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Abstract.  This paper provides a new technique for solving the static analysis of arbitrarily shaped 
composite plates by using Strong Formulation Finite Element Method (SFEM). Several papers in literature 
by the authors have presented the proposed technique as an extension of the classic Generalized Differential 
Quadrature (GDQ) procedure. The present methodology joins the high accuracy of the strong formulation 
with the versatility of the well-known Finite Element Method (FEM). The continuity conditions among the 
elements is carried out by the compatibility or continuity conditions. The mapping technique is used to 
transform both the governing differential equations and the compatibility conditions between two adjacent 
sub-domains into the regular master element in the computational space. The numerical implementation of 
the global algebraic system obtained by the technique at issue is easy and straightforward. The main novelty 
of this paper is the application of the stress and strain recovery once the displacement parameters are 
evaluated. Computer investigations concerning a large number of composite plates have been carried out. 
SFEM results are compared with those presented in literature and a perfect agreement is observed. 
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1. Introduction 
 

One of the most studied problem in mechanical, civil and aerospace engineering is related to 

laminated composite plates. In fact, this structural component has been applied to several practical 

applications (Timoshenko and Woinowsky-Krieger 1959, Leissa 1993, Liew et al. 1998 and Reddy 

1999). Usually, the geometry under study is not regular. In other words it is not a rectangle or a 

circle, hence analytical solutions cannot be used for the development of such studies. Moreover, it 

is of common interest to investigate the stress and strain profiles through the thickness of a plate. 

Therefore, this work wants to show a methodology that can recovery stress and strain profiles 

through the thickness of arbitrarily shaped composite plates.  

It is important to note that composite materials have achieved a considerable success since their 

high strength-to-weight ratio, high stiffness-to-weight ratio, and their capability to be tailored 

according to a given requirement. Hence, besides two dimensional structural components, 
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higher-order one dimensional models have been introduced in literature for studying several 

composite structures (Carrera and Pagani 2013, 2014, Carrera et al. 2013 and Pagani et al. 2013, 

2014). 

The most common domain decomposition method is the Finite Element Method (FEM). The 

present technique divides the whole domain into several elements according to the problem 

geometry. Unlike FEM, which solves the weak formulation of the differential problem, the present 

method solves the strong formulation of the differential system at the master element level. For 

instance, a higher order numerical scheme such as Generalized Differential Quadrature (GDQ) 

method solves the equations of the problem in their strong form within their boundary conditions 

inside each element.  

Together with FEM, the Spectral Element Method (SEM) represents another domain 

decomposition technique currently in use as in (Canuto et al. 2007 and Ostachowicz et al. 2011). 

SEM directly derived from the so-called Spectral Methods (SMs) (Boyd 2001, Canuto et al. 2006, 

Gottlieb and Orszag 1977). The key feature of SMs is the trial functions, which approximate the 

unknown parameters of the model. For the SMs, the approximating functions are linear 

combinations of suitable basis functions (Orszag 1969, 1980). Regarding GDQ, its starting point is 

the discretization of the derivative of unknown functions (Civan and Sliepcevich 1983 a,b, 1984, 

1985). However, for some cases it can be demonstrated that GDQ and SMs are analogous (Bert 

and Malik 1996a, Quan and Chang 1989a, b). 

As far as the domain decomposition is concerned, one of the most common extensions of SMs 

is the Spectral Element Method (SEM) which solves the weak formulation of the problem at the 

master element level (Patera 1984). A SEM combines the generality of the FEM with the accuracy 

of spectral techniques. In particular, the two approaches are very similar in some cases. Thus, it 

must be pointed out that FEM is a special case of SEM, where the trial functions are fixed a priori, 

whereas in SEM they depend on the number of grid points inside each element. For this reason 

these methods can be seen as particular weighted residual methods. The choice of the basis 

functions is one of the features which distinguishes spectral methods SMs from FEM. The basis 

functions for spectral methods are infinitely differentiable and global functions, whereas in the 

h -version of FEM, the domain is divided into small elements, and low-order trial functions are 

specified in each element. 

