for solving thermal problems in extruded geometries 

(Leygue et al. 2013), elasticity problems in plate (Bognet et al. 2012) and shell (Bognet et al. 

2014) geometries and coupled multiphysics problems (Chinesta et al. 2012). In these cases the 3D 

solution was obtained from the solution of a sequence of lower dimensional problems. Refined 

models considering higher order approximations were considered in Vidal et al. (2013). 

It is important emphasizing the fact that these approaches are radically different to standard 

beam, plate and shell approaches. In fact, we propose a 3D solver able to compute the different 

unknown fields without the necessity of introducing any hypothesis. The most outstanding 

advantage is that 3D solutions can be obtained with a computational cost characteristic of standard 

2D or 1D solutions.  

Another appealing feature of separated representations is that it allows circumventing the curse 

of dimensionality, that is, the solution of a model defined in a high dimensional space of 

dimension D>3 can be obtained from the solution of a sequence of problems defined in spaces of 

moderate dimensions (1D, 2D or 3D). For instance, parameters in a model (material parameters, 

geometrical parameters or boundary conditions) can be set as additional extra-coordinates of the 

model. In a PGD framework, the resulting model is solved once for life, in order to obtain a 

general solution that includes all the solutions for every possible value of the parameters, that is, a 

sort of computational vademecum. Under this rationale, optimization of complex problems, 

uncertainty quantification, simulation-based control and real-time simulation are now at hand, 
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even in highly complex scenarios, by combining an off-line stage in which the general PGD 

solution, the vademecum, is computed, and an on-line phase in which, even on deployed, 

handheld, platforms such as smartphones or tablets, real-time response is obtained as a result of 

our queries (Chinesta et al. 2013, 2014). 

In this work we are considering the efficient solution of frame structures composed of complex 

beams. Different hypotheses will be considered: elastic behavior, small strains and displacements 

and static regime. Each beam involved in the structural frame is composed of elementary beams 

(we will consider only four I-beam typologies) that are assembled for composing the complex 

beams that are also assembled in the frame structure as depicted in Fig. 1.  

The optimization of such a structure concerns the shape optimization of each elementary beam 

involved in each beam composing the frame structure. The three design variables related to each 

elementary I-beam are the thickness of the web and of the lower and upper flanges, under the 

constraints of constant beam width and height. Thus, the total number of parameters involved in 

the optimization of the whole frame structure depicted in Fig. 1 is of 148, number that defines the 

dimension of the design space. 

We can notice immediately that the exploration of the whole design space is impossible when 

considering standard solution procedures. If we consider that each one of these 148 parameters can 

take 10 possible values, the number of possible configurations in the design space is 10
148

, even if 

such a detailed exploration is not compulsory for performing efficient optimizations.  

Frame structure optimization aims reducing the structure weight as much as possible while 

ensuring many other optimization constraints related to the maximum deflection of each beam, the 

maximum Von Mises stress and many geometrical constrains, while considering many loading 

hypotheses. Because some elementary I-beams involve circular and elliptical holes and they could 

in future works include other local complexities, we decided to perform a fully 3D elastic analysis 

of them. Moreover, results of fully 3D analyses could be also used for validating simplified 

approaches based on considering beam solutions coming from strength of materials or theory of 

structures, or the ones based on considering each elementary I-beam as an assemblage of three 

plates related to its web and both flanges. 

The main difficulty when addressing the structural optimization process is the necessity of 

evaluating the global elastic solution for each trial structure considered within the design space. 

With 148 design parameters and tens of constraints, robust and powerful optimization strategies 

will be needed, because one could expect thousands of 3D elastic solutions related to the trial 

structures.  

In order to alleviate the cost of optimization processes of such kind of frame structures we 

propose in this paper the construction of 4 computational vademecums, one for each elementary I-

beam typology, containing the parametric 3D elastic solution for given displacements at both ends. 

We discuss the choice of such displacements later. Then these vademecums will be assembled for 

composing the different beams involved in the frame structure. Then, all them will be assembled 

with the condensed fuselage structure (in the application here considered) from the degrees of 

freedom related to the beams ends. Thus, it results finally a sort of parametric frame structure 

model whose solution, as soon as the parameters are chosen, only requires the solution of a linear 

system of few hundreds of equations, despite the millions of degrees of freedom involved in the 

different fields approximation. 

