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Abstract.  This article introduces a formalism for the analysis of airplane trajectories on which the motion is 
determined by specifying the power of the engines. It explains a procedure to solve the equations of motion to obtain 
the value of the relevant flight parameters. It then enumerates the constraints that the dynamical abilities of the 
airplane impose on the amount of fuel used, the speed, the load factor, the lift coefficient, the positivity and upper 
boundedness of the power available. Examples of analysis are provided to illustrate the method proposed, with 
rectilinear and circular trajectories. Two very different types of airplanes are used in the examples: a Silver Fox-like 
small UAV and a common Cessna 182 Skylane.  
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1. Introduction 
 

Our purpose in this work is to contribute to the automation of trajectory planning for fixed-

wing airplanes, which is an essential step in rendering unmanned aerial vehicles (UAVs) 

autonomous. The vehicles considered here are fixed-wing propeller driven airplanes. General 

trajectory planning involves two steps. Firstly, a path is constructed as a continuous curve in 3D 

space that has a continuous tangent, which corresponds to the direction of the velocity being 

continuous. Secondly, a speed is assigned to the vehicle at each point of this path. There are 

absolute constraints imposed by the nature of the terrain and the dynamical abilities of the vehicle. 

There is also usually a requirement to optimize certain parameters for the benefit of the mission. 

Quite a number of optimization approaches have been proposed in this context; see, for example, 

Poudel et al. (2023), Ait Saadi et al. (2022) for up-to-date reviews. 

For the construction of the paths, Frazzoli et al. (2005) have proposed an efficient technique 

that is the most often used one today. It consists in concatenating elementary path segments, called 

motion primitives. The primitive segments most usually considered are rectilinear, circular and 

helical. This approach simplifies appreciably the calculations in that the behavior of the airplane 
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on the motion primitives can be analyzed once and for all, and it then suffices to adjust the 

connections between primitives to construct a path. A variation of this approach that is often used 

consists in determining waypoints, building a skeleton trajectory made up of connected rectilinear 

segments that link these points, and then smoothing out the connections so that the path tangent is 

continuous.  

In the present article, we assume that we are given a path that has already been constructed, by 

whatever means. Our main contribution in this work is the presentation of an approach for 

efficiently determining the speeds that are allowed on the provided path. It does so by relating the 

proposed power settings to the values of the basic variables such as the speeds, the lift coefficient, 

the load factor and the amount of fuel required. It also indicates how to deal with the constraints 

imposed by the dynamical abilities of the airplane. The aeronautics formalism we use is essentially 

that found in classical textbooks such as those of Anderson (2000), Stengel (2004). However, we 

have incorporated in the equations of motion a rarely included term that corresponds to the change 

in mass due to fuel consumption. We decompose them in the Frenet-Serret coordinates and arrange 

them in a form that straightforwardly allows to generate their solution with a Runge-Kutta method, 

when given a power profile. This work is of primordial importance in that the method presented 

tells if a proposed trajectory is flyable by the airplane, while also providing all the information 

required for the optimization of the trajectory. 

We believe this work to constitute an original contribution; we found few articles that are close 

to this subject. It will be very helpful for studies such as Gramajo and Shankar (2017) who pose 

similar questions for UAVs, used in search and coverage missions, and analyze some of the 

dynamical constraints. Our work has also more general relevance in that it proposes a fundamental 

tool for the analysis of the motion of any fixed-wing propeller airplane. As such, it could serve for 

the developers of high-performance UAVs, by complementing analyses such as those of Varsha 

and Somashekar (2018).  

We give examples of our approach to trajectory analysis for rectilinear and circular paths. 

These types of path segments are important because they are the motion primitives used in one of 

the main construction methods for complete paths. Our examples involve two very different 

airplanes: a Silver Fox-like small UAV that has a fixed pitch propeller and a Cessna 182 Skylane 

that has a constant speed propeller. They differ considerably in size and also in propeller type. 

Their properties are listed in our Appendix B. The relevant nomenclature can be found in our 

Appendix A. The equations of motion that we use take into account the change in weight of the 

airplane as fuel is burned, which is rarely done in other articles, as explained in Labonté (2012), 

and the influence of the altitude on the dynamical performances of the airplane. At the level of this 

study, we neglect the effects of the curvature and the rotation of the earth as do Anderson and 

Stengel.  

 

1.2 Organisation of the article 
 

This article starts with a presentation of the equation of motion for the center of mass of a 

fixed-wing airplane moving on an arbitrary trajectory. It decomposes this equation in its 

longitudinal and transversal components. It then sums up the constraints on the flight parameters 

that are required by the dynamical abilities of the airplane. It then describes the differential 

equations to be solved when the trajectory of the airplane is specified by the engine power along 

its path. It explains how to solve these equations with the Runge-Kutta method of order 4. Three 

examples, each, for the two airplanes considered, are provided to illustrate the proposed trajectory 
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flyability analysis with its determination of the important flight parameters. The first two are for 

rectilinear trajectories, one at power off and the other one at full power. The third one is an 

inclined circular trajectory with power that varies as an arctangent along the path. These examples 

are solved for the amount of fuel used, the speed, the load factor and the lift required to fly the 

trajectory. It is demonstrated that all the required constraints are satisfied, for the flight parameters 

used on these trajectories. 

 

 

2. The airplane equations of motion 
 

The motion of airplanes can be described by the six degrees of freedom equations for the 

motion of an object in three dimensions, which are 

 𝑭 = 𝑚
𝑑𝑽

𝑑𝑡
+ 𝑚 w × 𝑽 and 𝑮 =  

𝑑𝑯

𝑑𝑡
+ w × 𝑯  

in which F is the force acting on the center of mass of the body, G is the applied moments or 

torques around the x, y, z axes, V is its velocity, the components of w are the rotation rates or 

angular velocities about the three axes x, y, z and H is its angular momentum.  

