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Abstract.  This manuscript is dedicated to deriving the closed form solutions of free vibration of viscoelastic 
nanobeam embedded in an elastic medium using nonlocal differential Eringen elasticity theory that not considered 
before. The kinematic displacements of Euler-Bernoulli and Timoshenko theories are developed to consider the thin 
nanobeam structure (i.e., zero shear strain/stress) and moderated thick nanobeam (with constant shear strain/stress). 
To consider the internal damping viscoelastic effect of the structure, Kelvin/Voigt constitutive relation is proposed. 
The perforation geometry is intended by uniform symmetric squared holes arranged array with equal space. The 
partial differential equations of motion and boundary conditions of viscoelastic perforated nonlocal nanobeam with 
elastic foundation are derived by Hamilton principle. Closed form solutions of damped and natural frequencies are 
evaluated explicitly and verified with prestigious studies. Parametric studies are performed to signify the impact of 
elastic foundation parameters, viscoelastic coefficients, nanoscale, supporting boundary conditions, and perforation 
geometry on the dynamic behavior. The closed form solutions can be implemented in the analysis of viscoelastic 
NEMS/MEMS with perforations and embedded in elastic medium. 
 

Keywords:  analytical solutions; dynamic analysis; elastic foundations; Kelvin/Voigt model; perforated 
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1. Introduction 
 

Currently, nanoscience and nanotechnology are promising to explain, understand, and compare 
the physical and mechanical responses of nanomaterials and nanostructures (MEMS and NEMS) 
with more precise experimental and theoretical investigation. Hence, to consider and model the 
size effect of nanostructure accurately, the advanced and modified continuum model theories, such 
as, nonlocal of elasticity (Eringen 1972, 1983), couple stress theory (Mindlin 1962, Toupin 1962), 
strain gradient theory (Mindlin 1965, Nix and Gao 1998), and doublet mechanics (Eltaher et al. 
2020a, b), energy equivalent method (Eltaher et al. 2018, Mohamed et al. 2019) accounting length 
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scale should be used, (Daikh et al. 2021, Alazwari et al. 2022a). 

Ebrahimi and Fardshad (2018) studied the thermal effect on buckling and free vibration 

characteristics of functionally graded (FG) size-dependent Timoshenko nanobeams subjected to an 

in-plane thermal loading. Ebrahimi et al. (2018) examined nonlocal buckling characteristics of 

heterogeneous plates subjected to various loadings. Ebrahimi and Heidari (2018) investigated the 

hygro-thermo-mechanical vibration and buckling behavior of embedded FG nanoplates. Alasadi et 

al. (2019) analyzed nonlinear vibrations of metal foam nanobeams with symmetric and non-

symmetric porosities. Fenjan et al. (2020) studied mechanical-hygro-thermal vibrations of 

functionally graded porous plates with nonlocal and strain gradient effects. Hosseini et al. (2020) 

investigated axial vibration of a FG nanobeam using nonlocal elasticity theory under clamped-

clamped and clamped-free boundary conditions. Nadeem et al. (2022) developed an accurate and 

efficient natural transform homotopy perturbation method for obtaining the numerical solution of 

nonlinear fractional Newell-Whitehead Segel equation arise in various physical phenomena. 

Abouelregal et al. (2022) developed computational analysis of an infinite magneto-thermoelastic 

solid periodically dispersed with varying heat flow based on non-local Moore–Gibson–Thompson 

approach. Hieu et al. (2021a) studied the nonlinear vibration of an electrostatically actuated 

functionally graded (FG) microbeam under longitudinal magnetic field. Hieu et al. (2021b) 

presented the nonlinear bending, vibration and buckling responses of FG nonlocal strain gradient 

nanobeams resting on an elastic foundation.  

The mentioned studies dealt with elastic nanostructures, however, there are some studies for 

viscoelastic behavior of nanostructures, Khorshidi (2021). To consider the material viscoelastic 

damping nature and experimental data, the Kelvin-Voigt model is exploited to develop the Young’s 

modulus, Abouelregal and Sedighi (2022). Assie et al. (2010a, b) studied numerically by FEM the 

response of viscoelastic structures under impact by using generalized standard linear solid model. 

Ansari et al. (2015, 2016) developed semi-analytical technique to predict the natural frequencies of 

viscoelastic Euler and Timoshenko nonlocal nanobeam. Zenkour (2017) examined vibration 

response of generalized thermoelastic microbeams resting on visco-Pasternak. Malikan et al. 

(2018) investigated the thermos-dynamic response of nonlocal strain gradient SWCNTs rested on 

viscoelastic foundation. Malikan and Far (2018) examined the dynamic buckling of nonlocal 

graphene sheet rested on viscoelastic medium using differential quadrature method. Ebrahimi et al. 

(2021) studied the damping forced harmonic response of magneto-electro-viscoelastic on nonlocal 

strain gradient nanobeam embedded on viscoelastic Winkler–Pasternak foundation. Bagheri and 

Beni (2021) presented the nanoscale size-dependency on the nonlinear forced response of 

viscoelastic flexoelectric modified couple nanobeams by using Euler–Bernoulli theory and 

Galerkin’s method. Behdad et al. (2021) used a two-phase local/nonlocal elasticity to capture the 

size-dependent dynamic stability and damping of viscoelastic functionally graded (FG) 

Timoshenko nanobeams using Kelvin-Voigt model. Reza et al. (2021) presented the effect of 

viscoelastic behavior of polymer matrix of unidirectional fiber-reinforced laminated composite on 

stress distribution around the pin-loaded hole under tensile loading.  