The main numerical ingredients considered in the present work concern: (i) the space separated 

representation for the high fidelity solution of the 3D linear elastic and static problems at the level 

of each elementary I-beam; (ii) the introduction of four beam parameters as extra-coordinates of 
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the elastic problem related to each elementary I-beam: its length and the beam web and flanges 

thickness; and (iii) the assembling of the resulting parametric solutions for defining the beams and 

then the whole frame structure.  

In what follows we revisit in section 2 the main numerical techniques involved in the previous 

items. In section 3 we describe the construction of the elementary I-beams parametric solutions 

that will be assembled to define the frame structure in section 4. Finally numerical results will be 

addressed and discussed in section 5. 

 

 

2. Numerical techniques 
 

In this section we revisit separated representations involving an in-plane-out-of-plane separated 

representation. Then geometrical parameters will be introduced as model extra-coordinates in 

order to define a powerful shape optimization framework. 

 

2.1 In-plane-out-of-plane separated representation 
 

In many applications, the computational domain can be expressed as a product of lower 

dimensional domains. For example a hexahedral domain can be written as Ω=Ωx×Ωy×Ωz, an 

extruded domain as Ω=Ωxy×Ωz where Ωxy represents the usually geometrically complex cross 

section and Ωz the extrusion axis. Plates can also be written in the form Ω=Ωxy×Ωz where in this 

case Ωxy represents the middle surface and Ωz the plate thickness.  

Thus, a scalar field u(x,y,z) could be approximated in the separated form 

u(x, y, z)  Pi (x, y) Ti (z)
i1

N

                          (1) 

where the 3D solution only requires the calculation of about N 2D-functions Pi(x,y) and N one-

dimensional functions Ti(z), the computational cost associated to the last being negligible 

compared with the computational cost related to the computation of the two-dimensional 

functions. We discuss later the details related to the calculation of both kind of functions, deeply 

described in Chinesta et al. (2014).  

When we consider a vector unknown field, as the one related to the elastic displacements, 

u(x,y,z), the separated approximation (1) is considered for each of its components, i.e.  

u j (x, y, z)  Pi
j (x, y) Ti

j (z)
i1

N

                          (2) 

The compact form of Eq. (2) writes making use of the Hadamard product 

u(x, y, z)  Pi (x, y)oTi (z)
i1

N

                          (3) 

where vectors Pi and Ti contains functions Pi
j
 and Ti

j
 respectively. Because neither the 

number of terms N in the separated representation of the displacement field nor the dependence on 

z of functions Ti
j
 are assumed a priori, the approximation is flexible enough for representing the  

fully 3D solution, being obviously more general than theories assuming particular, a priori, 
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evolutions in the thickness direction z. 

Remark. The use of separated representations (1) or (3) is quite general. When the solution is 

regular enough it can be separated as a finite sum involving few terms (N). When it is badly 

separable the number of terms increases too much and in that case its use does not offer major 

interest. In general, to be efficient, the separated representation requires the separated 

representation of the domain itself. In the case of a cube, the three space coordinates can be easily 

separated. In the case of plates the most natural separation concerns the in-plane and the out-of-

plane coordinates. In the case of a rod, the most natural separated representation concerns the 

coordinates related to the cross section and the one related to the rod axis. When considering 

assembled structures we can separate each component and then assembling all them by using any 

domain decomposition strategy as for example the one considered in Nazeer et al. (2014).  

Let’s consider a linear elasticity problem on a plate domain Ω=Ωxy×Ωz. The weak formulation 

reads 

 *T K


    dx  u
*T



  f  dx  u
*T F dx

N

                    (4) 

where K is the generalized 6×6 Hooke tensor, f represents the volumetric body forces while F 

represents the traction applied on the boundary ΓN. The separation of variables previously 

introduced yields the following expression for the derivatives of the displacement components: 

u j ,k (x, y, z)  Pi,k
j (x, y) Ti

j (z),   k  x, y
i1

N



u j ,k (x, y, z)  Pi
j (x, y) Ti,k

j (z),   k  z
i1

N















                   (5) 

that allows writing the vector form of the strain tensor ε in Eq. (4) in a separated form (see Bognet 

et al. 2012, for additional details). 