Cowley and Levy, in Section 15 of their book (1920) underline the fact that a rigorous 

treatment of curved trajectories is extremely complicated because of the imperfectly known 

influences of the differences in aerodynamic forces along the wings, due to their non-symmetric 

role in the motion. They then mention that “any increase of drag due to the angular velocity of the 

aircraft and the deflections of the control surfaces can be neglected in comparison with the 

dominant lift-dependent drag”. In his Chapter XVII on “Nonuniform Flight”, Von Mises (1945) he 

discusses vertical loops and banked horizontal turns. He points out that in curved trajectories, “the 

air reactions must supply, in addition to the centripetal force ..., a rolling, a pitching, and a yawing 

moment...” After some calculations, for the banked turn, he comments that, “the moments required 

for maintaining the steady rotation are unimportant under normal conditions”, Mair and Birdsall in 

Chapter 8 of their book (1992) make the same comment. 

Correspondingly, in the present study, we also assume that, on the trajectories considered, the 

motion of rotation of the airplane about its center of mass does not affect appreciably the motion of 

its center of mass. We thus consider only the equation of motion for the center of mass of the 

airplane, and neglect the terms that correspond to the rotation rate in the first equation. Thus, the 

material we present should be thought of as a preliminary study of airplane performance. We 

project a further study in which these terms will be taken into account. 

Furthermore, as is often done, we considered that the angle of attack is small enough that 

calculations can be done as if the thrust, which is actually along the airplane’s body, can be 

considered to be in the direction of motion. We also do not take into account the perturbations of 

the atmosphere.  

Fundamental to the description of the airplane motion is the shaft brake power P of the engine, 

described in Chapter 9 of Anderson (2000). Because of their internal combustion nature, the 

engine produce power that varies with the altitude as the air density varies. This variation is 

according to the equation 

 𝑃(ℎ) = 𝑃(0)
𝜌∞(ℎ)

𝜌𝑠
 (1) 
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in which ρ∞(h) is the density of the undisturbed air in front of the airplane at altitude h, ρs and P(0) 

are respectively the value of ρ∞ and P at sea level. The power produced by the engines is 

transferred to the propellers that let the power PA be available to move the airplane, with 

      PA=ηP                                                                           (2) 

The parameter η is the efficiency of the propeller, which varies with the speed of the airplane 

(see Appendix B). The power made available PA must be at least equal to the power required PR for 

the airplane motion, which is determined by the equations of motion. For fixed pitch propellers, 

there is a speed at which η would change sign, going from positive to negative. Although a 

negative propeller efficiency could be desirable to slow down the airplane when it descends, it is 

not recommended to let this happens. Indeed, the propeller would then drive the engine and may 

thus damage it; see the Commercial Aviation Safety Team document (2011). We shall therefore not 

allow speeds larger than that value. 

The rate of fuel burning is described by the equation      

 
𝑑𝑊

𝑑𝑡
=  −𝑐𝑃 (3) 

in which W is the total weight of the airplane, c is the specific fuel consumption. The equations of 

motion contain the thrust TR required for the motion to be possible. Clearly, the power available 

must correspond to this thrust. Chapter 5 of Stengel (2004) explains how the thrust is related to the 

power, for propeller driven airplanes. The power produced by the propeller PA moves the air with a 

thrust TA across the propeller such that 

PA=TA (V∞ + DVi) 

where V∞ is the airplane speed and DVi is the speed increase of the air across the propeller disk. 

Clearly, even when the airplane is not moving, there would be power required to turn the 

propellers. The power TAV∞ is thus the useful power that can propel the airplane, and TADVi is the 

induced power that accelerates the flow of air downstream. The propulsive efficiency ηI is then 

defined as 

 𝜂𝐼 =  
𝑉∞

𝑉∞ + D𝑉𝑖
 . so that 𝑢𝑠𝑒𝑓𝑢𝑙 𝑝𝑜𝑤𝑒𝑟 = 𝜂𝐼𝑃𝐴  

and the thrust can be related to the power available, the airspeed and air density as 

 𝑃𝐴 = 𝑇𝐴  [
𝑉∞

2
+ √(

𝑉∞

2
)

2

+
𝑇𝐴

2𝜌∞𝐴
 ] . (4) 

where A=π Rad 
2 is the area traced by the propeller of radius Rad when it rotates. When the speed 

V∞ is null, the static thrust is 

 𝑇𝐴 = √2𝜌∞𝐴𝑃𝐴
23
  

From Eq. (4) there follows that the thrust TA is related to the power available PA through a cubic 

equation, the solution of which is 

𝑇𝐴(ℎ, 𝑉∞, 𝑃𝐴) = 𝑃𝐴
1/2(𝜌∞𝐴)1/3 {[𝑃𝐴

1/2
− √ 𝑃𝐴 +

8𝜌∞𝐴𝑉∞
3  

27
]

1/3

+ [𝑃𝐴
1/2

+ √𝑃𝐴 +
8𝜌∞𝐴𝑉∞

3

27
]

1/3

}  (5) 
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In Labonté (2012), it was shown how to take into account the change in the mass M of the 

airplane as fuel is burned. Newton’s equation of motion then becomes 

 𝑀
𝑑v

𝑑𝑡
− (𝐴𝐹𝑅) [ 

𝑑𝑀 

𝑑𝑡
] v = 𝑭 . (6) 