It is noted that, Generalized Differential Quadrature can be seen as a particular spectral method, 

in which Lagrange polynomials are used as basis functions. With the advent of the GDQ method 

(Shu and Richards 1992a, b, Shu and Xue 1999 and Shu 2000) several applications have been 

hitherto presented in literature that it is impossible to cite them all (Bert et al. 1988, 1989, 

Tornabene and Viola 2007, 2008, 2009a, b, 2013, Ferreira et al. 2013, 2014, and Viola and 

Tornabene 2005, 2006, 2009). Among them several researchers tried to merge the mapping 

technique, used in FEM (Bert and Malik 1996b, Liu 1998, 1999, 2000, Liu and Liew 1999, Wang 

et al. 1998, Wang et al. 2004, Zhong et al. 2011, and Zong et al. 2005), with GDQ. In this way, it 

is possible to solve complex problems with mechanical and geometric discontinuities.  

Summarizing, in this paper the static problem of multi-layered Reissner-Mindlin flat plates is 

investigated by using GDQ method when a domain decomposition technique is introduced. For the 

sake of generality this method is termed Strong Formulation Finite Element Method (SFEM), 

because the strong form of the partial differential system of equations is solved at the master 

element level. Moreover, GDQ is not the only strong formulation method to solve partial 

differential system of equations, because the derivative of a function can be generally solved using 

the mathematical developments of SMs. 
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Reliability and accuracy of the SFEM is investigated and the numerical results are compared 

with those found in literature and obtained through a finite element code, in the final section. 

 

 

2. Moderately thick plate problem 
 
Considering a two-dimensional plate theory, the structural shape is adequately defined by 

describing the geometry of its middle surface. The present linear theory is known also as 

Reissner-Mindlin theory, because the in-plane displacements are linear through-the-thickness, 

whereas the out-of-plane displacement is constant  
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The displacement parameters of the present model are u , v , w  for the displacements along 

the three Cartesian directions and x , y  for the two rotations about the y  and x  axes.  

From the displacement field Eq. (1), using the definition of the three dimensional strain 

components for a two dimensional solid (Tornabene et al. 2013b) the strain characteristics can be 

found  
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Eq. (2) can be written, in compact matrix form, as 

Duε   (3) 

where D  is termed the kinematic operator. The constitutive equations establish the relation 

between strain characteristics and stress resultants, which are integrated quantities of the stress 

components. In compact matrix form such relation can be expressed as 

AεS   (4) 

where the vector  Tyxxyyxxyyx TTMMMNNNS  contains all the stress resultants 

and the constitutive matrix A  takes the form 
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The stiffness coefficients )(
ijA  depend on the elastic coefficients )(k

ijQ  (Tornabene 2009, 

2011a, b, c, 2012, Tornabene and Fantuzzi 2014) and are defined as follows 

   

   

1

1

1

1

for , 1, 2, 6 and 0, 1, 2

for , 4, 5 and 0, 1, 2

k

k

k

k

l
k

ij ij

k

l
k

ij ij

k

A Q d i j

A Q d i j



 





 



  

   









  

  

 

 
 

(6) 

where k  identifies the current ply and  6/5  is the shear correction factor. Finally, the 

indefinite equilibrium equations can be derived from the Hamilton principle (Tornabene 2009, 

2011a, b, c, 2012, Tornabene and Fantuzzi 2014) 

 *
D S q 0  (7) 

where 
D  is the equilibrium operator 
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(8) 

and  Tyxzyx mmqqqq  represents the force vector. It is pointed out that, the loads 

have to be applied at the middle surface of the plate. Therefore, the actual loads are considered at 

the top and bottom surfaces of the plate and they are used for evaluating the middle surface loads 

as follows 
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(9) 

where )( , )(  refer to the top and bottom surfaces of the plate.  