The separated representation constructor proceeds by computing a term of the sum (3) at each 

iteration. Assuming that the first n−1 modes (terms of the finite sum) of the solution were already 

computed, the solution enrichment reads 

u
n(x,y,z)  un1(x,y,z) Pn(x,y)oTn(z)                     (6) 

where functions Pn(x,y) and Tn(z) are unknown at the present iteration. The test function u
*
, within 

the Galerkin framework, reads 

u
*(x,y,z)  P*(x,y)oTn(z) Pn(x,y)oT*(z)                   (7) 

The introduction of Eqs. (6) and (7) into (4) results in a non-linear problem. We proceed by 

considering the simplest linearization strategy, an alternated directions fixed point algorithm that  

proceeds by calculating Pn
m

 from Tn
m1

 (m refers to the nonlinear iteration) and then by 

updating Tn
m

 from the just calculated Pn
m

. The iteration procedure continues until convergence, 

that is, until reaching the fixed point Pn
m(x,y)oTn

m(z) Pn
m1(x,y)oTn

m1(z)   . After 

convergence we make the assignations Pn
m  Pn  and Tn

m  Tn . The enrichment stops when 

the model residual becomes small enough. Other error indicators are available (Ammar et al. 

2010)  
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When Tn is assumed known (we omit the superscript m−1 related to the nonlinear loop for 

notational simplicity), we consider the test function u
*
(x,y,z)=P

*
(x,y)oTn(z). By introducing the 

trial and test functions into the weak form and then integrating in Ωz because all the functions 

depending on the thickness coordinate are known, we obtain a 2D weak formulation defined in Ωxy 

whose discretization (by using a standard discretization strategy, e.g., finite elements) allows 

computing Pn (again we omit the superscript m  related to the nonlinear loop for notational 

simplicity). 

Analogously, when Pn is assumed known, the test function reads u
*
(x,y,z)=Pn(x,y)oT

*
(z). By 

introducing the trial and test functions into the weak form and then integrating in Ωxy because all 

the functions depending on the in-plane coordinates (x,y) are at present known, we obtain a 1D 

weak formulation defined in Ωz whose discretization (using any technique for solving standard 

ODE equations) allows computing Tn.  

As discussed in Bognet et al. (2012) this separated representation allows computing 3D 

solutions while keeping a computational complexity characteristic of 2D solution procedures. If 

we consider a hexahedral domain discretized using a regular structured grid with Mx, My and Mz 

nodes in the x, y and z directions respectively, usual mesh-based discretization strategies imply a 

challenging issue because the number of nodes involved in the model scales with Mx∙My∙Mz, 

however, by using the separated representation and assuming that the solution involves N  

modes, one must solve about N 2D problems related to the functions involving the in-plane 

coordinates and the same number of 1D problems related to the functions involving the thickness 

coordinate. The computing time related to the solution of the one-dimensional problems can be 

neglected with respect to the one required for solving the two-dimensional ones. Thus, the 

resulting complexity scales as N∙Mx∙My. By comparing both complexities we can notice that as 

soon as Mz>N the use of separated representations leads to impressive computing time savings, 

making possible the solution of models never until now solved, and even using light computing 

platforms, as depicted in Fig. 4 in Bognet et al. (2012). 

 

2.2 Parametric solutions involving the computational domain 
 
The parameters defining the computational domain can be considered as extra-coordinates 

within the PGD framework. This allows us to compute a general parametric solution for any 

computational domain defined from the chosen geometrical parameters, these taking values in 

their respective domains. A detailed description on this feature was addressed in Chinesta et al. 

(2013) and Chinesta et al. (2014). The idea behind it is quite simple. Imagine a simple one-

dimensional differential operator 
du

dx
 with x x  (0,L)  and that we are interested in 

calculating the solution u(x) in different domains characterized by their length L∈Λ. Now it 

suffices considering the change of variable x=λ∙L, λ∈(0,1), that results in  

du

dx

du

d

d

dx

du

d


1

L
                           (8) 

that allows looking for u(λ,L) with λ∈(0,1) and L∈Λ, in the separated form 

u(,L)   i ()
i1

N

  i (L)                           (9) 
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Fig. 2 Parametric domain 

 

 

This procedure can be generalized to vector fields, multidimensional spaces and many 

geometrical parameters, as described in Chinesta et al. (2013) and considered in Ammar et al. 

(2014). 

