
 

 

 

 

 

 

 

Advances in Aircraft and Spacecraft Science, Vol. 1, No. 4 (2014) 427-441 

DOI: http://dx.doi.org/10.12989/aas.2014.1.4.427                                             427 

Copyright ©  2014 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=aas&subpage=7        ISSN: 2287-528X (Print), 2287-5271 (Online) 
 
 
 

 

 
 
 

Attitude control in spacecraft orbit-raising using a reduced 
quaternion model 

 

Yaguang Yang

 

 
Division of Engineering, Office of Research, US Nuclear Regulatory Commission, 

21 Church Street, Rockville, MD 20850, USA 

 
(Received January 18, 2014, Revised May 13, 2014, Accepted May 20, 2014) 

 
Abstract.  Orbit-raising is an important step to place spacecraft from parking orbits into working orbits. 
Attitude control system design is crucial in the success of orbit-raising. Several text books have discussed 
this design and focused mainly on the traditional methods based on single-input single-output (SISO) 
transfer function models. These models are not good representations for many orbit-raising control systems 
which have multiple thrusters and each thruster has impact on the attitude defined by all outputs. Only one 
published article is known to use a more suitable multi-input multi-output (MIMO) Euler angle model in 
spacecraft orbit-raising attitude control system design. In this paper, a quaternion based MIMO model for the 
orbit-raising attitude control system design is proposed. The advantages of using quaternion based model for 
orbit-raising control system designs are (a) there is no need for mathematical transformations because the 
attitude measurements are normally given by quaternion, (b) quaternion based model does not depend on 
rotational sequences, which reduces the chance of human errors, and (c) the singular point of reduced 
quaternion model is the farthest from the operational point where linearization is performed. We will show 
that performance of quaternion model based design will be as good as the performance of Euler angle model 
based design for orbit-raising problem. 
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1. Introduction 

 

Multiple modes of spacecraft attitude control systems are desired because a spacecraft needs to 

perform different tasks to achieve its missions during the spacecraft life cycle, such as attitude 

maneuver, attitude control in normal operational mode, and attitude control in orbit-raising mode. 

Euler angle models and quaternion models are most popular models for spacecraft control system 

designs. Attitude maneuver controls using either quaternion or Euler angle models have been 

extensively discussed in several textbooks, such as Sidi (1997), Wie (1998), Wertz (1978). 

Attitude control system designs in normal operational mode using various models, such as Euler 

angle models and quaternion models, single-input transfer function models and multi-input state 

space models, have been the main topics in spacecraft control system designs and have been 

investigated in many research papers and textbooks, for example, Sidi (1997), Wie (1998), Wertz 
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(1978), Wie et al. (1989), Boskovic et al. (2001), Wallsgrove and Akella (2005), Wen and Kreutz-

Delgado (1991), Paielli and Bach (1993), Won (1999). Most discussions on orbit-raising attitude 

control are based on SISO transfer function models Sidi (1997), Wie (1998) and the designs use 

single loop compensation. Since orbit-raising using single-input model design is difficult to 

stabilize the MIMO spacecraft system, NASA suggested using spin stabilized thrust control (Noll 

et al. 1971). This design strategy needs some additional fuel consumption to spin the spacecraft 

during the thrust and de-spin the spacecraft after the thrust. As multiple thrusters are used during 

orbit-raising and the effect of each thruster has impact on all outputs (roll, pitch, and yaw), a good 

design model should be an MIMO state space model and the ideal design method should consider 

multi-input multi-output features of the system. Very few designs on orbit-raising using MIMO 

models have been reported. One noticeable work is by Stoltz et al. (1998) which described the 

OrbView-2 spacecraft orbit-raising control system design using an Euler angle model. The real 

flight experience reported by Stoltz et al. (1998) shows that this design is very successful and does 

not need to spin the spacecraft during the thrust because a more advanced control method can do a 

better work than traditional methods.  

