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Abstract.  The results of a series of numerical experiments are presented to verify some of the 
important developments made in the first part of this paper. Firstly, the static solution of an algebraic 
system obtained through Strong Formulation Finite Element Method (SFEM) is presented. Secondly, 
the stress and strain recovery procedure is descripted for the present technique. It will be clear that the 
present approach is suitable for any strong formulation finite element methodology, due to the 
presented general approach based on the unknown displacements and on the elasticity equations. 
Thirdly, the numerical solutions for some classical and other numerical results found in literature are 
exposed. Finally, an arbitrarily shaped composite plate is solved and good agreement is observed for all 
the presented cases. 
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1. Introduction 

 

Some laminated composite and cross-ply plates (Reddy 2003 and Natarajana et al. 2013) are 

studied in the following. In order to investigate the accuracy and reliability of the present 

technique several examples are presented. The implementation and the numerical results of a strain 

and stress recovery procedure applied to the Strong Formulation Finite Element Method (SFEM) 

are illustrated. The cited technique is based on the cohesion between mapping technique, also used 

in the well-known Finite Element Method (FEM), and a numerical approximation of the   

derivatives that can be based on Generalized Differential Quadrature (GDQ) method, orthogonal 

collocation or Spectral Method (SM). In this way, for instance, arbitrarily shaped plates can be 

solved even though geometric discontinuities are present. It is recalled that the GDQ method (Shu 

2000, Tornabene and Viola 2007, 2008, 2009a, b, Viola and Tornabene 2005, 2006, 2009, and 

Viola et al. 2007) started from the early works on the Differential Quadrature (DQ) by (Bellman 

and Casti 1971 and Bellman et al. 1972) and SMs approximate a function by a linear combination 

of suitable basis functions as stated in the works (Boyd 2001, Gottlieb and Orszag 1977, and 

Orszag 1969, 1980). Furthermore, further studies on DQM showed that the two approaches are 
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analogous under certain assumptions (Chen et al. 1997, 2000 and Jang et al. 1989). Although the 

theoretical developments of the SFEM were presented in Part I by (Fantuzzi and Tornabene 2014), 

it is better to recall that the major steps on a domain decomposition technique using DQM were 

reported in the works (Chen 1999a, b, 2000a, b, Shu et al. 1995, Shu and Chew 1997, 1999, Xing 

and Liu 2009, 2010, Zong and Zhang 2009 and Viola et al. 2013d, e, f). The generality of the 

present formulation will be demonstrated, in fact, it is possible to evaluate a partial derivative 

using several basis functions and weighting coefficient calculations (exact solutions or inversion of 

the coefficient matrix). In the present part II of this paper reliability and accuracy of the SFEM is 

investigated and the numerical results are compared with those found in literature and obtained 

through a finite element code, in the final section. 

 

 

2. Strain and stress recovery procedure 
 

The following strain and stress recovery procedure has been already presented in literature 

(Tornabene 2012, Tornabene et al. 2012a, b, c, and Tornabene and Ceruti 2013a, b), where the 

authors studied the recovery procedure with GDQ method for single domain cases. For the present 

technique, the mathematical developments follow the same guidelines of the previous papers 

(Tornabene 2012, Tornabene et al. 2012a, b, c, Tornabene and Reddy 2013, Tornabene and Viola 

2013, Viola et al. 2013b, Tornabene et al. 2014a, b, and Tornabene and Fantuzzi 2014). In fact, 

they are applied element by element. When the fundamental system is solved, applying the GDQ 

method at the master element level, to the two-dimensional equations of moderately thick 

composite plates, the numerical values of the displacement components are evaluated in all the 

points of the middle surface (i, j) of the plate 

)()()()()( ,,,, ijyijxijijij wvu   with MjNi ,...,1,,...,1   (1) 

Once the displacements and rotations are known the displacement field can be calculated at any 

point of the three-dimensional solid using the kinematic model of paper part I (Fantuzzi and 