 

2.2 Towards efficient shape optimization 
 

In general shape optimization implies the definition of a cost function and the search of the 

optimum parameters (e.g., geometrical parameters describing the family of possible shapes) 

defining the minimum of that cost function. The process starts by choosing a tentative set of 

parameters. Then, the process is simulated by discretizing the equations defining the problem in 

the geometry defined by the tentative geometrical parameters. This solution is the most costly step 

of the optimization procedure. As soon as that solution is available, the cost function can be 

evaluated and its optimality checked. If the chosen parameters do not define a minimum of the cost 

function, the parameters should be updated and the solution recomputed. The procedure continues 

until reaching an acceptable minimum of that cost function.  

 To illustrate the proposed procedure that we will use in what follows, we consider a model 

defined in the domain sketched in Fig. 2, whose parametric space reduces to the horizontal and 

vertical displacement of the upper right corner, θ1 and θ2, we could summarize traditional 

optimization procedures as follows: 

Until reaching a minimum of the cost function C(θ1, θ2) proceed by: 

1. Computing the unknown field related to the trial choice of the geometry, i.e. u(ξ,η; θ1,θ2) 

(here (ξ,η) are the coordinates associated to the reference square) 

2. Computing the cost function C(θ1, θ2) from the just calculated model solution. 

3. Optimality checking. While the optimum is not reached, update the geometry, by using an 

appropriate strategy, and come back to step 1. 

In the approach proposed in Ammar et al. (2014) and considered in the present work the 

procedure is substantially different. It proceeds as follows: 

• Compute the unknown field in any possible geometry, i.e., u(,,1,2 )  (here the location 

of the upper-right corner play the same role that the space coordinates), the problem becoming 

multidimensional and then it will be solved by using the PGD separated representation. 

• Until reaching a minimum of the cost function C(θ1, θ2) proceed by: 

1. Particularizing the parametric solution to the considered values of the geometrical 

parameters. 
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Fig. 3 Elementary I-beams involved in the larger beams constituting the frame 

 

 

2. Computing the associated cost function C(θ1, θ2). 

3. Optimality checking. While the optimum is not reached, update the geometry by using an 

appropriate strategy and come back to step 1. 

Thus, by using this approach the model is solved only once and then it is particularized for any 

choice of the geometry. The price to pay is the necessity of solving a multidimensional model that 

now has as coordinates the space and all the geometrical parameters. The separated representation 

of the parametric solution writes 

u(,,1,2 )  Xi (,)
i1

N

 Fi (1) Gi (2 )                     (10) 

To build up such separated representation we must compute the functions defined in the space 

domain and the one-dimensional functions related to both geometrical parameters now assumed as 

model extra-coordinates.  

 

 

3. Elementary I-beams parametric solutions 
 

We consider the different typologies of the elementary I-beams involved in the frame structure 

depicted in Fig. 1, three of them illustrated in Fig. 3, the fourth one being similar to the one 

involving a circular hole, but containing a circular hole of larger diameter. 

As these four elementary beams are assembled into the frame beams depicted in Fig. 1 by 

considering different length of them we decided to include the elementary beams length as a model 

coordinate. In the same way, as we are interested in reducing as much as possible the different 

elementary beams web and flanges thickness in order to optimize the frame structure, we will 

consider these three thickness as extra-coordinates. 

Thus each elementary I-beam model consists of a 3D elastic solution for any length l and any 

thickness of the beam web and the upper and lower flanges, ω, f and g respectively. Thus the 

displacement, defined in a space of dimension 7, could be written as 





N

i

k
i

k
i

k
i

k
i

k
i

k gflgfl
1

)()()()()(),,,,( GFWSXRXu               (11) 

where the superscript k(k=1,2,3,4) refers to the elementary I-beam considered. The different 

coordinates are defined in theirs respective intervals: X∈Ω
r
, l∈Ωl, ω∈Ωω, f∈Ωf and g∈Ωg. 

A mapping transforms the reference domain Ω
r
 into the real one Ω, the last of length l and web, 

upper and lower flanges thickness, ω, f and g respectively. Points in the reference domain Ω
r
 are  
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Fig. 4 Sketch of the mapping of the parametric domain into real elementary I-beam 

 

 

denoted by X whereas the ones in the real elementary beam Ω are denoted by x. The mapping 

Ω
r
→Ω is illustrated in Fig. 4. 