Noroozi and Ghadiri (2021) studied forced vibration response of an axial moving viscoelastic 

nonlocal nanobeam using Galerkin’s method. Abouelregal and Sedighi (2022) exploited Kelvin-

Voigt viscoelastic model in analyzing thermoelastic characteristics of moving viscoelastic nonlocal 

couple stress nanobeams using the Laplace transform. Jalaei et al. (2022) examined the transient 

response of viscoelastic FG nonlocal strain gradient nanobeams subjected to dynamic loads and 

magnetic. Ali et al. (2022) studied the effects of viscoelastic bonding layer on performance of 

piezoelectric actuator attached to elastic structure using a finite element procedure. Martin (2022) 
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exploited nonlocal fractional Zener model to study nonlinear vibrations of viscoelastic Euler–

Bernoulli nanotube resting on a Kelvin–Voigt foundation. Rahmani et al. (2022) presented the size 

effect on wave propagation of a magneto-electro-thermo-elastic nanobeam embedded in 

viscoelastic medium using modified couple stress and nonlocal theories. Wu et al. (2022) applied 

the Kelvin–Voigt model and nonlocal strain gradient theory to investigate size-dependent vibration 

response of viscoelastic nanobeam. Eltaher et al. (2022) developed analytical solutions for the free 

vibration of viscoelastic perforated thin/thick nanobeam structures. You et al. (2022) presented a 

novel time-domain homogenization model combining the viscoelastic constitutive law with 

Eshelby’s inclusion theory-based micromechanics model to predict the mechanical behavior of the 

particle reinforced composite material.  

Structures embedded on the elastic foundations are extensively used in the engineering field 

and research. Researchers use different models to simulate elastic foundations, Hossain and Lellep 

(2021). Alzahrani et al. (2013) investigated the effect of size-scale on bending of embedded in 

two-parameter elastic medium and under hygro-thermo-mechanical loads. Mohammadi et al. 

(2014) explored the postbuckling instability of nonlinear Euler–Bernoulli nonlocal nanobeam 

embedded in elastic foundation.  Mechab et al. (2016) developed probabilistic analysis to study 

free vibration of FGM nanoplate resting on Winkler–Pasternak elastic foundations. Togun (2016), 

Togun and Bağdatlı (2016) examined free and forced vibration of nonlocal Euler-Bernoulli 

nanobeam resting on an elastic foundation of the Pasternak type by using a perturbation technique. 

Demir et al. (2018) developed the finite element model to study the static bending of nonlocal 

nanobeams under the Winkler foundation and the uniform load. Mohamed et al. (2018) studied the 

nonlinear vibration responses of buckled Euler–Bernoulli beams resting on nonlinear elastic 

foundations using the differential-integral quadrature method (DIQM) and Newton’s method. 

Abdelrahman et al. (2020) studied analytically the influence of moving load on dynamics of 

Timoshenko CNTs embedded in elastic media based on doublet mechanics theory. Khadir et al. 

(2021), Alazwari et al. (2022) studied the mechanical responses of quasi 3D higher-order shear 

deformation of FG-CNTs reinforced composite nanoplates rested on two-dimensional variable 

Winkler elastic foundation. Ramezannejad and Heidari (2022) studied the nonlinear primary 

frequency response analysis of self- sustaining nanobeam rested on viscoelastic foundation and 

considering surface elasticity. Darban et al. (2022) studied the buckling of Bernoulli-Euler 

nonlocal stress-driven gradient nanobeam resting on the Pasternak elastic foundation. Assie et al. 

(2023) investigated the static stability of bi-directional functionally graded porous plate resting on 

elastic foundation by using unified shear deformation theories. Zheng et al. (2023) explained the 

size-dependent nonlinear bending of magneto-electro-elastic laminated nanobeams rested on 

elastic. Abouelregal et al. (2023) examined examine the micromechanical coupling and the 

influence of thermo-mechanical relaxation, a higher-order two-phase-lag thermoelastic concept 

and a viscoelastic model of Kelvin–Voigt type. Ding et al. (2023) examined effect of spinning 

motion and initial geometric imperfections on nonlinear low-velocity impact of graphene platelets 

reinforced metal foams cylindrical shell.  

From the literature, it is revealed that the dynamic response of viscoelastic perforated nonlocal 

nanobeams resting on elastic foundations has not been studied elsewhere. Therefore, the present 

article aims to cover this point clearly. In the next sections, the problem formulations including the 

geometrical adaptation, kinematic relations, and nonlocal constitutive equation will be presented in 

section 2. The derived equations of motion and solution methodology will be discussed in sections 

3 and 4. The validation and parametric analysis to show the influence of elastic foundations 

parameters, nonlocal scale, perforation parameters on the natural frequencies of nanobeams with  
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Fig. 1 A perforated beam with the geometrical parameters (Eltaher and Mohamed 2020) 

 

 

different boundary conditions will be illustrated and discussed in section 5.    