In a series of recent papers, Yang (2010, 2012, 2014) proposed to adopt a reduced quaternion 

model in spacecraft attitude control system design. For the operational mode, the LQR design for 

attitude control system based on a reduced quaternion model has an analytic solution which is 

directly related to the desired closed-loop pole locations. The designed linear feedback controller 

globally stabilizes the original nonlinear spacecraft system (Yang 2012). Moreover, the analytic 

LQR design is a robust pole assignment design which is insensitive to the modeling error and is 

proved to have a good performance of disturbance rejection (Yang 2014).  

In this paper, we extend the method developed in Yang (2010, 2012) to the orbit-raising 

attitude control system design. Since the linearized reduced quaternion model for orbit-raising 

control system is fully controllable (Yang 2010), it is possible to directly apply many the modern 

linear system design methods to spacecraft attitude control system designs. We will show that 

similar to the Euler angle model based design, the quaternion based design can avoid spinning the 

spacecraft during the thrust and de-spinning the spacecraft after the thrust, which reduces fuel 

consumptions; and the performance of the new design is comparable to the performance of the 

design given by Stoltz et al. (1998). However, several other factors make the quaternion model-

based design more attractive. First, quaternion is most likely used in attitude determination 

systems (Yang 2012a), therefore, there is no need of using mathematical transformation from 

quaternion to Euler angles. Second, the quaternion model does not depend on rotational sequence, 

which reduces the chance of human errors in the design process. Finally, the linearized quaternion 

model has a singular point that is the farthest to the operational point where the linearization is 

performed, while Euler angle model has a nondeterministic singular point depending on the 

rotational sequence. 

Since flight test is very expensive, most new spacecraft attitude estimation and control design 

methods are first tested in some simulation environment, for example, Chan et al. (2010), Sanyal  

et al. (2008), Kim et al. (2008), Chen et al. (2007), Bras et al. (2013), Martin and Salaun (2010). 

We will also demonstrate the design performance by a simulation test.  

In the next section, a linearized reduced quaternion model for OrbView-2 orbit-raising system 

is derived (the same strategy can easily be applied to any orbit-raising thruster configuration). In 

Section 3, LQR design (Athans and Falb 1966) and pulse width modulation is discussed. In 

Section 4, this design is then used to calculate the feedback matrices for both the reduced 

quaternion model and the Euler angle model, that have the same parameters of OrbView-2  
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Fig. 1 Spacecraft coordinates definition in parking-orbit 

 

 

spacecraft and the same design parameters proposed in (Stoltz et al. 1998). These two designs are 

applied to the original nonlinear spacecraft system models in the simulation. The responses of the 

closed-loop nonlinear system for these two different designs are compared. The conclusions are 

summarized in the last section. 

 

 

2. Reduced quaternion model for orbit-raising 
 

The quaternion model for orbit-raising depends on the spacecraft design. In this section, the 

OrbView-2 spacecraft (Stoltz et al. 1998) is used as an example to describe the modeling process. 

OrbView-2 has a momentum wheel with the angular momentum vector aligned parallel to the 

orbit-normal (-y axis), the spacecraft attitude control in normal operation mode is performed by 

this wheel and 3 magnetic torque rods. The parking-orbit of OrbView-2 is about 300 km above the 

Earth surface, and the working-orbit is about 705 km above the Earth surface. The spacecraft 

desired attitude at parking-orbit, which coincides with the local vertical local horizontal (LVLH) 

frame, is shown as in Fig. 1. The origin of this attitude frame is defined at the center of mass of the 

spacecraft which is denoted as “o”. Orbit-raising is performed by 4 fixed 1 (lbf) (lbf=4.448 

Newton) thrusters with on/off switches which are mounted on the anti-nadir face of the spacecraft 

in each corner of a square with a side length of 2d as shown in Fig. 2. The thrusters point to +z 

direction (into the page) and are canted 5
o
 degree from z-axis (in the directions depicted by the 

arrows) to produce moments to maintain the spacecraft attitude during the burns. These thruster 

are mounted a distance l (m) along −z axis from the spacecraft center of mass (and the coordinate 

system origin). The similar design is used in ROCSAT-3 spacecraft as reported in Show et al. 