The previous separated representation (11) requires the solution of several 3D problems for 

calculating space functions Ri
k (X) . For alleviating the associated computational cost we can  

proceed to a further separation, the one allowing to perform an in-plane-out-of plane separated 

representation, the in-plane being the beam axis X and height Y and the out-of-plane being the 

beam width Z. The most natural choice in the case of profiles considers the in-plane coordinates 

the ones related to the profile cross section (Y, Z) and the out-of-plane the one related to the beam 

axis X , however such a decomposition does not allows describing profiles containing holes that 

cannot be represented in such separated form. Thus, the separated representation of the parametric 

displacement writes 





N

i

k
i

k
i

k
i

k
i

k
i

k
i

k gflZYXgflZYX
1

)()()()()(),(),,,,,,( GFWSTPu         (12) 

whose complexity reduces from the 3D characteristic of formulation (11) to the 2D associated with 

Eq. (12) whose construction only requires the solution of a series of 2D problems related to the  

calculation of functions Pi
k (X,Y )  (being the cost associated with all the other 1D solutions  

negligible). 

In order to compute the parametric elastic solution of each one of the four elementary I-beams, 

we must prescribe appropriate loadings (forces or displacements). First, we considered the off-line 

elastic solution associated with different loadings applied on the whole beams (each one composed 

of several elementary I-beams with different choices of the web and flanges thickness). From these 

solutions (computationally expensive but off-line) we verified the fact that the displacement field 

at the elementary I-beam interfaces can be fully described by the usual beam theory kinematic  

torsor composed of three unit displacement and three unit rotations  (x ,y,z ,x ,y,z ) .  

We can then conclude that the 3D effects are mostly located inside the elementary I-beams but that 

they do not reach (significantly) the elementary I-beam ends.  

Remark. All the external forces applied on the frame structure are assumed acting at the I-beam 

interfaces. When it is not the case two simple alternatives exist: (i) move the loads to the neighbor 

interfaces or (ii) consider the load location on the beam as an extra-coordinate as described in 

Niroomandi et al. (2013). 
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Remark. In fact the kinematics at the interface between two consecutive I-beams can be 

expressed from a few number of modes (in general lower than the 6 elementary  

displacements/rotations involved in the kinematic torsor ) that can be extracted by applying a 

singular value decomposition to the off-line solutions obtained by considering different loadings 

and elementary I-beams web and flanges thickness. However, in that case the reduced basis at each 

interface, even if smaller than the one involved in , results different at each interface between 

two consecutive elementary I-beams. For this reason in what follows we consider the reduced 

basis expressed by the standard kinematic torsor . When the complexity of the considered 

systems avoids the use of such standard torsor the simplest choice consists of assuming a common 

basis integrating the significant modes at each interface. Even if the resulting number of modes 

could increase significantly, it will remain moderate. 

Now, because the linearity of the problem, we can compute the parametric elastic solution for 

each elementary I-beam by prescribing at each beam end the displacement field associated with 

one of the elements of the kinematic torsor, all the others being zero. 

Thus, we obtain 12 parametric elastic solutions for each one of the four elementary I-beams: 

um
k(X,Y ,Z,l,, f ,g)  and um

k(X,Y ,Z,l,, f ,g)  with k=1,...,4 and m=1,...,6. In these 

expressions the superscript k refers to each I-beam typology, the superscript (+) and (−)refer 

respectively to I-beam right and left ends and the index m refers to the active element of the 

kinematic torsor considered in the elastic parametric solution. 

Due to the model linearity, any possible parametric solution in each I-beam can be written as a 

linear combination of these 12 solutions, that is: 

u
k (X,Y ,Z,l, , f ,g)   m



m1

6

 um
k (X,Y ,Z,l, , f ,g)   m



m1

6

 um
k (X,Y ,Z, l, , f ,g)    (13) 

Knowing the parametric displacement fields um
k(X,Y ,Z,l,, f ,g)  and 

um
k(X,Y ,Z,l,, f ,g)  we can compute the parametric stress fields everywhere by calculating the  

parametric strain and then applying the linear elastic behavior law. The integration of the stresses 

on the elementary I-beam ends allows computing the three resultant forces and moments at both  

ends of each elementary I-beam, i.e., the mechanical torsor. The mechanical torsor   is 

composed of three forces and three moments  (Fx ,Fy ,Fz ,Mx ,My,Mz ) .  