The equations of motion Eq. (7) can be expressed in terms of the displacement parameters 

using the constitutive Eq. (4) and kinematic Eq. (3) equations. As it is well-known, to solve a static 

problem the boundary conditions must be enforced. Since arbitrarily shaped plates are taken into 

account the external boundary conditions depend on the outward unit normal vector of each 

boundary. Moreover, the connectivity conditions between couples of adjoining elements have to 

be enforced in a domain decomposition application. It should be noted that for a classic GDQ 

implementation only external conditions are imposed (Tornabene et al. 2009, 2010, 2011, 2012a, b, 

c, 2013a, Tornabene and Ceruti 2013a, b). On the other hand, compatibility conditions between 

two adjacent edges have to be imposed. The implementation of these conditions is well presented 

in literature (Chen 2003a, b, 2004, 2006, Zhong and He 1998, 2003). In the previous works by the 

authors the term GDQFEM was proposed. However, GDQFEM can be derived from the SFEM 

because the former uses GDQ method, whereas the latter employs a general higher order 

differentiation scheme for discretizing derivatives. Hence, the two implementations follow the 

same guideline. Considering the equation of transformation from a Cartesian system x-y  to the 

local reference system at the generic edge sn   (where n  is the normal component and s  is 

the tangential one to the edge) the stress resultant vector  Tnsnnnsn MMTNNnS   can 

be evaluated as follows 

nS NS
 (10) 

where N  is the transformation matrix that contains the directions cosines of the unit normal 

vector to the current edge  
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It is important to underline that the third relation of Eq. (10) has to be changed when 

inter-element compatibility conditions are treated, in order to avoid numerical instabilities. Thus 

matrix Eq. (11) becomes 
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3. Strong formulation finite element method 
 

In the present paper, a domain decomposition technique that uses GDQ method for the static 

solution of a partial differential system of equations is carried out. Therefore, Lagrange 

polynomials are used for the approximation of the partial derivatives of the unknown functions u , 

v , w , x , y . Usually a complex domain is divided into several elements. Generally, these 

elements have an irregular shape that cannot be integrated directly within any integration or 

differentiation scheme. Thus, mapping technique must be introduced to transform an element 

described in Cartesian coordinates x-y , into a master element that is regular (square) and belongs 

to a computational domain   . Summarizing, the main steps of any numerical methodology, 

that has the scope to divide the whole domain into sub-domains, are: 

1. Describe a physical problem that can have any complexity. 

2. Domain discretization process which leads to a global mesh made of a collection of 

preselected finite elements. 

3. Mapping technique that map an equation set from Cartesian coordinates to a 

computational domain. 

4. Deduction of the element equations of the generated mesh: 

(a)  Construct the strong formulation of the differential equations over the typical element. 

(b)  Assume that a dependent variable can be approximated in the form 

1

N

i i

i

u ψ u  

Using a fixed degree of the interpolating polynomials, the number of the element 

degrees of freedom (dofs) is fixed. Therefore, once the degree of the polynomials is 

chosen, the computational cost is known a priori. Furthermore, substituting the 

interpolation into the previous step 4a the algebraic equations for a single element are 

obtained in the form 

*  D CDu q 0  

The main difference with standard FEM is that in the latter the element formulation is 

weak and the interpolation functions i  can be either derived or taken from literature 

in order to compute the element matrices. On the contrary, for the present case the 

element stiffness matrices are evaluated through differential quadrature (strong form). 

It should be added that the element stiffness matrix is non-symmetric  
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* K L D CD  

(c)  Evaluate the weighting coefficients of the selected collocation for the master element. 

5. Assembly the element equations to obtain the equations for the whole problem:  

(a)  Inter-element connectivity is based on the compatibility conditions. Compared to 

standard FEM, which a priori assume the element connectivity, that in general is a 0C  

type, the connectivity for the present methodology is higher than 0C  and it is a 

posteriori enforced. 

(b) Enforce the external boundary conditions of the element that correspond to the 

external boundary of the physical problem. 

(c)  Assemble element equations using the previous steps 5a and 5b. 

6. Static solution of the assembled equations. 

7. Post-processing phase: strain and stress recovery from the calculated displacement 

parameters. 

These steps are based on the present formulation that considers the strong formulation of the 

problem. It is pointed out that the same approach is followed when weak or variational 

formulations are taken into account. 