 

 

2. Problem formulation 
 

2.1 Geometrical adaptation 
 

A perforated nanobeam geometry is illustrated in Fig. 1. As seen, nanobeam has a length of L, 

width of w and thickness of h. A nanobeam is holed with square holes in regular pattern, that has 

spatial period 𝑙𝑠 and side 𝑙𝑠 − 𝑡𝑠, and a number of hole-rows N along the section. The filling ratio 

which is defined as the ratio of material thickness between two holes to the period length, can be 

formulated as, Almitani et al. (2019, 2020) 

𝛼 =
𝑡𝑠

𝑙𝑠
   0 ≤ 𝛼 ≤ 1                                                                (1) 

that means the beam is completely filled at filling ratio 𝛼 = 1, partially filling when 0 ≤ 𝛼 ≤ 1, 
and completely perforated at 𝛼 = 0. Under the hypothesis of total stress along the cross section is 

the same for both complete beam and perforated one and a linear continuous stress distribution, the 

relative equivalent bending stiffnesscan be depicted by (Abdalrahmaan et al. 2020, 2021) as 

(𝐸𝐼)𝑟 = (𝐸𝐼)𝑒𝑞/𝐸𝐼 =
𝛼(𝑁+1)(𝑁2+2𝑁+𝛼2)

(1−𝛼2+𝛼3)𝑁3+3𝛼𝑁2+(3+2𝛼−3𝛼2+𝛼3)𝛼2𝑁+𝛼3
                      (2) 

Considering the relative shear effect of perforated nanobeam,the shear stiffness will be 

modified as (Esen et al. 2020) 

(𝐺𝐴)𝑟 = (𝐺𝐴)𝑒𝑞/𝐺𝐴 =
𝛼3(𝑁+1)

2𝑁
                                                   (3) 

  It is noted that from Eq. (3), the shear stiffness is dependent on both filling ratio and number 

of holes. But the filling ratio is more pronounced on the shear stiffness than the number of holes. 

The relative mass of the perforated beam per unit length to the standard beam can be modified as 

(Eltaher 2020a, b) 

(𝜌𝐴)𝑟 = (𝜌𝐴)𝑒𝑞/𝜌𝐴 =
[1−𝑁(𝛼−2)]𝛼

𝑁+𝛼
                                              (4) 

The relative equivalent moment of inertia per unit length can be calculated by integrating over 

 

𝒌𝒘 
𝒚 

𝒛 
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𝒘 

𝒉 
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𝒌𝒑 
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a strip of 𝑁 square cells of length 𝑙𝑠, (Abdalrahmaan et al. 2019) 

(𝜌𝐼)𝑟 = (𝜌𝐼)𝑒𝑞/𝜌𝐼 =
𝛼[(2−𝛼)𝑁3+3𝑁2−2(𝛼−3)(𝛼2−𝛼+1)𝑁+𝛼2+1]

(𝑁+𝛼)3
                        (5) 

 

2.2  Kinematic assumptions for thin/thick beam 
 

In case of thin beam, kinematics assumptions of Euler-Bernoulli theory can be applied as 

follows 

𝑢(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧
𝜕𝑤0(𝑥,𝑡)

𝜕𝑥
                                                (6a) 

𝑤(𝑥, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑡)                                                       (6b) 

In which 𝑢 is the inplane and𝑤 is the out of plane displacements at any generic point. 𝑢0 and 

𝑤0 are displacements along the neutral axis. Since the axial displacement along neutral axis is very 

small comparable with transverse displacement and rotation, so it can be neglected. The strain can 

be defined by 

𝜀𝑥𝑥 =
𝜕𝑢(𝑥,𝑧,𝑡)

𝜕𝑥
=
𝜕𝑢0(𝑥,𝑡)

𝜕𝑥
− 𝑧
𝜕2𝑤0(𝑥,𝑡)

𝜕𝑥2
= 𝜀𝑥𝑥
0 + 𝑧𝑘0                                      (7) 

As the thickness to length of the beam reduces to less than 20, the shear effect should be 

considered, and kinematics assumptions of Timoshenko beam theory can be applied as following 

𝑢(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑧𝜙(𝑥, 𝑡)                                             (8a) 

𝑤(𝑥, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑡)                                                    (8b) 

in which 𝜙 is the rotation of the cross section. Based on Eq. (8), the nonzero strains are  

𝜀𝑥𝑥 =
𝜕𝑢(𝑥,𝑧,𝑡)

𝜕𝑥
=
𝜕𝑢0(𝑥,𝑡)

𝜕𝑥
+ 𝑧
𝜕𝜙(𝑥,𝑡)

𝜕𝑥
                                         (9a) 

𝜀𝑥𝑧 =
1

2
[
𝜕𝑢(𝑥,𝑧,𝑡)

𝜕𝑧
+
𝜕𝑤(𝑥,𝑧,𝑡)

𝜕𝑥
] =
1

2
[𝜙(𝑥, 𝑡) +

𝜕𝑤0(𝑥,𝑡)

𝜕𝑥
] =
1

2
𝛾𝑥𝑧                         (9b) 

According to Eq. (9b), the shear is constant through the beam thickness, which is impractical. 

To compensate the error due to constant shear, the shear correction factor is proposed. 