 

 

4. Parametric frame structure 
 

From the previous developments we can define the elementary I-beam condensed parametric 

rigidity matrix relating the kinematic and mechanical torsors at the I-beam ends.  

Thus we can write for each elementary I-beam n (n=1,...,4) 

n

n














K
n

K
n

K
n

K
n











U
n

U
n









                    (14) 

that represents a parametric elastic beam. In expression (14) vectors U
n-

 and U
n+

 contains 

coefficients  m


 and  m


 involved in Eq. (13). 

A soon as the geometrical parameters (l,ω,f,g) are chosen, the condensed parametric rigidity 
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matrix results in the beam rigidity matrix. For uniform beams this matrix coincides with the 

standard and well-known beam rigidity matrix. 

Now, the assembling proceeds as in standard structural analysis by writing the forces and 

moments equilibrium at each I-beam interfaces. Assuming the external forces and moments  

applying in each interface s (s=1,...,S) given by 
s
, it results after assembling all the elementary 

I-beams composing the frame beams 

K U  F                                 (15) 

where U
T
=(U

1
,...,U

S
) and F

T
=(F

1
,...,F

S
). 

The resulting algebraic linear system contains 6 degrees of freedom at each interface, that 

results in general in a linear systems involving few hundreds of degrees of freedom despite the 

high fidelity description (equivalent to thousands of millions degrees of freedom) considered for 

representing each parametric 3D I-beam solution. 

As soon as the kinematic torsor is available at each interface, the 3D representations of 

displacements, strains and stresses can be calculated at each point of each elementary I-beam 

involved in the beams composing the frame structure. This calculation can be performed 

efficiently (accurate and fast) because all the information is available in the parametric solution 

related to each elementary I-beam. 

 

 

5. Results and discussion 
 

By applying the procedure just described we can compose any beam of the frame structure by 

assembling different elementary I-beam typologies, by fixing their different length and web and 

flanges thickness. If the structure frame involves other elementary typologies, 12 parametric 

solutions should be pre-computed in order to define the elementary beam condensed parametric 

rigidity matrix. 

When focusing in the problem depicted in Fig. 1, each one of the six beams is composed of 

several elementary I-beams of different lengths. When fixing the 148 thickness defining the design 

variables (web and flanges thickness of each elementary I-beam) and enforcing the external 

loading, we can proceed to the assemblage and solution of the resultant condensed structure at the 

interfaces. The solution allows computing the displacement everywhere.  

The considered algorithm consists of: 

• Compose each beam of the frame by considering elementary beams, like in a “lego”, of 4 

different typologies. If new typologies are required, 12 parametric problems must be solved, as 

previously described, to define the parametric stiffness matrix of each new elementary beam 

typology. 

• As soon as the length and thickness of each elementary beam are specified the parametric 

stiffness matrix of each beam is particularized and then all them assembled into the frame stiffness 

matrix that is then assembled with the condensed matrix of the fuselage. The vector containing the 

forces applying at the elementary beam interfaces is also constructed. 

• The linear algebraic system is then solved to obtained the generalized displacements and 

forces at the elementary beam interfaces from which they can be extended everywhere. 

• Different quantities of interest are then evaluated and the optimality and restrictions checked. 

If both criteria are not satisfied webs and flanges thickness are updated and then the frame is 

assembled and solved again. The process continues until fulfilling optimality criteria while  
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Fig. 5 Frame structure displacement field for a particular choice of the loading and the geometrical 

parameters (web and flanges thickness of each elementary I-beam) 

 

 

satisfying all the kinematical (maximum displacements) and mechanical (maximum Von Mises 

stress) constraints. 

More concretely, the frame illustrated in Fig. 1 and here considered is composed of 6 beams, 

four of them involving 24 elementary I-beams (of the four typologies previously described) and 

the remaining two are composed of 22 elementary I-beams. The boundary conditions are not 

explicitly enforced because these 6 beams are assembled with the condensed fuselage stiffness 

matrix at their ends. 50 loading cases where analyzed to ensure the structural integrity of the 

structure and the material properties were the ones corresponding to aluminum. 