In this equation, v is the airplane velocity, (AFR) is the air to fuel ratio in the combustion 

process, which is about 14.7 for gasoline or diesel (Kamm 2002), and F is the total force acting on 

the center of mass of the airplane. F has four components: the thrust TR produced by the engines, 

the lift produced by the airfoil and the airplane body, the drag due to air resistance and the force of 

gravity. The unit vector T is defined as being in the direction of the motion of the center of mass of 

the airplane. It is therefore tangent to the path and we shall consider that the thrust acts along its 

direction so that  

     𝑻𝑹 = 𝑇𝑅 𝑻,                                                                       (7) 

The lift L is 

   𝑳 = 𝐿𝑼𝐿 with 𝐿 =
1

2
𝜌∞𝑆 𝐶𝐿𝑉∞

2 ,                                                        (8) 

and where UL is the unit vector in the direction of the lift. Assuming that the airplane is bilaterally 

symmetric, we denote as w the unit vector along the straight line from its left to its right wing tips. 

Then UL=w  T; it is therefore always perpendicular to the direction of the motion that is the same 

as that of the relative wind. L is generally positive but can also be negative when the lift coefficient 

CL is negative, which is possible with certain wing profiles. The drag is 

   𝑫 = −𝐷𝑻 with 𝐷 =
1

2
𝜌∞𝑆 𝐶𝐷𝑉∞

2                                                      (9) 

where D is always positive, and the force of gravity is 

    𝑾 = −𝑀𝑔𝒌,                                                                (10) 

in which g is the gravitational constant and k is the unit vector in the positive direction of the earth 

z-axis. 

 

2.1 Decomposition of Newton’s equation 
 

With the values of the force F given in Eqs. (7) to (10), Newton’s Eq. (6) becomes   

 𝑀 [
𝑑𝑉∞

𝑑𝑡
𝑻 +

V∞
2

R
𝑵] − (𝐴𝐹𝑅)

𝑑𝑀

𝑑𝑡
𝑉∞𝑻 = 𝑇𝑅𝑻 + 𝐿𝑼𝐿 − 𝐷𝑻 − 𝑀𝑔𝒌 (11) 

where T and N are respectively the Frenet-Serret unit tangent and unit normal vectors. The 

projection of Eq. (11) along the vector T yields the following equation for the longitudinal motion 

 𝑀
𝑑𝑉∞

𝑑𝑡
− (𝐴𝐹𝑅)

𝑑𝑀

𝑑𝑡
𝑉∞ = 𝑇𝑅 − 𝐷 − 𝑀𝑔(𝒌  𝑻). (12) 

There are two components of Eq. (11) that are perpendicular to T: one in the direction of the 

normal N and one in the direction of the binormal B. It’s component along N is  

 𝐿 (𝑼𝐿 𝑵) = 𝑊𝐴𝑐 in which 𝐴𝑐 =
𝜅 V∞

2

g 
+ (𝒌  𝑵)  (13) 
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is the centripetal acceleration. It can be negative, for an example, when the airplane is flying right-

side-up in the upper part of an inclined circular path. Upon projecting Eq. (11) in the direction of 

B, there results 

  𝐿(𝑼𝐿 𝑩) = 𝑊(𝒌  𝑩) .  (14) 

Given Eqs. (13) and (14) and the fact that UL has only components along N and B, there 

follows that 

 𝑼𝐿 =
𝑊

𝐿
[𝐴𝑐N + (𝒌  𝑩)𝑩] . (15) 

Thus 

      L=Wn,                                                                         (16) 

with 

 𝑛 = e √𝐴𝑐
2 + (𝒌  𝑩)2 (17) 

in which e=1 is the sign of the lift L, that is, of the lift coefficient CL. The ramp angle or climb 

angle 𝜃̅ is 

 sin(𝜃̅) = 𝒌 ∙ 𝑻. (18) 

The angle of roll 𝜙̅ is the angle that the lift makes with the position it would hold if the airplane 

was moving horizontally at trim condition. In this case, the lift would lie in the vertical plane that 

contains the longitudinal axis of symmetry of the airplane that passes through its center of mass. 

This plane is defined as containing the unit vectors T and k. The angle of roll 𝜙̅  is therefore 

 sin(𝜙̅ ) = U𝐿 ∙ (𝒌 × 𝑻)  

Upon substituting in this equation, the value of UL given in Eq. (15) there results   

 sin(𝜙̅ ) =
𝜅 𝑉∞

2

𝑔𝑛
(𝒌 ∙ 𝑩) (19) 

 

 

3. The absolute physical constraints 
 

There are constraints that ensure the integrity of the structure of the airplane and some that 

result from the configuration of its airframe and the power of its engines. These are: 

• The load factor n is bounded below by nmin and above by nmax, in which the bounds are 

constants that are respectively negative and positive, with nmax>1 and nmin≤-1. For curved paths, 

the bound on the load factor imply a lower limit for the turning radius. 

• The lift coefficient is bounded below by CLmin et above by CLmax. CLmax is always positive and 

CLmin is usually also positive but it can be negative for certain airfoil profiles. For curved paths, 

there will be a lower limit on the radius resulingt from this bound on the lift coefficient. 

• The speed V∞ is bounded below by the stall speed: Vstall at which the lift is not sufficient to 

sustain the airplane motion. It is bounded above by the value VNE (the suffix NE stands for 

“Never Exceed”) that is determined by the airplane constructor. For airplanes with a fixed pitch 
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propeller, there is another upper bound on the speed that corresponds to the requirement that 

the efficiency of the propeller does not become negative (see Appendix B). It is not 

recommended to let this happen because then the propeller drives the engine, instead of the 

other way around, thus causing a negative torque. High levels of negative torque result in high 

drag and potential engine damage.  