 

2.3 Nonlocal constitutive equations 
 

The basis of nonlocal elasticity assumed that the stress at a point is a functional of strain field at 

every point in body domain. The nonlocal constitutive equation can be depicted by (Danesh and 

Javanbakht 2021) 

𝜎𝑖𝑗(𝑥) = ∫ 𝛼(|𝑥
′ − 𝑥|, 𝜏)𝑡𝑖𝑗(𝑥

′)d𝑥′
𝑉

                                               (10) 

in which 𝑡𝑖𝑗(𝑥
′)  are the macroscopic stress tensor at point 𝑥  and 𝛼(|𝑥′ − 𝑥|, 𝜏)  is nonlocal 

modulus function that represents the effect of interatomic bonding. 𝜏 is a material length scale 

constant. The macroscopic stress tensor can be described as a function of material elasticity tensor 
(𝐶) and strain (𝜀) by generalized Hooke’s law as 

𝑡(𝑥) = 𝐶(𝑥): 𝜀(𝑥)                                                             (11) 
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In (1983) Eringen proved that when nonlocal modulus described by a Green’s function, the 

nonlocal constitutive relation can be reduced to the differential form as 

[1 − (𝑒0𝑎)
2 ∇2]𝜎𝑖𝑗 = 𝑡𝑖𝑗                                                        (12) 

Where 𝑒0 is constant to match the reliable results by experiments, 𝑎 is the internallength scale, 

and ∇2  is the Laplacian operator. For one-dimensional nonlocal nanobeam, nonlocal constitute 

relation (Eq. (12)) can be written as (Abdelrahman et al. 2021), 

𝜎𝑥𝑥 − 𝜇
𝜕2𝜎𝑥𝑥

𝜕𝑥2
= 𝐸𝜀𝑥𝑥,   [𝜇 = (𝑒0𝑎)

2]                                            (13a) 

𝜎𝑥𝑧 − 𝜇
𝜕2𝜎𝑥𝑧

𝜕𝑥2
= 𝐺𝛾𝑥𝑧                                                     (13b) 

 

 

3. Governing equations 
 

The governing equation of motion of viscoelastic perforated thin nanobeam can be presented 

by the following  

(𝐸𝐴)𝑒𝑞
𝜕2𝑢𝑜

𝜕𝑥2
+ (1 − 𝜇

𝜕2

𝜕𝑥2
) 𝑓 = (1 − 𝜇

𝜕2

𝜕𝑥2
) 𝐼0
𝜕2𝑢𝑜

𝜕𝑡2
  (14a) 

−(𝐸𝐼)𝑒𝑞
𝜕4𝑤𝑜

𝜕𝑥4
+ (1 − 𝜇

𝜕2

𝜕𝑥2
) [𝑃 − 𝑁𝑏

𝜕2𝑤𝑜

𝜕𝑥2
− 𝐾𝑊𝑤0 + 𝐾𝑃

𝜕2𝑤0

𝜕𝑥2
] = (1 − 𝜇

𝜕2

𝜕𝑥2
) [𝐼0

𝜕2𝑤𝑜

 𝜕𝑡2
−

𝐼2
𝜕4𝑤𝑜

𝜕𝑥2𝜕𝑡2
]  

(14b) 

where the governing equation of motion of viscoelastic perforated thick nanobeam can be derived 

as 

(𝐸𝐴)𝑒𝑞
𝜕2𝑢𝑜

𝜕𝑥2
+ [1 − 𝜇

𝜕2

𝜕𝑥2
]  𝑓 = [1 − 𝜇

𝜕2

𝜕𝑥2
] 𝐼0
𝜕2𝑢𝑜

 𝜕𝑡2
  (15a) 

(𝐺𝐴)𝑒𝑞𝑘𝑠 (
𝜕𝜙

𝜕𝑥
+
𝜕2𝑤0

𝜕𝑥2
) + (1 − 𝜇

𝜕2

𝜕𝑥2
) [𝑃(𝑥, 𝑡) − 𝑁𝑏

𝜕2𝑤0

𝜕𝑥2
− 𝐾𝑊𝑤0 + 𝐾𝑃

𝜕2𝑤0

𝜕𝑥2
] =

(1 − 𝜇
𝜕2

𝜕𝑥2
) 𝐼0
𝜕2𝑤0

𝜕𝑡2
  

(15b) 

(𝐸𝐼)𝑒𝑞
𝜕2𝜙

𝜕𝑥2
− (𝐺𝐴)𝑒𝑞𝑘𝑠 (1 + 𝑔

𝜕

𝜕𝑡
) (𝜙 +

𝜕𝑤0

𝜕𝑥
) = (1 − 𝜇

𝜕2

𝜕𝑥2
) 𝐼2
𝜕2𝜙

𝜕𝑡2
  (15c) 

The following mathematical more is limited to analyzing the linear static and free vibration 

responses of thin and moderated thick nanobeam with viscoelastic materials and rested on elastic 

foundation. The model considers the microstructure and length scale parameters. However, the 

nonlinear analysis, multi-physics loads, and post-buckling responses can’t be predicted by the 

following model.    