Four different constraints were checked, concerning (i) the maximal deflection of the beams; 

(ii) the maximum bending moment transmitted to ten fuselage at the six beam ends; (iii) the gap in 

the web and flanges thickness from one elementary beam to the neighboring ones, and (iv) the 

maximum Von Mises stress. These constraints were checked at each step of the optimization 

algorithm. 

A solution associated to a particular choice of external loads and design parameters is depicted 

in Fig. 5. This solution is in perfect agreement with the one obtained by using any well-

experienced commercial simulation code, whose solution was too expensive from the 

computational point of view to be considered in optimization processes where too many 

calculations could be required. Here 3D solutions for some geometries by using commercial 

software where considered in the verification of the I-beams parametric solutions and for 

validation the whole structural analysis. 

In order to conclude on the performances of the strategy just presented, and that was fully 

verified, we are given some indications on the complexity of the different steps. 

• The description of the different elementary I-beams (four in the present application) is 

equivalent to the use of 40.000 nodes in Ω
r
 and 10

8
 in the parametric domain (involving four 

dimension: the length and three thickness coordinates, each one consisting in 100 possible values). 

Obviously such a richness is excessive in the present application that as discussed previously is 

quite well represented by standard beam theory, but it serves to emphasize the possibilities of the 
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proposed strategy that can represent solutions with an unimaginable accuracy.  

• Due to the separated representation involved in the PGD solver the complexity of such 

extremely fine description scales with few thousands of nodes involved in the description of the 

in-plane functions (the others coordinates involve the solution of 1D problems whose complexity 

can be neglected). The calculation and post compression of the resulting separated representation 

of the parametric elastic solution in each elementary I-beam represents less than one-day 

computation in an ordinary laptop. This task is performed only once for each elementary I-beam 

typology in order to extract its parametric solution. 

• When fixing a loading and the web and flanges thickness of each elementary beam, the 

assemblage of the global structure needs about 0.3 seconds in an ordinary laptop. The solution of 

the assembled linear system needs less than 0.5 second. Then the evaluation time of a particular 

configuration (frame structure) is performed in less than 1 second. This time is characteristic of 

standard structural analysis, however here we are considering rigidity matrices that takes into 

account eventual 3D effects and we are post-processing 3D solutions. 

• The post-processing time could be greater, mainly if one must determine the maximum Von 

Mises stress in each elementary I-beam. In that case if we look for the stress at each node (about 

40.000) in each one of the hundreds elementary I-beams composing the whole frame, the 

computing time results of few tens of second. Obviously when using the available information 

coming from the beam theory that applies quite well in the present case, the computing time can be 

reduced to few fractions of second. 

• In the general case, with few tens of seconds involved in each evaluation of a trial 

configuration, the computing time involved in the optimization involving 148 design variables and 

hundreds of constraints, could be prohibitive. When using the information available on the regions 

in which the maximum stresses locate due to the solution knowledge, efficient optimizations can 

be envisaged. 

• In the general case, the choice of the optimization strategy is a key-point, and constitutes a 

work in progress. The coupling between our procedure and the use of robust commercial 

optimization software based on the construction of an intermediate metamodel (e.g., Macros from 

Datadvance http://www.datad\-vance.net) constitutes an appealing route to perform robust 

optimization based on high fidelity 3D descriptions of frame structures.  

 

 

6. Conclusions 
 

This work proposes a new methodology for addressing the calculation and optimization of 

complex frames composed of complex beams. In order to speed as much as possible the 

calculation without scarifying the solution accuracy and the eventual 3D features (many times 

existing locally) we propose the construction of different parametric elastic 3D solutions related to 

the different elementary beams composing the complex beams that integrate the structural frame. 

These parametric solutions contain the elastic solution for any geometry (length and web and 

flanges thickness) and any kinematic torsor acting on the elementary beam-ends. As soon as the 

beam geometry is defined, the elementary beam condensed matrix are assembled and the resulting 

linear system solved. 

The procedure here proposed allows solving any frame (among a multitude of them, 10
8
 in the 

application here considered) in a laptop while keeping the fully 3D resolution, in some fractions of 

second. This efficiency allows envisaging the use of the just described procedure for constructing 

246



 

 

 

 

 

 

Parametric 3D elastic solutions of beams involved in frame structures 

metamodels that could be used for efficient shape optimization of structural frames. The analysis 

of this potentiality constitutes a work in progress. 
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