Tornabene 2014), as 
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with TmMjNi ,...,1,,...,1,,...,1  , where m  is the index that varies along the plate 

thickness. The kinematic equations are functions of both the displacement components Eq. (2) and 

their derivatives, hence the strain characteristics can be evaluated directly using the GDQ method 

as follows 
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(3) 

The symbol ij  indicates the GDQ weighting coefficient that are evaluated as in literature 

(Tornabene 2009, 2011a, b, c, and Tornabene et al. 2009, 2010, 2011, 2013a). The in-plane 

deformation components, in discrete form, are carried out from the strain characteristics as 
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(4) 

It is pointed out that, Eq. (3) is defined upon the middle surface, whereas expressions Eq. (4) 

are also functions of the normal abscissa z . As it is well-known, the shear strains yzxz  ,  can be 

calculated only approximately with FSDT. It is assumed that the shear strain and stresses are 

constant through the thickness. Recalling the hypothesis of small thickness, the transversal strain 

z  is also negligible. Nevertheless, it will be shown how to recover these strains using the 

constitutive equations of the three dimensional solid. 

Considering the stress definitions xyyx  ,,  (Reddy 2003 and Tornabene 2012), the in-plane 

stress components can be obtained as functions of the strain components Eq. (4) as 
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(5) 

Once the stress components are known, the GDQ method can be used to approximately retrieve 

their derivatives yxyxxyyyxx ,,,, ,,,   as 
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(6) 

It is important to calculate Eq. (6) because they can be used in the two indefinite equilibrium 

equations of the three-dimensional elasticity (Reddy 2003 and Tornabene 2012) to recover the 

out-of-plane shear stresses yzxz  , . These equations are reported in the following: 
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Since the quantities yxyxxyyyxx ,,,, ,,,   were calculated using Eq. (6) all the terms on the 

right hand of Eq. (7) are known. It is noted that, the two equilibrium equations Eq. (7) are 

independent, so they can be solved separately. The discrete form of Eq. (7) as a function of the 

index Tm ,...,2  is 
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(9) 

In order to solve the two algebraic systems of Eqs. (8) and (9), the boundary conditions must be 

introduced. As already stated in literature (Tornabene 2012, Tornabene et al. 2012b, c and Viola et 

al. 2012, 2013b, c) these systems are of the first order but have two distinct boundary conditions to 

satisfy 
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(11) 

The bottom boundary conditions are used to solve Eqs. (8) and (9) and the second one is used 

within a linear correction of the obtained profile. The first boundary conditions at 2hz   in 

discrete form are 
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whereas, the second conditions 
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are satisfied with the following linear correction 
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Once the shear stresses 
xz

 and 
yz

 are recovered, the normal stress n  can be derived from 

the third indefinite equilibrium equation of the three-dimensional elasticity. The present equations 

is 
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The derivatives xxz, and yyz,  are calculated as the previous ones (see Eq. (6)) 
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(16) 

so that all the terms on the right hand of Eq. (15) are known. Thus, the third 3D equilibrium 

equation in discrete form becomes 
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(17) 

with the index Tm ,...,2  variable along the thickness of the plate. It should be pointed out that, 

also in this case, two boundary conditions occur for a first order differential problem. The two 

boundary conditions are 
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where )(
zq and )(

zq are the normal loads applied at the bottom and top surface of the structure, 

respectively. In discrete form, the first boundary condition at the bottom surface of the plate is 

taken into account for solving equation Eq. (17) 
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Afterwards, the normal stress profile has to be corrected using the second boundary condition 
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with a relationship similar to the ones proposed above (see Eq.(14)) 
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In the introductory part of the present section it was recalled that, the shear strains were 

supposed to be constant and the normal strain was negligible according to the main hy-                              

potheses of FSDT. However, they can be recovered like the shear and normal stresses considering 

the constitutive equations of a laminated composite plate. For a generically oriented lamina the 

shear stresses can be calculated as 
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Since the shear stresses 
xz

 and 
yz

 have been recovered, the shear strains xz  and yz   

can be obtained 
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Eq. (23) leads to the following discrete form 
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Now, considering the unreduced elastic constants from the constitutive equations 