 

 

4. Solution methodology 
 

4.1 Exact solutions for free vibration of viscoelastic PEBNB 
 

Based on The Navier’s method, a general exact solution of PEBNB beam for different types of  
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Table 1 The shape function 𝜃𝑛(𝑥) for different boundary conditions, Abo-bakr et al. (2021) 

BC Shape function, 𝜃𝑛(𝑥) 

SS sin(𝛼𝑛𝑥), 𝛼𝑛 = 𝑛𝜋/𝐿 

CC 
cosh(𝛼𝑛𝑥) − cos(𝛼𝑛𝑥) − 𝜉𝑛[sinh(𝛼𝑛𝑥) − sin(𝛼𝑛𝑥)], 𝜉𝑛 =

sin(𝛼𝑛𝐿)−sinh(𝛼𝑛𝐿)

cos(𝛼𝑛𝐿)−cosh(𝛼𝑛𝐿)
,  

𝛼𝑛 = (𝑛 + 0.5)𝜋/𝐿 

CS 
cosh(𝛼𝑛𝑥) − cos(𝛼𝑛𝑥) − 𝜉𝑛[sinh(𝛼𝑛𝑥) − sin(𝛼𝑛𝑥)], 𝜉𝑛 =

sin(𝛼𝑛𝐿)+sinh(𝛼𝑛𝐿)

cos(𝛼𝑛𝐿)+cosh(𝛼𝑛𝐿)
,  

𝛼𝑛 = (𝑛 + 0.25)𝜋/𝐿 

 

 

boundary conditions is obtained. The obtained closed form frequency expression is valid for 

simply supported (SS), clamped-clamped (CC) and clamped-simply (CS) boundary conditions. 

Due to the decoupling between Eq. (15a) and Eq. (15b) and to get the closed form solution, the 

suggested series for displacement function 𝑤0(𝑥, 𝑡) that satisfy the boundary conditions at 𝑥 =
 0, 𝐿 can be defined by, Shanab and Attia (2020) 

𝑤0(𝑥, 𝑡) = ∑ 𝑊𝑛𝜃𝑛(𝑥)𝑒
𝑖𝜆𝑛𝑡∞

𝑛=1   (17) 

where 𝜆𝑛 is the natural frequency of the beam, 𝑖 = √−1, 𝑊𝑛 is the unknown Fourier coefficients 

to be determined and the function 𝜃𝑛(𝑥) for different boundary conditions is defined as in Table 1.  

By substituting 𝜃𝑛(𝑥), from Table 1, into Eq. (15b), setting all external forces to zero, then 

multiplying the resulting equation by 𝜃𝑚(𝑥) and integrating with respect to 𝑥 from 0 to 𝐿, one 

obtains the exact form of fundamental frequency of PTNNB as follows 

𝜆𝑛 = √
∫ [(𝐸𝐼)𝑒𝑞𝜃𝑛

′′′′−𝐾𝑃(𝜃𝑛
′′−𝜇𝜃𝑛

′′′′)+𝐾𝑤(𝜃𝑛−𝜇𝜃𝑛
′′)]𝜃𝑚𝑑𝑥

𝐿

0

∫ [−𝐼2𝜃𝑛
′′−𝜇(𝐼0𝜃𝑛

′′−𝐼2𝜃𝑛
′′′′+𝐼0𝜃𝑛)]𝜃𝑚𝑑𝑥

𝐿

0

  (18) 

 

4.2 Exact solutions for free vibration of viscoelastic PTKNB 
 

The system of governing equations, Eq. (16) is solved analytically using Navier’s method for 

different types of boundary conditions. The displacement functions are approximated as a series in 

the following form 

{
𝑤0(𝑥, 𝑡) = ∑ 𝑊𝑛𝜃𝑛(𝑥)𝑒

𝑖𝜆𝑛𝑡∞
𝑛=1

𝜙(𝑥, 𝑡) = ∑ Φ𝑛
𝜕𝜃𝑛(𝑥)

𝜕𝑥
𝑒𝑖𝜆𝑛𝑡∞

𝑛=1

  (19) 

where 𝜆𝑛 is the natural frequency of the beam, 𝑖 = √−1, and {𝑊𝑛, Φ𝑛} are the unknown Fourier 

coefficients to be determined. The shape functions 𝜃𝑛(𝑥) for different boundary conditions is pre-

defined in Table 1. 

To obtain the fundamental frequencies of PTKNB, Eq. (19) in conjunction with the expression 

of 𝜃𝑛(𝑥), Table 1, are substituted into Eqs. (16b), (16c) for different boundary conditions. Then 

multiplying the resulting equations by 𝜃𝑚(𝑥),
𝜕𝜃𝑚(𝑥)

𝜕𝑥
, respectively. Finally, integrating these 

equations with respect to 𝑥  from 0  to 𝐿 . The following system of linear system of algebraic 

equations is obtained 
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[
𝑘11 +𝑚1𝜆𝑛

2 𝑘12

𝑘21 𝑘22 +𝑚2𝜆𝑛
2] {
𝑊𝑛
𝛷𝑛
} = 𝟎  (20) 

in which 

{

𝑘11
𝑘12
𝑘21
𝑘22

} =

∫

 
 
 
 

{
 
 

 
 
[(𝐺𝐴)𝑒𝑞𝑘𝑠𝜃𝑛

′′ + 𝐾𝑃(𝜃𝑛
′′ − 𝜇𝜃𝑛

′′′′) − 𝐾𝑊(𝜃𝑛(𝑥) − 𝜇𝜃𝑛
′′)]𝜃𝑚

(𝐺𝐴)𝑒𝑞𝑘𝑠𝜃𝑛
′′𝜃𝑚

−(𝐺𝐴)𝑒𝑞𝑘𝑠𝜃𝑛
′𝜃𝑚
′

((𝐸𝐼)𝑒𝑞𝜃𝑛
′′′ − (𝐺𝐴)𝑒𝑞𝑘𝑠𝜃𝑛

′ )𝜃𝑚
′

}
 
 

 
 

𝐿

0

𝑑𝑥    (21a) 