• The power available to move the airplane is bounded above according to the capacity of its 

engines.  

• There is also obviously a constraint on the fuel that is available. 

 

 

4. Trajectories with prescribed power 
 

We consider the situation in which the motion of the airplane is determined by specifying the 

power provided by the engine(s) PP along the path. Without loss of generality, we suppose that its 

value is given by a continuous function Pfn of the distance s traveled along the path, as Pfn(s) for 

s=0 to sf=the length of the path. If the power is prescribed only at certain points along the path, a 

continuous function Pfn can then be defined as that of a cubic spline passing through these points. 

Alternatively, the user may consider that the power maintains the same value given at one position 

until the next position at which a new value is given.  

In this problem, there are three differential equations to solve. The first one is Eq. (2), in which 

P=Pfn(s). The second one is Eq. (12) that describes the longitudinal component of the Newton 

equation of motion. Upon substituting in it the value of dM/dt, given by Eq. (2), and the value of 

TR=PR/V∞ and that of the drag force D given as: 

 𝐷 =  
1

2
𝜌∞𝑆𝐶𝐷𝑉∞

2 .  

Upon replacing L by its value given in Eq. (16), there results the following expression for CL 

 𝐶𝐿 =
 2 𝑊 𝑛

𝜌∞𝑆𝑉∞
2  (20) 

Correspondingly, the drag D can be written as       

 𝐷 = 𝐷(ℎ, 𝑉∞, 𝑊) =  
1

2
𝜌∞𝑆𝐶𝐷0𝑉∞

2 +
2𝑊2𝑛2

𝜋𝑒𝐴𝑅𝜌∞𝑆𝑉∞
2   (21) 

Thus, Eq. (12) becomes the following differential equation for V∞ 

 
𝑑𝑉∞

𝑑𝑡
=

1

𝑀
{ 𝑇𝑅 −

(𝐴𝐹𝑅)𝑐

𝑔
𝑉∞𝑃 − 𝐷(ℎ, 𝑉∞, 𝑊, 𝑛)} − 𝑔(𝒌  𝑻). (22) 

Note that using the Runge-Kutta 4 method to solve this equation, requires to dispose of the 

values of the altitude h and of the projections k  T, k  N and k  B that depend on the path. 

Therefore, these values depend on the value of s, the distance traveled from the start of the 

trajectory. This value is in turn obtained by solving the following equation  

 
𝑑𝑠

𝑑𝑡
=  𝑉∞ (23) 
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4.1 Runge-Kutta solution 
 

The system of three equations Eqs. (3), (22), (23) can be written as     

 
𝑑𝑼

𝑑𝑡
= 𝑭(𝑡, 𝑼)  (24) 

in which U=[W, V∞, s]T and the vector valued function F has the following three components 

 𝐹1 = −𝑐𝑃(𝑠) (25) 

 𝐹2 = 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑛𝑑 𝑆𝑖𝑑𝑒 𝑜𝑓 𝐸𝑞. (22). (26) 

 𝐹3 =  𝑉∞ (27) 

In order to solve Eq. (24) with the R-K 4 method, it is necessary to dispose of a small time step 

dt to iterate the value of the desired parameters. We note that, before solving the equations, there is 

no way to determine a value of dt so that an integral number of steps of this length will make the 

solution for s arrive exactly at sf. The procedure we have adopted consists in selecting some dt, 

solving the equations, and stopping the R-K 4 calculation at the first step N where sN≥sf. If the 

equality holds, then there is nothing more to do. If s has overpassed sf, then the last time step 

length is modified so that, with this last step, s terminates at sf. We did this by constructing a cubic 

spline sspline from the sequence of the last five distances {sn} and using it to interpolate and 

determine the instant tf at which sspline (tf)=sf. The last time step that will make the solution arrive 

exactly at sf is then set to be of length tf-tN-1. 

Once a correct time sequence has been obtained, it is possible to obtain the final values of W 

and V∞, either by representing them as cubic splines in their own right, or by doing the last R-K 

step with the length of the last time step. 

As discussed in Lotkin (1951), the approximation error in a sequence of N steps of the R-K 

method, for the differential equation 

 
𝑑𝒚

𝑑𝑡
= 𝑭(𝑡, 𝒚) with the initial condition y(t0)=y0.  

can be estimated without knowing the exact solution. For time steps of equal length dt, such an 

estimate is obtained as follows. Let ya1=yN be the approximate value of y constructed by a 

sequence of N steps of size dt that ends at time tN, and ya2=y2N the approximate value obtained with 

2N steps of size dt/2. Then the truncation error E1=||y(tN)-ya1||, where y(tN) is the exact value of the 

solution at time tN, is of the order of     

 𝐸1 ≈
16

15
‖𝑦𝑎1 − 𝑦𝑎2‖.   (28) 

 

 

5. Examples of flyability analysis with prescribed power 
 

We now demonstrate how to use the procedure explained above, by examining the flyability of 

trajectories for the Silver Fox like UAV and the Cessna 182 Skylane on the following trajectories: 
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5.1 Rectilinear trajectory at power off 

5.2 Rectilinear trajectory at maximum power 

5.3 Circular trajectory at altitude varying power 

The first two trajectories have been examined from a different point of view in Labonté (2020), 

where the parameters have been determined to obtain optimal glide and optimal climb. These 

examples are reviewed here as an illustration of our feasibility analysis method. An example of a 

circular trajectory with minimal power requirement has been considered in Labonté (2017). The 

example considered here is different than that one. Not only it provides an illustration of our 

feasibility analysis method, but it presents also a never before considered way of varying the 

power on a circular trajectory. 