 

 

4. Mapping technique 
 

It is well-known that coordinate transformation basically transforms an irregular element in the 

Cartesian x-y  plane to a square computational domain in the natural coordinate    through 

the following relationships 

   , ,x x y y    
 (13) 

In literature equation Eq. (13) is also used in standard FEM to map any finite element. All the 

spatial derivatives of the configuration variables of the problem are mapped to the computational 

system   . The first and second order derivatives of an arbitrary function defined in the 

Cartesian x-y  plane are given by: 
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where x , x , y , y  are the first order derivatives of   and   with respect to x  and y , 

respectively. They can be demonstrated to be functions of the Jacobian matrix J  of the 

transformation (Fantuzzi 2013 and Fantuzzi et al. 2014) 
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and the higher order derivatives are  
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(16) 

In Eq. (16) det J , det J  denote the first order derivatives of the function det J with respect 

to the natural coordinates   and  , respectively 
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(17) 

The above formulation is general, so various shape functions for coordinate transformation can 

be used. For the sake of conciseness the linear, quadratic and cubic functions are not illustrated, 

nevertheless they can be found in (Han and Liew 1997, Liew and Han 1997). In the present work, 

8 node elements are used for the sake of generality. Thus, 8 node elements can map either curved 

or straight sided elements. 

 

 

5. Boundary conditions implementation 

 

As stated in the introduction the present section shows the implementation of the GDQ method 

using a domain decomposition technique that is termed SFEM. In the following, the main points of 

the boundary conditions implementation are reported. The compatibility conditions between two 

adjacent elements have a dominant influence on the numerical solution. In particular, the corner 

points are the key issue of SFEM implementation, in fact no theoretical background exists and 
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each implemented formula has to be verified numerically. As far as the edge continuity conditions 

are concerned, they are expressed by 

   

   

   

   

   

   

   

   

   

   

on  on  

n m n m

n n

n m n m

ns ns

n m n m

n n

n m n m

x x n n

n m n m

y y ns ns

u u N N

v v N N

B Bw w T T

M M

M M

 

 

 

 

 

 

 
 

(18) 

where B  indicates the generic boundary of an element and the two superscripts )(n , )(m  stand for 

the two elements involved in the connection. The kinematic conditions are only functions of the 

generalized displacements ( u , v , w , x , y ), whereas the internal stress resultants also 

depend on the outward local reference system sn  . The local reference system is described by 

the outward unit normal vectors 1n  and 2n  at a point on the interfaces of the two adjoining 

elements. The expressions of the normal vector components  Tyx nnn  on the four sides of a 

quadrilateral element assume the aspect: 

2 2

2 2

for 1

for 1

T

T

y x
x y

y x
x y

 

 

 

 







     


     


n

n

 

(19) 

Eq. (19) is valid for the edges parallel to   axis and   axis, respectively. Once the 

mathematical expressions of the kinematic and static conditions Eq. (18) are developed, only the 

corner conditions have to be defined afterwards. Since the continuity condition means that 

kinematic and static relationships should be imposed at each connected boundary, the same must 

be done at the corners of the elements. However this rule is not always easy to follow especially 

when more than two elements concur at the same corner. 

At first, a single external boundary corner is shown in Fig. 1(a). The corner under consideration 

can have two edges both clamped, both free or just one of them clamped. The edges are indicated 

as EB because they are external boundaries, whereas the internal boundaries will be indicated as 

IB. The represented element is named element 5. It is obvious that when at least one of the two 

edges of element 5 is clamped the corner is fixed too, so only kinematic conditions have to be 

imposed 

 
0

n
U   (20) 

where )(nU  stands for the degrees of freedom of the plate element. It is recalled that in the 

present paper the degrees of freedom are u , v , w , x , y . However, a numerical issue arises 

when both the edges are set free, because it is not clearly defined the side at which the corner 

belongs to. Since it is physically a point of both sides, the natural boundary conditions of these 

edges have to be imposed, as follows 
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1 2

( ) ( ) 0n nS S 
n n

 (21) 