(2003). 
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Fig. 2 Thruster mounting geometry 

 

 

Fig. 3 Spacecraft coordinates definition in orbit-raising 

 

 

The spacecraft thrust control system of OrbView-2 is designed to transfer the spacecraft from 

the parking orbit to a sun-synchronous orbit. The attitude of the spacecraft before orbit-raising is 

stabilized in the nadir-pointing orientation. To perform the task of orbit-raising, the spacecraft 

needs to rotate 90
o
 degree around y-axis so that the thrusters, which are mounted on the anti-nadir 

face, are aligned parallel to the velocity vector. This is a typical situation that spacecraft attitude 

maneuver is required. The attitude maneuver is a simple operation and has been fully studied in 

textbooks, such as Sidi (1997) using simple control methods; and in some recently published 

papers, such as (Show et al. 2003), using more advanced control methods. This paper will not 

discuss the control of this attitude maneuver. Instead, it will focus on the orbit-raising attitude 

control system designs. 

To conduct Hohmann transfers to raise the orbit (for more details on Hohmann transfer and 

orbit-raising operational requirements, the readers are referred to Sidi (1997) and Wie (1998)), 

OrbView-2 uses the momentum wheel to provide the torque to rotate the spacecraft ±90
o
 degrees 

to align the thrusters along with or anti-parallel to the velocity vector (see Fig. 3). At this 

orientation, the thruster burns will raise the spacecraft orbit. Let hw be the angular momentum 

produced by the momentum wheel. Let the rotation of the spacecraft body frame relative to the 
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frame described by Fig. 3 (with x-axis aligned with anti-nadir direction) represented in the body 

frame be given by the quaternion 
T

T
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where e


 is the rotational axis and α is the rotational angle (α=0 when the spacecraft is perfectly 

aligned with the frame described by Fig. 3. Let W=[wx wy wz]
T
 be the angular rate of the rotation 

represented in the body frame 
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be the diagonal inertia matrix of the spacecraft, m=[Mx My Mz]
T
 be the control torques generated by 

the thrusters, and h=[Jxwx Jywy+hw Jzwz]
T be the inertial angular momentum vector of the 

spacecraft, then (see Wertz 1978) 
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In view of Fig. 2, the matrices of thruster force directions F


and moment arms R

 in the body 

frame are given as 
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where 
180

5707.0)
180

5sin(
2

2 
a , columns 1, 2, 3, and 4 represent the thrusters 1, 2, 

3, and 4. Denote T1, T2, T3, and T4 the thruster levels of thrusters 1, 2, 3, and 4. Let 

 TTTTTu
4321  
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be the level control vector, then the control torque m can be expressed as 

 
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Adjoining Eq. (3) and Eq. (6) gives 
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According to Yang (2010), for ),(   , the vector part of the quaternion q meets the 

following relation 
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The linearized form of Eq. (7) is given as 
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The linearized form of Eq. (8) is given as 
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Adjoining Eqs. (9) and (10) gives the linearized quaternion based thruster control system 

equation as follows 

432



 

 

 

 

 

 

Attitude control in spacecraft orbit-raising using a reduced quaternion model 
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For the convenience of the computer control system design, following the same steps 

performed in Stoltz et al. (1998), the continuous system is converted to a discrete form given by 
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is the sample period (the same number is used in Stoltz et al. (1998)). It is shown in Stoltz et al.  

(1998) that using the integral terms of Euler angles in controller design is very successful for orbit-

raising. To incorporate the integral terms of quaternion, the discrete integrators 
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are simply as 

 )()()1( nqdTniqniq                           (13) 

where q(n) is the vector value of the reduced quaternion at the nth sample period. Adjoining Eqs. 