The computation times reported for each example are correspond to our own implementation of 

the R-K 4 algorithm with the software Matlab, run on a portable Omen laptop from HP with Intel 

Core i7-10750H CPU@2.60 GHz. They are the average of 10 runs of the same calculation of the 

solution together with the verification of all the constraints. 

 

5.1 Rectilinear trajectory at power off 
 

On a rectilinear path, the unit tangent vector T is constant and makes an angle θ with a 

horizontal plane. Since θ lies in the interval [-π/2, π/2], cos(θ) is always non-negative and lies in 

the interval [0, 1]. This vector T can be written as 

   T=[cos(θ) cos(ϕ), cos(θ) sin(ϕ), sin(θ)]                                          (29) 

The position of the center of mass of the airplane x(s) is then 

 x(𝑠)  = 𝐱(0) + 𝑠T (30) 

in which s is the distance traveled from the starting point at x(0). The curvature κ is null so that the 

radius of curvature R is infinite. By convention, we select the unit normal vector N to be 

horizontal, with  

    N=[-sin(ϕ), cos(ϕ), 0].                                                       (31) 

The unit binormal vector B is then  

 𝑩 =  𝑻 × 𝑵 = [−sin(𝜃)cos(𝜙), −sin(𝜃)sin(𝜙), cos(𝜃)] (32) 

We note that only the scalar products of k with the Frenet-Serret unit vectors appear in the 

equation of motion: these are 

k T=sin(θ)  k N=0 k B=cos(θ). 

At power off, the function F2 in Eq. (21) becomes simply 

 𝑭2 = −𝑔 [
𝐷(ℎ, 𝑉∞, 𝑊)

𝑊
+ sin(𝜃)].  (33) 

 

5.1.1 Silver Fox-like UAV  
In all our examples with the Silver Fox-like UAV, we consider that it starts empty, except for a 

full tank of fuel that is 19.1 N of gasoline of assumed density of 0.743 kg/l.  

In the present example, it starts at the altitude of 1,800 m, which is about half way to its service 

ceiling, at the initial speed of V∞(0)=20 m/s, on a path inclined at -5° with the horizontal. We took  

481



 

 

 

 

 

 

Gilles Labonté, Vincent Roberge and Mohammed Tarbouchi 

  
(a) Speed V∞ (b) Lift coefficient CL with maximum CLmax 

 
(c) Altitude h 

Fig. 1 Flyable rectilinear trajectory with 𝜃=-5°/V∞(0)=20 m/s at power off 

 

 

a R-K 4 time step dt=0.4 s. The UAV then reached sea level at t=12 min 47 s. The length of the 

path traveled is 20,652.7 m. Fig. 1 shows how the speed V∞, the lift coefficient CL and the altitude 

h vary with time along the trajectory. One can see that the speed remains well below its upper 

bound of 56.4 m/s; the lift coefficient also remains below its bound. The graph in Fig. 1(c) for the 

altitude shows that its variation is close to linear. 

The estimates of the truncation errors, according to Eq. (28), are less than 10-12 for all the 

variables calculated. The R-K 4 solutions are then essentially exact. The average computation time 

for 10 runs is 0.93 s. 

 

5.1.2 Cessna 182 Skylane 
In all our examples with the Cessna Skylane, we consider that it starts empty, except for a full 

tank of fuel that is 1737 N of 91-octane gasoline of assumed density of 0.743 kg/l.  

In the present example, it starts at the altitude of 2,700 m, which is about half way to its service 

ceiling, at the initial speed of V∞(0)=40 m/s, on a path inclined at -5° with the horizontal. We took 

a R-K 4 time step dt=0.4 s. The Cessna then reached sea level at t=11 min 11 s. The length of the 

path traveled is 30,979.0 m. Fig. 1 shows how the speed, the lift coefficient and the altitude vary  
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(a) Speed V∞ (b) Lift coefficient CL 

 
(c) Altitude h 

Fig. 2 Flyable rectilinear trajectory with 𝜃=-5°/V∞(0)=40 m/s at power off 

 

 

with time along the trajectory. The speed remains well below its upper bound of 56.4 m/s; as well 

as the lift coefficient that has a upper bound of 2.1. Again, as Fig. 2(c) shows, the altitude is close 

to being linear in time. 

The estimates of the truncation errors, according to Eq. (28), are less than 10-12 for all the 

variables calculated. The R-K 4 solutions are then essentially exact. The average computation time 

for 10 runs is 0.81 s. 

 

5.2 Rectilinear trajectory at full power  
 

Consider that the power produced by the engines is at its maximum value so that   

 𝑃(ℎ) = 𝑃max

𝜌∞(ℎ)

𝜌𝑠
 (34) 

in which Pmax is the maximum power that the engines can produce at sea level, ρs is the air density 

at sea level and h is the altitude. We note that all the equations of Section 5, except for Eq. (33) are 

also valid for this path. 
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(a) Fuel weight Wfuel (b) Speed V∞ 

  

(c) Lift coefficient CL with maximum CLmax (d) Altitude h 

Fig. 3 Flyable rectilinear trajectory with 𝜃=35°/ V∞(0)=20 m/s at full power 

 

 

5.2.1 Silver Fox-like UAV  
When a Silver Fox-like UAV starts at sea level and flies up to 1,800 m, with the initial speed of 

V∞(0)=20 m/s, on a rectilinear path that is inclined at 35° with the horizontal, it will reach its final 

altitude at t=1 min 39 s. The length of the path traveled is 3,138.2 m. The flight requires 0.543 N 

of fuel that is about 74.5 ml. Fig. 3 shows how some of the flight parameters vary with time. It is 

noticeable that the weight of fuel decreases essentially linearly. 