 C  (25) 

where )(k
ijC  are the elastic coefficients obtained considering the problem reference system and 

not the material reference system, the normal strain z  can be investigated. As shown in 

literature (Reddy 2003 and Tornabene 2012) the stiffness matrix C  is defined as 

11 12 13 16

12 22 23 26

13 23 33 36

44 45

45 55

16 26 36 66

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0

x x

y y

z z

xz xz

yz yz

xy xy

C C C C

C C C C

C C C C

C C

C C

C C C C

 

 

 

 

 

 

    
    
    
    

    
    
    
    

          

(26) 

By inverting the third of Eq. (26) the normal strain z  can be worked out 
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The generic )(k
ijC constants for an orthotropic material can be evaluated using the )(k

ijC  

constants, where 036 C , as 
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For the sake of completeness the )(k
ijC stiffness constants are reported as a function of the 
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mechanical properties of a generic ply 
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Considering Eq. (29) and substituting into Eq. (28), the values of the coefficients )(k
ijC  are 

known and the normal strain z  is calculated as a special case of an orthotropic material. Thus 

the discrete form of Eq. (27) can be written as 

 

 
 

 
 

 
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z ijm x ijm y ijm xy ijm

z ijm m

C C C

C

   


  


 

(30) 

Since an approximated value of the shear and normal strains is found, the normal stresses Eq. 

(5), calculated at the beginning of the procedure, can be corrected using Eqs. (24) and (30). In fact, 

instead of using the constitutive equations with the reduced constants )(k
ijQ  the general Eq. (26) 

can be used instead for evaluating the first three equations. In the following numerical applications 

the in-plane stresses are implicitly calculated through this procedure and they are not the ones from 

Eq. (5). 

 
 

3. Results of the strain and stress recovery 
 

In the present section, the post processing technique of stress recovery is applied to the static 

analysis of arbitrarily shaped laminated composite plates. In order to show the accuracy of the 

present formulation a square composite plate is firstly studied. For the present case the shear and 

normal stress profiles through the thickness of the plate are shown for several lamination schemes 

compared to literature and to numerical results carried out by using a commercial finite element 

code. The plate geometry is depicted in Fig. 1 and it spotlights the points where the stresses have 

been recovered and presented in Figs. 2-4. The plate has two equal sides m1 ba  and 

constant thickness m1.0h . Each composite lamina is made of Graphite-Epoxy: GPa9.1371 E , 

GPa96.832  EE , GPa1.71312  GG , GPa21.623 G , 3.01312  vv , 49.023 v  and 3kg/m1450 . 

The mesh is made of four square elements 4en , with a C-G-L grid using 21 MN  points 

on the middle surface and 51T  points along the thickness of each single element. Finally, it 
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Fig. 1 Identification of the points used for the stress profiles and square plate geometry ( m1 ba ) 

 

 

must be underlined that in all the following figures the acronym GDQFEM is indicated. A 

particular version of SFEM when GDQ is used for approximating the derivative can be also called 

GDQFEM as in the work (Viola et al. 2013a and Fantuzzi et al. 2014). 

The first comparison, in terms of shear stresses 
xz

 and 
yz

 , is shown in Fig. 2 with respect 

to different cross-ply lamination schemes ( .../0/90/0 ). The reference solution is a semi-analytical 

solution given by (Reddy 2003) for a simply supported square plate subjected to a uniformly 

distributed load at the top surface of the plate kPa8)( 
zq . Perfect agreement is observed in Fig. 

2 for all the shown cases. 

The second example (Fig. 3) reports the stress tensor at the point )25.0,25.0( aaC  , for a 

( 0/90 ) simply supported square plate subjected to kPa10)( 
zq  uniformly distributed top load.  

It should be pointed out that the in-plane stresses have been corrected using the recovered shear 

and normal strains Eqs. (24) and (30), in fact there is a very good agreement between the present 

solution and the exact solution given by Reddy (2003). 

For the following solution a three layered ( 0/90/0 ) simply supported plate subjected to a 

uniform load kPa10)( 
zq  is considered. The comparison shown in Fig. 4 is performed for 

several points of the plate, some of them are taken inside the plate geometry and some others at the 

plate boundaries. It is underlined that for all the reported cases very good agreement is observed. 