In Eq. (21) (n)S  stands for one of the stress resultants of the model nN , nsN , nT , nM , nsM  

which depend on the outward unit normal vector of the given edges 1n , 2n . In other words, it is 

important to insert both 
1

( )nS
n

 and 
2

( )nS
n

 in the static condition Eq. (21) when a corner is located 

between two free edges. A different configuration occurs when a corner point is next to a 

connected edge and a free edge as depicted in Fig. 1(b). The corners of the elements 3 and 5 have 

an external edge free EB = F and on the other edge the compatibility conditions should be set 

because the compatibility condition is physically stronger than a free edge condition. A generic 

corner configuration is shown in Fig. 2. This kind of configuration does not have a theoretical 

counterpart; hence the authors developed a particular procedure for the implementation of the 

continuity conditions. Firstly, an internal corner is studied in Fig. 2(a), where only internal 

boundaries (IBs) are present. Secondly, an external corner point, which leads to the external 

boundary conditions of the physical domain, is investigated in Fig. 2(b). For both corners either 

kinematic or static compatibility conditions must be prescribed. The present procedure sets a static 

condition between two corners and several kinematic ones among the others. It is pointed out that, 

the present methodology has to be repeated by the total number of degrees of freedom per node of 

the model. For instance, five elements concur at the displayed node. Once the concurring sequence 

of elements is defined, e.g. 1, 3, 5, 2, 4 four kinematic conditions ),()()( mnmn UUU   are written 

at the corner of the element n with respect to the corner of the element m and finally the static 

condition is enforced. From the mathematical point of view, the following equations are enforced 

by the code 

                   1 3 3 5 5 2 2 4 4 1
, , , ,U U U U U U U U S S      (22) 

In Eq. (22) )(nU stands for one of the displacement parameters u , v , w , x , y  of the 

element )(n  and )(n
S represents the static external stress resultants nN , nsN , nT , nM , nsM  of 

the generic element )(n . This procedure is repeated five times, hence if five elements concur at a 

point and five relations per corner have to be set, the present case represents twenty five algebraic 

conditions.      

 

 

 

(a) (b) 

Fig. 1 Single corner boundary conditions schemes: (a) external corner of a single element; (b) external 

corner of two connected elements 
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(a)  (b) 

Fig. 2 Multiple corner boundary conditions schemes: (a) internal corner of five elements with IB 

conditions, (b) external corner of five elements with EB and IB conditions 

 

 

In the second configuration illustrated in Fig. 2(b), two different boundary conditions are 

indicated. When a free boundary condition is imposed at the two external edges, the corner must 

satisfy the inter-element compatibility conditions. On the contrary, when a clamped edge is 

defined at one of two external edges, the corner conditions follow the clamped equations and they 

do not enforce any internal connectivity. When the corner is fixed, the kinematic conditions are 

written automatically by the code 01 )(U  or 03 )(U . When free boundary conditions are 

imposed at the two external edges, the previous rule, only valid for internal corners, must be used 

in a different manner. The corner conditions in a mathematical form, analogous to Eq. (22) take 

the form 

                   1 4 4 2 2 5 5 3 3 5
, , , ,U U U U U U U U S S      (23) 

In Eq. (23) (n)U  and (n)S  have the same meaning of the previous case. For the sake of 

conciseness, the kinematic and static relations are summarized in Fig. 2 using the compact form 
m)(nU ,  and m)(nS , , where n  and m  are two generic elements. It must be pointed out that if the 

conditions )(U 3,1 , )(U 1,3  or )(S 3,1 , )1,3(S  are set between external boundaries an inaccurate 

numerical solution is obtained. Therefore, the two corner configurations Eqs. (22) and (23) must 

be treated separately. In order to have a general view on the boundary conditions Fig. 3 is 

described below. This representation shows inter-element edges and external boundaries with solid 

blue and black lines, respectively. Moreover Fig. 4 shows the outward unit normal vectors 

nomenclature for the same mesh of Fig. 3. It can be noted that two groups of points occur: the 

points on the edges (E) and the ones on the corners (C). If a boundary is clamped a Dirichlet or 