Our R-K 4 calculations have been done with dt=0.2 s. The estimates of the truncation errors, 

according to Eq. (28), are 

• for the amount of fuel used: less than 1.310-4 N 

• for the speed: less than 5.810-3
 m/s 

• for the lift coefficient: less than 3.110-4 

The R-K 4 method can then be considered to yield, for all practical purposes, exact solutions. 

The average computation time for 10 runs is 0.24 s. 

 

5.2.2 Cessna 182 Skylane 
When a Cessna Skylane starts at sea level and flies up to 2,700 m, with the initial speed of  
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(a) Fuel weight Wfuel (b) Speed V∞ 

  
(c) Lift coefficient CL with maximum CLmax (d) Altitude h 

Fig. 4 Flyable rectilinear trajectory with 𝜃=55°/V∞(0)=12 m/s at full power 

 

 

V∞(0)=90 m/s, on a rectilinear path that is inclined at 7.5° with the horizontal, it will reach its final 

altitude at t=5 min 57 s. The length of the path traveled is 20,685.5 m. The flight requires 41.73 N 

of fuel that is about 5.7 l. Fig. 4 shows how some of the flight parameters vary with time. It is 

noticeable that the weight of fuel decreases close to linearly. The lift coefficient CL remains well 

below its maximum value of 2.1.  

Our R-K 4 calculations have been done with dt=0.4 s. The estimates of the truncation errors, 

according to Eq. (28), are 

° for the amount of fuel used: less than 1.610-3 N 

° for the speed: less than 2.410-3
 m/s 

° for the lift coefficient: less than 3.810-5 

The R-K 4 method can then be considered to yield, for all practical purposes, exact solutions. 

The average computation time for 10 runs is 0.44 s. 

 

5.3 Circular trajectory at arctangent varying power 
 

Consider a circular path of radius R that is inclined at an angle 𝜃 with the horizontal plane.  
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Fig. 5 Frenet-Serret unit vectors T, N, B and lift vector L on the circular trajectory 

 

 

Without loss of generality in the present discussion, we select the axes so that this circular path is 

inclined about the x-axis, as shown in Fig. 5.  

This circular path is readily described with the help of two orthogonal unit vectors in the plane 

in which it resides, such as  

    i=[1, 0, 0]  and u=[0, cos(𝜃), sin(𝜃)].                                             (35) 

The unit normal vector to this plane is 

n=[0, -sin(𝜃), cos(𝜃)]. 

The points on the path can be represented by 

  x(ϕ)=C+R [ i cos(ϕ) + u sin(ϕ)] for ϕ=0 to 2𝜋.                                      (36) 

where C is the position of the center of the circle and the angle ϕ on the path starts on the positive 

x-axis. The unit tangent vector is 

   T=[-sin(ϕ), cos(θ)cos(ϕ), sin(θ) cos(ϕ) ]                                           (37) 

κ=1/R and 

    N=- [cos(ϕ), cos(θ)sin(ϕ), 0 ]                                                    (38) 

thus, N is parallel, but in the opposite direction, to the radius vector. The binormal vector B is 

   B=T N=[0,-sin(θ)), cos(θ)]=n.                                                (39) 

The scalar products that enter in the equation of motion are 

k T=sin(θ) cos(ϕ)   k N=-sin(θ) sin(ϕ)  k B=cos(θ). 

According to Eqs. (13) and (17), 

 𝐴𝑐 =
V∞

2

gR 
− sin(𝜃) sin (𝜙) (40) 
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Fig. 6 Power of the engines P as a function of the angle ϕ 

 

 

 𝑛 = √𝐴𝑐
2 + cos2(𝜃) . (41) 

We consider a circular path centered on the point [0, 0, 2R] on which the airplane starts at the 

top and goes around it completely, in the positive direction. The distance traveled is s=R(ϕ-π/2) so 

that, at the starting point, s=0 with ϕ=π/2, and at the final point sf=2πR with ϕ=5π/2. We let the 

power generated by the engines vary as the following inverse tangent function of s      

 𝑃(𝑠) = (
𝑃𝑀

2
) [1 +

𝑎𝑟𝑐𝑡𝑎𝑛[𝑘(s-R𝜋)]

𝑎𝑟𝑐𝑡𝑎𝑛[𝑘R𝜋]
] (42) 

with 

 𝑃𝑀 = 𝑃𝑚𝑎𝑥

𝜌∞(ℎmax)

𝜌𝑠
 (43) 

in which hmax=R[2+sin(θ)] is the altitude at the highest point of the path and k is an arbitrarily 

constant that controls the slope of the arc tangent at the origin. In the present example, we took 

k=0.1. Fig. 6 shows how the power that the engine produces for the Silver Fox-like UAV varies 

with the distance s traveled around the circle, together with the maximum power Pmax that it can 

produce for a circle of radius R=30 m. Vertical lines are placed at where ϕ that is a multiple of π/4. 

The power P(s) is seen to be very small when the airplane is on the way down and then very large 

when it is on the way back up.  