{
𝑚1
𝑚2
} = ∫ {

𝐼0(𝜃𝑛 − 𝜇𝜃𝑛
′′)𝜃𝑚

𝐼2(𝜃𝑛
′ − 𝜇𝜃𝑛

′′′)𝜃𝑚
′ }

𝐿

0

𝑑𝑥  (21b) 

To obtain a non-trivial solution, the determinant of the coefficient matrix of Eq. (20), must be 

zero. Then, the exact form of the fundamental frequencies for different types of boundary 

conditions is obtained as 

 𝜆𝑛 = √
−(𝑘11𝑚2+𝑘22𝑚1)−√(𝑘11𝑚2+𝑘22𝑚1)

2−4𝑚1𝑚2(𝑘11𝑘22−𝑘12𝑘21)

2𝑚1𝑚2
  (22) 

 

 

5. Numerical results and validation 
 

This section validated the proposed model with the pervious works for elastic solid nanobeam 

for a thin and a thick structure. Also, parametric studies are performed to show the effects of 

elastic foundation parameters, number of holes, filling ratio, length scale parameter, and beam 

theories on the natural frequencies of nanobeams for the different boundary conditions. 

 

5.1 Modal validation 
 

Tables 2 and 3 listed the frequency expression of a nonlocal Euler-Bernoulli/Timoshenko solid 

beams structure with different boundary conditions at different nonlocal parameter values. As 

shown in Table 2, the present results are in good agreement with Shanab et al. (2020b) and 

Mohamed et al. (2016) for Euler-Bernoulli beams. Also, Table 3 shows that the frequency reduced 

by increasing the nonlocal parameter for both thin and thick beams. It is noticed in Table 3 that, at 

the same nonlocal parameter, the frequency of Euler beam is higher than that of Timoshenko 

beam, due to shear effect. 

The validation of the fundamental linear frequency for Timoshenko beam surrounded by elastic 

foundation is presented in Table 4 and accuracy results are achieved with the validated literatures. 

According to the present results which are listed for different boundary conditions, the current 

analytical procedure can be used to analyze natural frequencies of perforated viscoelastic 

nanobeams. 

 

5.2 Parametric studies 
 

Throughout the parametric study 𝐸 = 30 Mga, ℎ = 1, 𝜌 = 1, 𝐿 = 20ℎ, 𝜈 = 0.3, 𝐾𝑊 = 
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Table 2 Comparison of the dimensionless fundamental frequencies 𝜔 = 𝜆𝐿2√𝜌𝐴0/𝐸𝐼  of solid uniform 

beams (𝐿 = 10, 𝐿/ℎ = 20, 𝑏 = ℎ, 𝐸 = 30 MPa, 𝜌 = 1, 𝜈 = 0.3) 

 

Simply supported Clamped-clamped 

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 

Nonlocal parameter 𝜇 = 0 

Present PTNNB 9.8595 39.3171 88.0158 22.1757 61.3948 119.6907 

Present PTKNB 9.8281 38.8299 85.6619 21.8413 59.5811 113.8628 

Shanab et al. (2020b) 9.8595 39.3171 88.0158 22.3447 61.3790 119.6766 

Mohamed et al. (2016) 9.8595 39.3171 88.0158 22.3447 61.3790 119.6760 

Eltaher (2013b) 9.8798 39.6460 89.7046 22.4022 61.9872 122.2778 

Reddy (2011) 9.8600 39.3200 88.0200 - - - 

 Nonlocal parameter 𝜇 = 2 

Present PTNNB 9.0102 29.3905 52.8213 19.6872 44.3448 69.3973 

Present PTKNB 8.9816 29.0263 51.4087 19.5696 42.9162 65.7994 

Mohamed et al. (2016) 9.0102 29.3905 52.8208 19.9954 44.1031 69.1806 

Eltaher (2013b) 9.0257 29.5252 53.1629 20.0368 44.3229 69.6261 

  

Table 3 Comparison of the dimensionless fundamental circular frequencies √𝜔1 = 𝐿√𝜆1√𝜌𝐴0/𝐸𝐼 of solid 

uniform Euler beam  (𝐿 = 10 𝑚, 𝐸=30 MPa, 𝜌 = 1, ℎ = 0.1, ν = 0.3) 

BC  
Nonlocal parameter 

𝜇 = 0 𝜇 = 1 𝜇 = 2 𝜇 = 3 𝜇 = 4 𝜇 = 5 

SS 

Present PTNNB 3.1415 3.0685 3.0032 2.9443 2.8908 2.8418 

Present PTKNB 3.1413 3.0683 3.0030 2.9441 2.8906 2.8416 

Behera and Chakraverty (2015) 3.1416 3.0685 3.0032 2.9444 2.8908 2.8418 

CC 

Present PTNNB 4.7123 4.5784 4.4616 4.3584 4.2661 4.1828 

Present PTKNB 4.7052 4.5715 4.4549 4.3518 4.2596 4.1765 

Behera and Chakraverty (2015) 4.7300 4.5945 4.4758 4.3707 4.2766 4.1917 

CS 

Present PTNNB 3.9269 3.8231 3.7317 3.6503 3.5770 3.5106 

Present PTKNB 3.9295 3.9295 3.7342 3.6527 3.5794 3.5129 

Behera and Chakraverty (2015) 3.9266 3.8209 3.7278 3.6448 3.5701 3.5024 

 