kinematic condition types (E1) is imposed, as shown in Fig. 3 on the element )1( . On the 

contrary the Neumann or static condition types (E2) are related to the external natural boundary 

conditions Eq. (11). In general a boundary type E2, referring to the edge 3 of element )1(  can be 

indicated as 
)(1

3nS . The subscript of the normal vector n  indicates the edge, e.g. 3, and the 

superscript stands for the element in which the normal belong to, e.g. (1). Considering the corner 

conditions several configurations can occur. The two corners on the edge 4 of )1(  are embedded 

into the Dirichlet condition (E1), because the clamped boundary type is stronger, from the physical 
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Fig. 3 Internal and external boundary conditions for element edges and corners 

 

 

Fig. 4 Outward unit normal vectors definition for a generic sub-division 

 

 

point of view, than a natural boundary type condition. The other corners indicated by C1 are 

different from the Neumann type conditions due to the coexistence of two natural conditions in a 

single point, as shown in Fig. 1(a) and previously reported. The compatibility conditions along the 

edges are indicated as E3 in Fig. 3. For instance, the grid points of edge 1 of element )1(  are 

superimposed to the points of edge 3 of element )2( . Only a group of points can be seen, 

nevertheless a double number of them are computationally considered for implementing the two 

conditions Eq. (18). Let the edge 1 of )1(  and 3 of )2(  be the two facing edges where the 

compatibility conditions have to be enforced (see Fig. 4). Mathematically speaking the continuity 

conditions on the linear interfaces are 
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(24) 

In short Eq. (24) can be written in compact matrix form as 

   

   

1 3

1 2

1 2

Kinematic conditions

Static conditions




n n

u u

S S
 

(25) 

The kinematic conditions are imposed on the points of one edge, for example 1 of )1( , and 

the static conditions are enforced on the points of the other edge, for instance 3 of )2( . Finally, 

the external and internal corner type conditions (C2) and (C3) are described considering Fig. 3 as a 

reference. Since the corner points are superimposed, as well as the points on the edges, the number 

of conditions that have to be imposed for each corner depend on the number of elements which 

concur at that node. For example, the two corners with (C2) conditions belong to two neighbor 

elements. In both cases the (C2) condition has the same form as the (E3) one, because only two 

elements concur at a corner. On the contrary, in the internal corner condition (C3) three conditions 

must be enforced. However, the continuity conditions Eq. (25) are made of two relationships only. 

The solution has been illustrated by Eq. (22). For the present case, depicted in Fig. 3, the kinematic 

conditions are written between )4( and )6(  elements and between )6( and )5(  elements, 

whereas the static condition is enforced between )5( and )4( . Mathematically speaking the 

(C3) conditions can be written as 

   

   

   

   

3 4

4 6

5 4

6 5

5 4

First three corner conditions

This is one of the conditions that can be chosen

 
 



n n

u u
u u

u u

S S

 (26) 

Following Eq. (26) the 1C  continuity conditions among the elements of a given mesh is 

satisfied. In other words a continuous and smooth stress distribution is guaranteed by Eq. (26). 

 

 

6. The static problem 
 

As any strong form based differential quadrature approach, a grid point distribution has to be 

set in order to proceed with the derivative approximation of the displacement field. The grid point 

location is determined in the master element that is a square domain. It has been shown by several 

papers in literature that sometimes it is convenient to use a different number of grid points when 

the two coordinate directions have different length MN   (Tornabene and Reddy 2013 and  

Tornabene et al. 2013b, 2014a, b). Since the computational domain is usually regular, the same 

number of nodal points is used MN  . Only in particular occasions, the number is kept different 

MN   due to highly stretched elements as in literature (Fantuzzi 2013 and Viola et al. 2013d, e, 

f). However, in the following applications it has been investigated only the case MN  . 