 

5.3.1 Silver Fox-like UAV  
Consider the Silver Fox-like UAV on a circular path of radius 30 m, inclined at 45° with the 

horizontal plane. It was shown in Labonté (2016) that there is no constant speed at which this path 

is flyable. It is however flyable when the power varies according to Eq. (42). We consider a sample 

flight in which the UAV starts with the initial speed of 20 m/s. It then takes about 6.8 s to fly 

around the circular path while using 0.018 N of fuel, which is about 2.5 ml. Fig. 7 shows the 

graphs of the weight of fuel Wfuel, the speed V∞, the load factor n and the lift coefficient CL as  
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(a) Weight of fuel Wfuel in terms of angle ϕ (b) Speed V∞ in terms of angle ϕ 

  

(c) Load factor n in terms of angle ϕ (d) Lift coefficient CL in terms of angle ϕ 

Fig. 7 Dynamic parameters of the trajectory in terms of the angle ϕ 

 

 

functions of the angle ϕ. Vertical lines are placed at each position that corresponds to an angle ϕ 

multiple of π/2. As can be seen in these graphs; all the constraints are satisfied.  

Our R-K 4 calculations have been done with dt=0.1 s. The estimates of the truncation errors, 

according to Eq. (28), are 

° for the amount of fuel used: less than 7.410-5 N 

° for the speed: less than 0.1 m/s 

° for the load coefficient: less than 0.022 

° for the lift coefficient less than 9.610-4 

Again, the R-K 4 method can then be considered to yield, for all practical purposes, exact 

solutions. The average computation time for 10 runs is 0.038 s. 

We have tested the flyability of circular trajectories at different angles of inclination. We found 

that they are all flyable, for some values of the speed, even for very inclined paths. For example, 

we have checked that a vertical circular path of radius R=25 m and initial speed of 17 m/s is 

flyable. It was shown in Labonté (2016) that there is no constant speed at which the Silver Fox-

like UAV can fly on circular trajectory inclined at 15° or more. Thus, clearly, varying the power 

can ameliorate greatly the flyability of trajectories. 
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A method to analyze the flyability of airplane trajectories with specified engine power 

  
(a) Weight of fuel Wfuel in terms of angle ϕ (b) Speed V∞ in terms of angle ϕ 

  
(c) Load factor n in terms of angle ϕ (d) Lift coefficient CL in terms of angle ϕ 

Fig. 8 Dynamic parameters of the trajectory in terms of the angle ϕ 

 

 

5.3.2 Cessna 182 Skylane  
Consider the Cessna on an inclined circular path inclined at 40°, with a radius of 65 m. It was 

shown in Labonté (2016) that it cannot fly on such a circular path at any constant speed. However, 

this path becomes flyable by the Cessna when its power varies according to Eq. (42). For example, 

all the constraints are satisfied when it starts with the initial speed of 30 m/s. It then takes about 

12.5 s to fly around the circular path and uses about 0.853 N of fuel, which is about 117.2 ml. The 

R-K 4 calculations have been done with dt=0.2 s. The flight parameters vary much like those of 

the Silver Fox UAV, shown in Fig. 8.  

The estimates of the truncation errors, according to Eq. (28), are 

◦ for the amount of fuel used: less than 2.810-3 N 

◦ for the speed: less than 0.05 m/s 

◦ for the load coefficient: less than 0.004 

◦ for the lift coefficient less than 2.410-4 

Again, the R-K 4 method can then be considered to yield, for all practical purposes, exact 

solutions. The average computation time for 10 runs is 0.046 s. 
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6. Conclusions 
 

The results presented in this article are quite general and constitute important tools not only for 

UAV trajectory planning, but also for the analysis of the motion of all fixed-wing propeller driven 

airplanes. An important contribution of this work is a new relatively simple approach to deal with 

the equations of motion of the airplane, when its power is specified, so as to determine the value of 

its dynamical parameters on a trajectory. We believe that this approach is original as we could not 

find it in any other published material. We show how to solve the equations of motion with the 

Runge-Kutta method of order 4. Examples are then provided with two very different types of 

airplanes: a Silver Fox-like small UAV and a common Cessna 182 Skylane. The trajectories 

considered are a glide on a descending rectilinear path at power off, a climb at full power on a 

rectilinear path and a circular loop with a power that varies as an arctangent of the angle. The latter 

example is quite interesting in itself because this type of motion has never been considered before, 

and it has the particularly interesting property of allowing motion on paths inclined at steep angles. 

In all the examples considered, the errors done in the numerical solution of the differential 

equations by the R-K 4 method, are evaluated and shown to be negligeable. The calculation times, 

averaged over ten runs, are given for each example. They are seen to be always below 1 s. We 

have shown that much more varied trajectories are flyable than those flown at constant speed, as 

are considered in so many articles on trajectory planning. This fact provides a strong incentive for 

the enterprise of optimizing the trajectories by controlling the power of the engine. 
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Appendix A: Nomenclature 
 

a=speed of sound in air. At altitude h, a(h)=√𝛾 𝑅𝑇(ℎ). At sea level, a(0)=340.3029 m/s 

where =ratio of the constant pressure specific heat to the constant volume specific heat=cP/cV=1.4 

for air, R=specific gas constant for air=287.058 J/(kg K) and T(h) is the temperature of the air. 