In the following, other comparisons have been done with respect to a three dimensional finite 

element solution. The meshes used in the computations are depicted in Fig. 5. In detail Figs. 

5(a)-5(c) represent three finite element meshes with 20 nodes brick elements with 3 dofs per node. 

Fig. 5(d) shows the SFEM mesh, where the four elements are presented with 8 nodes. Inside each 

element a C-G-L 21 MN  grid is considered. It must be noted the different computational 

effort between the 3D models with 319300 dofs and the 2D one with 8820 dofs. Thus, the present 

two dimensional approach brings a great advantage compared to 3D FEM because it leads to the 

same results with a lot less degrees of freedom. 
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Strong formulation finite element method for arbitrarily shaped laminated plates – Part II 

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 2 Through the thickness variation of the shear stresses yzxz  ,  [Pa] at the point )25.0,25.0( aaC   

for a S-S-S-S square plate subjected to a uniformly distributed load at the top surface 

kPa8)( 
nq for different lamination schemes: (a) )90/0( , (b) )0/90/0( , (c) )90/0/90/0( , (d) 

)0/90/90/0( , (e) )90/0/90/0/90/0/90/0( , (f) )90/0/90/0/0/90/0/90(  
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 3 Through the thickness variation of the stress components [Pa] at the point )25.0,25.0( aaC   for a 

)0/90(  S-S-S-S square plate subjected to a uniformly distributed load at the top surface 

kPa10)( 
zq  
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Strong formulation finite element method for arbitrarily shaped laminated plates – Part II 

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 4 Through the thickness variation of the stress components [Pa] for a )0/90/0(  S-S-S-S square 

plate subjected to a uniformly distributed load at the top surface kPa10)( 
zq  at different points: 

(a) )25.0,25.0( aaC  , (b) )25.0,25.0( aaC  , (c) )5.0,0( aG  , (d) )0,5.0( aF  , (e) )0,0(H , 

(f) ),( aaS   
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dofs=319300 dofs=319300 

(a) (b) 

 
 

dofs=319300 dofs=8820 

(c) (d) 

Fig. 5 Model comparison among three 3D finite element models with dofs = 319300:(a) a two plies 

composite plate, (b) a three plies composite plate and (c) a five plies composite plate, (d) a SFEM 

mesh with 4en  and dofs = 8820 

 

 

In Figs. 6 and 7 a clamped square plate with a ( 0/90 ) lamination scheme subjected to a 

uniform top load kPa10)( 
zq  is investigated. Two different points are shown 

)25.0,25.0( aaC   and )25.0,5.0( aaB  . It is noted that due to the particular symmetry of the 

load and the geometry in B two shear stresses are null, whereas in C all the stress components are 

different from zero through the thickness. On the contrary if the same plate is made of ( 60/30 ) 

lamination scheme, that yields to an anisotropic plate behavior, the stress components are all 

different from zero both in B and C, as illustrated in Figs. 8 and 9 where very good agreement with 

FEM is observed. 
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Strong formulation finite element method for arbitrarily shaped laminated plates – Part II 

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 6 Through the thickness variation of the stress components [Pa] at the point )25.0,25.0( aaC   for a 

)0/90(  C-C-C-C square plate subjected to a uniformly distributed load at the top surface 

kPa10)( 
zq . Geometric properties: m05.0,m1 21  hhba  
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 7 Through the thickness variation of the stress components [Pa] at the point )25.0,5.0( aaB   for a 

)0/90( C-C-C-C square plate subjected to a uniformly distributed load at the top surface 

kPa10)( 
zq . Geometric properties: m05.0,m1 21  hhba  
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Strong formulation finite element method for arbitrarily shaped laminated plates – Part II 

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 8 Through the thickness variation of the stress components [Pa] at the point )25.0,25.0( aaC   for a 

)60/30(  C-C-C-C square plate subjected to a uniformly distributed load at the top surface 

kPa10)( 
zq . Geometric properties: m05.0,m1 21  hhba  
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 9 Through the thickness variation of the stress components [Pa] at the point )25.0,5.0( aaB   for a  