Table 4 Comparison of fundamental linear frequency √𝜔1 = 𝐿√𝜆1√𝜌𝐴0/𝐸𝐼  for Timoshenko beam 

surrounded by elastic foundations, (𝐸 = 90 GPa, 𝜌 =2700 kg/m3, 𝜈=0.23, L=120ℎ, 𝑏 =  2ℎ, 𝑘𝑠 =
5

6
, 𝜇 

=0, 𝐾𝑊 =
𝑘𝑤(𝐸𝐼)

𝐿4
, 𝐾𝑃 = π

2 𝑘𝑝(𝐸𝐼)

𝐿2
) 

 

𝑘𝑝 

𝑘𝑤 = 0 𝑘𝑤 = 10
2 𝑘𝑤 = 10

4 

Shanab 

et al. 

Chen 

et al. 

(2004) 

Present 

PTNNB 

Present 

PTKNB 

Shanab 

et al. 

Chen 

et al. 

(2004) 

Present 

PTNNB 

Present 

PTKNB 

Shanab 

et al. 

Chen 

et al. 

(2004) 

Present 

PTNNB 

Present 

PTKNB 

0 3.1414 3.1414 3.1415 3.1414 3.7482 3.7482 3.7483 3.7482 10.0241 10.0240 10.0241 10.0241 

0.5 3.4766 3.4766 3.4767 3.4766 3.9607 3.9607 3.9608 3.9607 10.0362 10.0361 10.0362 10.0362 

1.0 3.7359 3.7359 3.7360 3.7359 4.1436 4.1436 4.1436 4.1436 10.0482 10.0481 10.0482 10.0482 

2.5 4.2969 4.2969 4.2970 4.2969 4.5823 4.5823 4.5823 4.5823 10.0840 10.0839 10.0840 10.0840 
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Fig. 2 Variation of the natural frequency parameter of the 1st mode with Winkler foundation parameter 

𝑘𝑤 for both PTNNB and PTKNB for CC, CS and SS boundary conditions at 𝑁0 = 4, α=0.2, μ=0,1, 3, 5 and 

L/h=15 

 

 
𝑘𝑤(𝐸𝐼)

𝐿4
, 𝐾𝑃 =

𝑘𝑝(𝐸𝐼)

𝐿2
 ,  𝜔 = 𝜆𝐿2√𝜌𝐴0/𝐸𝐼.  

 

5.2.1 Effect of Winkler foundation (Kp=0) on PTNNB and PTKNB 
Figs. 2, 3, 4 illustrate the effect of Winkler foundation on the natural frequency of perforated 

thin and thick nanobeams at 1st, 2nd, and 3rd mode, respectively and different nonlocal parameters. 

As shown in Fig. 2, by increasing Winkler foundation, the natural frequency increased 

significantly in semi- linear behavior for PTNNB and PTKNB. However, the Winkler foundation 

has insignificant effect in 2nd and 3rd mode frequencies for PTNNB and PTKNB. In addition, it is 

obvious from Figs. 2-3 that the influence of the nonlocal parameter on the frequency of PTNNB is 

higher than those of PTKNB. 
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Fig. 3 Variation of the natural frequency parameter of the 2nd mode with Winkler foundation parameter 𝑘𝑤 

for both PTNNB and PTKNB for CC, CS and SS boundary conditions at 𝑁0 = 4, α=0.2, μ=0,1, 2, 3 and 

L/h=15 

 
 
5.2.2 Effect of Pasternak foundation (Kw=0) on PTNNB and PTKNB 
The effect of the Pasternak foundation on the first three fundamental frequemcies at different 

nonlocal parameter are presented in Figs. 5-7 for perforated thin and thick nanobeams. As shown, 

by increasing the Pasternak foundation, the natural frequency is increased significantly in semi-

linear behavior for PTNNB and PTKNB. Also, by increasing the nonlocal parameter the frequency 

increases for PTNNB and PTKNB. 

 
5.2.3 Effect of filling ratio on PTNNB and PTKNB 

Figs. 8-10 illustrate the effect of the filling ratio on the first three natural frequencies of 

perforated thin and thick nanobeams at different beam aspect ratios. As shown, for CC, CS 

boundary condition by increasing the filling ratio, the natural frequency decreases in the case of  
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Fig. 4 Variation of the natural frequency parameter of the 3rd mode with Winkler foundation parameter 

𝑘𝑤 for both PTNNB and PTKNB for CC, CS and SS boundary conditions at 𝑁0 = 4, α=0.2, μ=0,1, 2, 3 and 

L/h=15 

 

 
Fig. 5 Variation of the natural frequency parameter of the 1st mode with Pasternak foundation parameter 

𝑘𝑝 for both PTNNB and PTKNB for CC, CS and SS boundary conditions at  𝑁0 = 4, α=0.2, μ=0,1, 3,5 and 

L/h=15 
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Fig. 5 Continued 

 

 

 
 

Fig. 6 Variation of the natural frequency parameter of the 2nd mode with Pasternak foundation parameter 

𝑘𝑝 for both PTNNB and PTKNB for SS, CC and CS boundary conditions at  𝑁0 = 4, α=0.2, μ=0,1, 3,5 and 

L/h=15 
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Fig. 7 Variation of the natural frequency parameter of the 3rd mode with Pasternak foundation parameter 