AFR=air fuel ratio (about 14.7) 

AR=aspect ratio=b2/S  

b=wingspan 

c=specific fuel consumption in Newton per Watt-second, that is in m-1 

CD=global drag coefficient for the aircraft=𝐶𝐷0 +
𝐶𝐿

2

𝜋𝑒𝐴𝑅
 (Drag polar) 

CD0=global drag coefficient at zero lift 

CL=global lift coefficient for the aircraft 

D=drag=
1

2
𝜌∞𝑆𝐶𝐷𝑉∞

2 

e=Oswald’s efficiency factor 

g=gravitational constant=9.8 m/s2 

h=altitude of airplane 

hc=service ceiling 

L=lift=
1

2
𝜌∞𝑆𝐶𝐿𝑉∞

2 

PP=power produced by the engine in Watt: 𝑃𝑃(ℎ) = 𝑃𝑃(ℎ0)
r∞(ℎ)

r∞(ℎ0)
 

PPmax=maximum power that the engines can produce 

PA=power available for the motion=PP in which =propeller efficiency 

PR=power required for the motion 

S=wing area 

t=time variable 

T=thrust=P/V; 

Ts=temperature at sea level=288.16 K 

T(h)=temperature at altitude h=Ts-a1h with a1=6.5  10-3  

a1=absolute value of the slope of the temperature as a function of altitude, below 11 km, 

a1=6.510-3 K/m 

V=airplane speed with respect to the undisturbed air in front of it 

VNE=speed never to be exceeded as specified by the airplane constructer 

W=weight of the airplane  

W1=weight of the empty airplane  

Wf=maximum weight of fuel  

W0=maximum take-off weight (MTOW) 

s=air density at sea level=1.225 kg/m3 

(h)=density of undisturbed air in front of airplane, at altitude h,  𝜌∞(ℎ) = 𝜌𝑠 [
𝑇(ℎ)

𝑇𝑠
]

 4,2433
 

 

 

Appendix B: Reference airplanes 
 

B.1 Silver Fox-like UAV 
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The Silver Fox UAV is presently produced by Raytheon. Some of its specifications can be 

found at Military Factory Raytheon Silver Fox and Manufacturers (2016). The power produced at 

sea level Pmax(0) for the Silver Fox is only about 370 W, which only allows it to climb at low 

angles. Meanwhile, it is common for Radio Controlled (RC) airplanes to climb at very steep angles 

(See for example Granelli 2007). Thus, upon taking advantage of motors that have been developed 

in this domain, a Silver Fox-like airplane could be endowed with much more power in order to 

improve considerably its manoeuvre envelope. One such motor is the Zenoah GT-80 Twin 

Cylinder 80cc (ZENE80T). It weighs 34 N and outputs 4045 W at 7500 rpm. (Horizon Hobby 

2017). We shall consider a Silver Fox-like UAV with such a motor. 

Table 1 shows the values of the following parameters W1=the weight of the empty airplane, 

W0=the maximum take-off weight, WF=the maximum weight of fuel, b=the wingspan, S=the wing 

area, e=Oswald’s efficiency factor, CLmax=the maximum global lift coefficient, CD0=the global drag 

coefficient at zero lift, nmax and nmin are respectively the maximum and minimum value of the load 

factor, Pmax=maximum breaking power at sea level, RPM=number of revolution per minute, 

Diameter=diameter of the propeller, max=maximum value of the propeller efficiency, hc=service 

ceiling. 

 

 
Table 1 Characteristic parameters of the Silver Fox-Like airplane 

W1=100.0 N W0=148.0 N WF=19.1 N 

b=2.4 m S=0.768 m2 e=0.8 

CLmax=1.26 CD0=0. 0251 nmax=5.0, nmin=-2.0 

Pmax=4.413 kW RPM=7500 c=7.447510-7 

Fixed pitch propeller Diameter=0.56 m max=0.77 

hc=3700 m   

 
 
B.2 Cessna 182 Skylane  
 

The characteristic parameters for the Cessna 182 can be found in Airliners.net (2015), Roud 

and Bruckert (2006) and McIver (2003). Some of the parameters, which were not readily available, 

were estimated from those of the very similar Cessna 172.  

 

 
Table 2 Characteristic parameters of the Cessna 182  

W1=7,562 N W0=11,121 N WF=1,737 N 

b=11.02 m S=16.1653 m2 e=0.75 

CLmax=2.10 CD0=0.029 nmax=3.8, nmin=-1.52 

Pmax=171.511 kW RPM=2,600 c=7.447510-7 

Const. speed propeller Diameter=2.08 m max=0.80 

hc=5500 m   
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B.3 Propeller efficiency 
 

The thrust of the Silver Fox is provided by a reciprocating engine with fixed pitch. We recall 

that the efficiency of the propeller is a function of the advance ratio J, defined as: 

DN

V
J =  

in which N is its number of revolutions per second and D is its diameter. Thus the maximum power 

available PAmax will depend on the speed, according to the equation: 

maxmaxA P)J(P =  

The dependence of  on J for a constant speed propeller has the general features shown in Fig. 

9(a). This curve approximates that given in Cavcar (2004) by the following quadratic expressions: 

  8.08.0J
640.0

663.0
)J(

2
+−







=   J ≤ 0.8.     8.0)J( =      J > 0.8. 

The dependence of  on J for a fixed pitch propeller has the general features shown in Fig. 

9(b). This curve approximates that given in the Aeronautics Learning Laboratory for Science 

Technology and Research (ALLSTAR) of the Florida International University (2011) by the 

following quadratic expressions: 

  83.070.0J
49.0

83.0
)J(

2
+−







−=   J ≤ 0.7.       83.070.0J

06.0

83.0
)J(

2
+−







−=   J > 0.7. 

Note that the propeller efficiency of this fixed pitch propellers goes to 0 at V∞=66.1 m/s and 

becomes negative after that. Although a negative propeller efficiency might be desirable to slow 

down the airplane when it descends, it is not recommended to let this happens. When this happens, 

the propeller drives the engine and damage to the engine may result [see for example the 

Commercial Aviation Safety Team document (2011). We shall therefore not allow speeds larger 

than that value.  

 

 

  
(a) Constant speed propeller (b) Constant pitch propeller 

Fig. 9 Typical efficiency factor  as a function of the advance ratio J 
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