(12) and (13) gives 
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3. LQR design and pulse width modulation 
 

For orbit-raising using Hohmann transfers, the thrust control requires that the four thrusters 

must fire in a controlled manner so that the spacecraft will accelerate in the z direction depicted as 

in Fig. 3. This means that the quaternion and the angular rate relative to the frame depicted as in 

the Fig. 3 should be as small as possible. Therefore, the thrust control design is to select control 

u(n) to maintain the attitude in the orbit-raising operation. This can be represented as a LQR 

design which minimizes the cost function 


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)]()()()([
2

1
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under the constraint of (14). The discrete state feedback control can be obtained using the 

MATLAB control toolbox (Grace et al. 1990). 

)()( 9 nKxnu                               (15) 

where K is a 4×9 state feedback matrix. It is worthwhile to note (a) this design considers only the 

attitude control problem but does not really consider the thrust level selection, and (b) the designed 

control force may take negative value but OrbView-2 thrusters thrust only in positive direction. 

Stoltz et al. (1998) provided a nice method to convert the LQR controller to a pulse width 

modulation. Notice that OrbView-2 thrusters are operated using an on/off switch to control the 

pulse width, thereby to control the thrust force (level). The suggested procedure to convert the 

LQR controller to pulse width modulation is as follows (Stoltz et al. 1998): 

1. Compute the LQR thruster commands: )()( 9 nKxnu   

2. Convert from variable thrusts u(n) for the fixed total sample period dT to fixed thrusts f for 

variable times ti(n): Use the identity ui(n)*dT=f*ti(n) and design parameter f=1(lbf)=4.448(N) as 

the thrust force magnitude, then, the ith thruster on-time 
f

nudT
nt i

i

)(
)(


 , for i=1, 2, 3, 4. 

3. Limit on-times to ± half the sample period, i.e., 0.5dT≤ti(n)≤0,5dT. 

4. Compute a bias term tb such that maxi{ti(n)+tb}=dT, add the bias to all on-times such that at 

least one thruster is on for the complete sample period. 

 

Remark 3.1 It is easy to see that the bias term is the thrust term, while ti(n) terms are used to 

control the attitude during the thrust period.  
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Similar to Stoltz et al. (1998), it is assumed that thruster valve actuators significantly disturb 

the measurement of magnetometer, so the magnetometer is read only in the two second period 

when the thrusters are off. To maintain the same force u(n) in every 4 seconds of a sample period, 

the thruster commands, u(n), are doubled and the thruster on-times halved to a maximum of two 

seconds out of every four second sample period. 

 
 
4. Comparison of quaternion based and Euler angle based designs 
 

In this section, two different orbit-raising designs, the design based on the reduced quaternion 

model established in Section 2 and the design based on the Euler angle model given in Stoltz et al. 

(1998), are compared. Both designs use standard LQR design method with the same spacecraft 

parameters as provided in Stoltz et al. (1998). In particular, the sample period is 4 seconds; the 

maximum thruster on-time is 2 seconds; the diagonal elements of the inertia matrix are Jx=189 

(kg·m
2
), Jy=159 (kg·m

2
), Jz=114 (kg·m

2
); the momentum wheel moment is −2.8(N·m·sec); the 

diagonal elements of the Q matrix are Q1=Q2=Q3=1/(2.5rad/sec)
2
 and Q4=Q5=Q6=1/(9rad)

2
, 

Q7=Q8=Q9=1/(182rad-sec)
2
; the diagonal elements of the R matrix are R1=R2=R3=R4=1N