𝑘𝑝 for both PTNNB and PTKNB for SS, CC and CS boundary conditions at  𝑁0 = 4, α=0.2, μ=0,1, 3,5 and 

L/h=15 

 

 
Fig. 8 Variation of the natural frequency of the 1st mode with the filling ratio for both PTNNB and PTKNB 

for SS, CC and CS boundary conditions at 𝑁0 = 2, 𝜇 = 1, 𝑘𝑤 = 20, 𝑘𝑝 = 2 and 𝐿/ℎ = 10, 20, 40 
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Fig. 8 Continued 

 

 

 
Fig. 9 Variation of the natural frequency of the 2nd mode with the filling ratio for both PTNNB and PTKNB 

for SS, CC and CS boundary conditions at 𝑁0 = 2, 𝜇 = 1, 𝑘𝑤 = 20, 𝑘𝑝 = 2 and 𝐿/ℎ = 10, 20, 40 

271



 

 

 

 

 

 

Ola A. Siam, Rabab A. Shanab, Mohamed A. Eltaher and Norhan A. Mohamed 

 

 
Fig. 10 Variation of the natural frequency of the 3rd mode with the filling ratio for both PTNNB and PTKNB 

for SS, CC and CS boundary conditions at 𝑁0 = 2, 𝜇 = 1, 𝑘𝑤 = 20, 𝑘𝑝 = 2 and 𝐿/ℎ = 10, 20, 40 

 

 
 

PTNNB. However, for PTKNB by increasing the filling ration, the natural frequency is decreased 

at first then increased. The modes of the natural frequency as the filling ratio approaching 1 and by 

increasing the beam aspect ratio, L/h the natural frequency almost becomes the same value for 

both cases PTNNB and PTKNB. 

 
5.2.4 Effect of number of hole rows on PTNNB and PTKNB 

The effect of the number of hole rows on the 1st, 2nd, and 3rd natural frequency modes is shown 

in Figs. 11-13 for perforated thin and thick nanobeams, respectively. As shown, by increasing the 

number of hole rows, the natural frequency decreases significantly in nonlinear behavior for 

PTNNB and PTKNB for all modes and boundary conditions, due to the reduction of the overall 

system stiffness. It is observed that, by increasing the beam aspect ratio the natural frequency 

modes are decreased. Also, the natural frequency overestimates at PTNNB than PTKNB for all 

modes and all boundary conditions even with an increase of the beam aspect ratio L/h. 
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Fig. 11 Variation of the natural frequency of the 1st mode with the number of hole rows for both PTNNB and 

PTKNB for SS, CC and CS boundary conditions at α = 0.2, 𝜇 = 1, 𝑘𝑤 = 20, 𝑘𝑝 = 2 and 𝐿/ℎ = 15, 20, 40 

 

 
Fig. 12 Variation of the natural frequency of the 2nd mode with the number of hole rows for both PTNNB 

and PTKNB for SS, CC and CS boundary conditions at 𝛼 = 0.2, 𝜇 = 1, 𝑘𝑤 = 20, 𝑘𝑝 = 2  and  𝐿/ℎ =

15, 20, 40 
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Fig. 12 Continued 

 

 

5. Conclusions 
 

The model developed in this article can be easily used in the analysis and design of perforated 

viscoelastic materials Nanobeam MEMS/NEMS Structures. The model investigates the dynamic 

response to vibrations of perforated viscoelastic material Nanostructure of thin/thick nanobeams 

with a size-dependent continuum pattern under different boundaries Conditions. The perforation is 

assumed to be arranged in a symmetrical array with equal spacing and hole geometry. The 

nanoscale size is incorporated into the model using the differential form of the non-local Eringen 

model. That The Kelvin viscoelastic constitutive relationship is used to account for viscoelasticity 

and energy dissipationthe nanostructure. Closed-form solutions are derived in detail to simplify the 

engineering analysis process and designers. Based on the current results, this is the conclusion 

√ The Winkler foundation has great influence on the natural frequency of thin and thick 

perforated. 

√ Nanobeam for all boundary conditions, by increasing Winkler foundation, the natural 

frequency increased significantly in nonlinear behavior for PTNNB. However, the Winkler 

foundation has insignificant effect in the case of PTkNB. 

√ The effect of number of hole rows on the 1st, 2st, 3st natural frequency of perforated thin 

and thick nanobeams at 1st mode, 2nd mode, 3rd mode, respectively. by increasing the 

number of hole rows, the natural frequency decreases significantly in nonlinear behavior for 

PTNNB.  

√ However, the number of hole rows has insignificant effect in case of PTKNB. 

√ The Winkler foundation on the natural frequencies is increased for higher mode rather 

than lower ones for all boundary conditions. 

√ The filling ratio on the 1st natural frequency of perforated thin and thick nanobeams. for 

CC, CS boundary condition by increasing filling ratio, the natural frequency decreases in 

case of PTNNB.  

√ However, in case of PTKNB the filling ratio deceases until 0.1 then incrase for SS 

boundary condition by increasing filling ratio, the natural frequency decreases in case of 

PTNNB, PTKNB    
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Fig. 13 Variation of the natural frequency of the 3rd mode with the number of hole rows for both PTNNB and 

PTKNB for SS, CC and CS boundary conditions at 𝛼 = 0.2, 𝜇 = 1, 𝑘𝑤 = 20, 𝑘𝑝 = 2 and 𝐿/ℎ = 15, 20, 40 
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