In the following applications a Chebyshev-Gauss-Lobatto (C-G-L) grid along both   and   
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directions is taken into account. It is possible to find other applications with different grid in 

literature (Marzani et al. 2008 and Viola et al. 2007, 2012, 2013a, b, c). For the computational 

domain 1,1   , the C-G-L grid is defined as 

1
cos , 1, 2, ,

1

1
cos , 1, 2, ,

1

i

j

i
i N

N

j
j N

N

 

 

 
  

 

 
  

   

(27) 

where N  is the total number of points along the two directions   and  . In general, domain 

decomposition technique yields to an algebraic system of equations that can be solved by Gaussian 

elimination technique, for the static case. As a result both strong and weak form element method 

have the same computational effort when the number of grid points per element and the type of 

mesh is set by the user. 

Considering a mesh made of two elements the resulting global stiffness matrix is depicted in 

Fig. 5. The two neighboring elements are patched along an edge. Therefore, a kinematic and a 

static condition have to be enforced between the two elements. In addition the governing equations 

are discretized at all interior points of the two elements. Thus, as previously stated, the global 

system should have the form 

bb bd

t

db dd

 
  
 

K K
K

K K
 

(28) 

where each stiffness sub-matrix K  is functions of the two elements in different manners. 

Globally, the external and internal continuity equations are imposed in bbK  and bdK , whereas 

the fundamental equations are reported in dbK  and ddK , for both elements. Fig. 5 shows the 

structure of the global stiffness matrix. Since the domain points of each element do not have any 

geometric relation among them, the fundamental equations are independent between the elements. 

In fact dbK  and ddK  fill only the diagonal areas of the global stiffness matrix. On the contrary 

the bounded part contains not only the external boundary conditions )(n
bK  and )(m

bK  but also the  

 

 

 

Fig. 5 Global stiffness matrix for a sample mesh made of two adjacent elements 

138



 

 

 

 

 

 

Strong formulation finite element method for arbitrarily shaped laminated plates – Part I 

continuity equations ),( mn
bK and ),( nm

bK . In conclusion, firstly four stiffness matrices are computed 

for each element: )(n
bbK , )(n

bdK , )(n
dbK  and )(n

ddK , for enn ,...,2,1 . Secondly, the compatibility 

conditions are written in the coupling matrices ),( mn
bbK and ),( mn

bdK , for enmn ,...,2,1,  . Thirdly, by 

assembling the previous matrices and by following the connectivity of the mesh under 

consideration, a stiffness matrix similar to the one presented in Fig. 5 can be carried out. Finally, it 

is obvious that a classic linear static problem is obtained in the form 

b bbb bd

d ddb dd

     
     

    

U QK K

U QK K
 (29) 

where bU , dU  are the domain and boundary displacement parameters u , v , w , x , y  of 

the model at all the sampling points of the current domain. The symbols bQ , dQ  indicate the 

boundary and domain applied loads. The system Eq. (29) is usually solved by Gaussian 

elimination technique. In addition to reduce the computational effort of the algebraic system Eq. 

(29), the same problem can be condensed, using static condensation of the bounded degrees of 

freedom as 

 1 1

dd db bb bd d d db bb b

   K K K K U Q K K Q
 

(30) 

where the boundary displacements can be retrieved, once the vector dU  is computed by means of 

 1

b bb b bd d

 U K Q K U
 

(31) 

In this way the degrees of freedom of the system Eq. (29), enN 25 , are reduced to 

enN  2)2(5  in Eq. (30). 

 

 

7. Conclusions 

 

Based on the previous analysis, it can be concluded that a new technique for studying the static 

behavior of arbitrarily shaped composite plates by using Strong Formulation Finite Element 

Method (SFEM) has been presented. Further improvements were introduced to the existing 

Generalized Differential Quadrature Finite Element Method (GDQFEM) presented by the authors 

in their previous papers. As it is well-known strong formulation based finite elements are 

cumbersome when they have to deal with inter-element conditions, nevertheless a simple 

procedure was illustrated for solving the present issue. Application examples and discussions will 

be presented in another paper where a numerical implementation will be shown to be easy and 

straightforward. The stress profiles of classical and square composite plates, found in literature, are 

compared. Finally, the arbitrarily shaped case is carried out, considering a more general example, 

where good agreement is observed. 
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