2
. It is 

assumed further that the same thrusters are installed and the same alignments are used as in Fig. 2 

where d=0.248 m and l=0.8151 m. The LQR design based on the Euler angle model has been 

successfully used for the OrbView-2 orbit-raising and the results have been reported in (Stoltz et 

al. 1998). Using the parameters listed above for the design model described in Stoltz et al. (1998) 

and applying dlqr command in MATLAB toolbox (Grace et al. 1990) yield the feedback matrix 
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For the reduced quaternion model (14) with the same set of parameters listed above, applying 

dlqr command in MATLAB toolbox yields the feedback matrix of the LQR design 
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These feedback matrices (Ke and Kq) are applied to the original nonlinear system. For both 

Euler angle model and quaternion model, Eq. (7) is used to represent the nonlinear dynamics of 

motion which has its discretized form as follows 
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where K is either Ke or Kq. For Euler angle model, the nonlinear kinematics equation of motion is 

given as Kuipers (1999) 
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which has its discretized form as follows 
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For reduced quaternion model, the nonlinear kinematics equation of motion is given by Eq. (8) 

which has its discretized form as follows 
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Eq. (13) is used to propagate the 3 quaternion integral states for the quaternion feedback 

control. For the Euler angle feedback control, the discrete Euler angle integrators 

 
T

dTdTdT
T

ieieieie 

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



 

000

321   

is given by 

)()()1( nddTnienie                           (20) 

to propagate the last 3 integral states where d(n)=[ϕ(n), θ(n), ψ(n)]
T
. 

Since other disturbance torques (Wertz 1978), such as gravity gradient torque, aerodynamic 

drag, geopotential induced torque, and solar pressure torque are very small comparing to the thrust 

torques, these disturbance torques are ignored in our simulation. 

In the simulation tests, the following initial conditions are assumed: the initial quaternion rates 

are zeros; the initial Euler angles are 2 degrees in roll, pitch, and yaw; the initial Euler angles are 

converted to initial quaternion and used as the initial feedback in quaternion model based design; 

the initial integral terms for reduced quaternion model and for Euler angles model are all set to 

zeros. At the end of every iteration in quaternion based design simulation, the quaternion is 

converted back to the Euler angles and saved so that the responses of the two different designs can 

be compared using the same error measurement. 

The simulation results are provided in Figs. 4-13. In these figures, the solid lines are the 

responses and/or controls of the quaternion based design; the dashed lines are the responses and/or 

controls of the Euler angle based design. Both designs have similar responses in terms of widely 

used indices such as percentage of overshoot, settling time, etc (Dorf and Bishop 2008). The total 

(summation) thrust time used for attitude control in the quaternion based design (12.0006 seconds)  
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Fig. 4 Design comparison for quaternion rate w1 

 

 

Fig. 5 Design comparison for quaternion rate w2 

 

 

Fig. 6 Design comparison for quaternion rate w3 
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Fig. 7 Design comparison for quaternion q1 

 

 

Fig. 8 Design comparison for quaternion q2 

 

 

Fig. 9 Design comparison for quaternion q3 
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Fig. 10 Design comparison for Thrust u1 

 

 

Fig. 11 Design comparison for Thrust u2 

 

 

Fig. 12 Design comparison for Thrust u3 
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Fig. 13 Design comparison for Thrust u4 

 

 

is slightly better than the total (summation) thrust time used for attitude control in the Euler angle 

based design (12.6352 seconds) during 500 second thrust period, which means that the fuel 

consumption using the quaternion based design is less than the Euler angle based design. But the 

most important advantages in quaternion based design comparing to the Euler angle based design, 

as pointed before, are (a) the model is independent to the rotational sequence; (b) the singular point 

is the farthest to the point where the linearization is carried out; and (c) the quaternion 

measurement is readily available onboard for most satellites. 

 

 

5. Conclusions 
 

In this paper, a reduced quaternion model for spacecraft attitude control systems in orbit-raising 

mode is derived. Simulations for two LQR designs based on two different models, the reduced 

quaternion model and the Euler angle model, are conducted. These simulations show that the 

control system design based on the reduced quaternion model is a promising technique. 
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