)60/30(  C-C-C-C square plate subjected to a uniformly distributed load at the top surface 

kPa10)( 
zq . Geometric properties: m05.0,m1 21  hhba  
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Strong formulation finite element method for arbitrarily shaped laminated plates – Part II 

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 10 Through the thickness variation of the stress components [Pa] at the point )25.0,25.0( aaC   for 

a )0/90/0(  C-C-C-C square plate subjected to a uniformly distributed load at the top surface 

kPa10)( 
zq . Geometric properties: m04.0m,03.0,m1 231  hhhba  
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 11 Through the thickness variation of the stress components [Pa] at the point )25.0,5.0( aaB   for a  

)0/90/0(  C-C-C-C square plate subjected to a uniformly distributed load at the top surface 

kPa10)( 
zq . Geometric properties: mmm 04.0,03.0,1 231  hhhba  
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Strong formulation finite element method for arbitrarily shaped laminated plates – Part II 

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 12 Through the thickness variation of the stress components [Pa] at the point )25.0,25.0( aaC   for 

a )90/45/0(  C-C-C-C square plate subjected to a uniformly distributed load at the top surface 

kPa10)( 
zq . Geometric properties: mmm 04.0,03.0,1 231  hhhba  
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 13 Through the thickness variation of the stress components [Pa] at the point )25.0,5.0( aaB   for a 

)90/45/0(  C-C-C-C square plate subjected to a uniformly distributed load at the top surface 

kPa10)( 
zq . Geometric properties: mmm 04.0,03.0,1 231  hhhba  
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Strong formulation finite element method for arbitrarily shaped laminated plates – Part II 

Analogously, in Figs. 10-13 a similar approach is shown for a three layer laminated plate. The 

plate is made of a laminate with the top and bottom layer m03.031  hh  and the central one  

m04.02 h . The first case (Figs. 10 and 11) is related to a symmetric lamination scheme 

( 0/90/0 ) that has two negligible stress components in B , as expected, whereas in the second 

case (Figs. 12 and 13) the lamination scheme is ( 90/45/10 ) where all the stress components are 

different from zero either in B  and C . 

 

 

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 14 Through the thickness variation of the stress components [Pa] at the point )25.0,25.0( aaC   for 

a )90/65/45/30/0(  C-C-C-C square plate subjected to a uniformly distributed load at the top 

surface kPa10)( 
zq . Geometric properties: m02.0,m1 54321  hhhhhba  
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 15 Through the thickness variation of the stress components [Pa] at the point )25.0,5.0( aaB   for a 

)90/65/45/30/0(  C-C-C-C square plate subjected to a uniformly distributed load at the top 

surface kPa10)( 
zq . Geometric properties: m02.0,m1 54321  hhhhhba  
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Strong formulation finite element method for arbitrarily shaped laminated plates – Part II 

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 16 Through the thickness variation of the stress components [Pa] at the point )25.0,75.0( aaD   for 

a )90/65/45/30/0(  C-C-C-C square plate subjected to a uniformly distributed load at the top 

surface kPa10)( 
zq . Geometric properties: m02.0,m1 54321  hhhhhba  
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The final square plate example is referred to a five layer composite plate ( 90/65/45/30/0 ) 

with m02.054321  hhhhh  and a uniform top load kPa10)( 
zq . The plate is square 

and clamped and the laminae proprieties are the same as the previous examples: Graphite-Epoxy. 

The stress components evaluated by using the procedure illustrated in the previous section are 

compared with 3D FEM in three distinct points )25.0,25.0( aaC   (Fig. 14), )25.0,5.0( aaB   

(Fig. 15) and )25.0,75.0( aaD   (Fig. 16). Since the lamination scheme is neither symmetric nor 

antisymmetric all the profiles in B  and D  are completely different. It is noted that a perfect 

agreement can be seen between the present solution and the 3D FEM one. 

The latest static application is related to an arbitrarily shaped composite plate and it is 

represented in Fig. 17, where (on the left) a 3D finite element model made of three plies and (on 

the right) a 2D SFEM 8en  mesh are shown. The geometry description of this plate can be 

found in Viola et al. (2013a). It must be noted that there is a large difference with respect to the 

dofs. In fact the former has 412800 dofs and the latter has 17640 dofs. The plate has all its external 

edges fixed and the internal ones, where an elliptic hole is drawn, are free. The lamination scheme 

is ( 45/65/30 ) with the top and bottom layers made of Graphite-Epoxy and the middle layer  

made of Glass-Epoxy: GPa78.531 E , GPa93.1332  EE , GPa96.81312  GG , GPa45.323 G , 

25.01312  vv , 34.023 v  and 3kg/m1900 . Moreover, the top and bottom sheets have a 

thickness m03.031  hh  and the middle layer has m04.02 h . The load kPa10)( 
zq  is 

applied at the top surface. For the present case, the displacements, strain and stress components are 

depicted at the point A as represented in Fig. 17. From Figs. 18-20 good agreement is reported 

between the two theories, nevertheless it is clear that a FSDT theory is not enough to capture the 

nonlinear behavior that is registered in some layers of the stacking sequence. Thus, a higher order 

shear deformation theory (HSDT) should be considered. For this reason, one of the future aims of 

the authors is to develop a HSDT for free vibrations and static analysis of arbitrarily shaped 

laminated composite plates using the Carrera Unified Formulation (CUF) as already done by the 

authors in the papers (Tornabene et al. 2013b and Tornabene et al. 2014a). 

 

 

 
 

(a) dofs= 412800 (b) dofs= 17640 

Fig. 17 Comparison between a 3D finite element model and a 2D SFEM model for an arbitrarily shaped 

composite plate made of three plies 
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Strong formulation finite element method for arbitrarily shaped laminated plates – Part II 

 

(a) 

 

(b) 

 

(c) 

Fig. 18 Through the thickness variation of the displacement components [m] at the point A  for a 

)45/65/30(  arbitrarily shaped plate subjected to a uniformly distributed load at the top surface 

kPa10)( 
zq . Geometric properties: m03.031  hh , m04.02 h  
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 19 Through the thickness variation of the stress components [Pa] at the point A  for a )45/65/30(  

arbitrarily shaped plate subjected to a uniformly distributed load at the top surface kPa10)( 
zq . 

Geometric properties: m03.031  hh , m04.02 h  
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Strong formulation finite element method for arbitrarily shaped laminated plates – Part II 

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 20 Through the thickness variation of the strain components at the point A  for a (30 / 65 / 45)  

arbitrarily shaped plate subjected to a uniformly distributed load at the top surface kPa10)( 
zq . 

Geometric properties: 1 3 0.03mh h  , 2 0.04 mh   
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4. Conclusions 
 

A number of important conclusions concerning the SFEM can be drawn from the results of the 

numerical experiments presented in this paper. The approximation of the partial derivatives of an 

unknown field performed within GDQ method is accurate not only when applied to single domain, 

as already presented in literature by the authors, but also using a domain decomposition technique. 

As a result, the decomposition and the following enforcement of the inter-element compatibility 

conditions do not affect the accuracy and stability of the strong formulation at hand. The present 

technique appear to fit the semi-analytical results of cross-ply plates well-known from literature 

and analogous cross-ply plates of composite materials studied with a FEM code. In addition 

laminated composite plates with a generic orientation of the laminae are also studied and it was 

observed that the SFEM yields to very accurate results also due to the correction of the in-plane 

stresses. Finally, an arbitrarily shaped sandwich plate with a soft core was considered. It can be 

noted that the only limit on the accuracy is due to the implemented FSDT. The results become 

inaccurate when soft-core laminated plates are taken into account, in fact for these cases the FSDT 

is no longer valuable for the analysis. Thus, this aspect is not related to the employed numerical 

analysis, but on the approximation model under use. For further reading on the subject the reader 

can refer to some recent papers of the authors where Higher-order Shear Deformation Theories are 

employed for studying the soft core behavior of some doubly-curved shell structures using a 

classic GDQ implementation. 
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