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Abstract.  A variational asymptotic composite beam model has been developed for thermoelastic analysis. 
Composite beams, including sandwich structure and laminates, under different boundary conditions are examined. 
Previously developed beam model, which is based on variational-asymptotic method, is extended to incorporate 
temperature-dependent materials experiencing large temperature changes. The recovery relations have been derived 
so that the temperatures, heat fluxes, stresses, and strains can be recovered over the cross-section.  The present 
theory is implemented into the computer program VABS (Variational Asymptotic Beam Sectional analysis). 
Numerical results are compared with the 3D analysis for the purpose of demonstrating advantages of the present 
theory and use of VABS. 
 

Keywords:  variational asymptotic method; composite beam; finite element method; thermoelasticity; VABS; 

finite temperature change 

 
 
1. Introduction 
 

Beam structure, or sometimes called slender structure, is defined as a structure having one of its 

dimensions much greater than the other two. Many engineering components can be idealized as 

beams. Typical applications of beam structures in civil engineering are bridges: an arch bridge is 

composed of both curved and prismatic beams; a truss bridge is mainly supported by trusses, 

which can be viewed as assembly of beams or beam girders. A large number of building and 

machine parts are beam-like structures: joists, lever arms, shafts, and turbine blades, etc. Examples 

of beam-like structures in aeronautics include helicopter rotor blades and high aspect-ratio wings.  

Thermoelastic analysis is meant to describe the thermal and mechanical behaviors of the 

engineering structures subject to combined loads. Based on the quasisteady theory of linear 

thermoelasticity, the thermal problem separates into two problems to be solved consecutively: the 

heat conduction problem and the one-way coupled thermoelastic problem. Due to their special 

characteristics like high-strength and light-weighted, the composite beam structure often works 

under extreme conditions in aerospace systems. For example, the thermal protection system of 

space vehicles has to withstand temperatures ranging from 300C to 1500C during ascent and 
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reentry, while in the outer space, the vehicle surface may be subjected to temperatures up to  
- 150C (Bapanapalli et al. 2006). Moreover, composite materials are more sensitive and 
vulnerable to temperature change than their isotropic counterparts. For composites, the thermal 
expansion coefficients of different constituents of the material are usually dramatically different 
from each other resulting in high stresses due to temperature changes from the stress free 
environment. The traditional constitutive framework of thermoelasticity which is based on 
temperature-independent condition, small temperature assumption, and small strain assumption 
may not work for structures experiencing large temperature changes. For most cases, it is still 
reasonable to assume the strains are small. However, the temperature change cannot be considered 
as “small”. And also, if the temperature changes are large enough, the material properties including 
elastic constants, coefficients of thermal expansion become temperature dependent (Okamoto et al. 
2003, Noda 1991).   

Theories of composite beam structure, including classical laminate theory (Bickford 1982) and 

refined laminate theory (Kant and Manjunath 1989, Soldatos and Elishakoff 1992, Marur and Kant 

1997, Heyliger and Reddy 1988), have been reviewed in detail in the textbook by Reddy (2003). 

Some of these theories, both classical and refined theories, have been extended to deal with the 

thermal problem of composite beams (Tanigawa et al. 1989, Khdeir and Reddy 1999). Copper and 

Pilkey (2002) developed an analytical thermoelastic solution for beams with arbitrary temperature 

distribution. The problem is considered as a plane strain problem and the maximum stresses on a 

certain cross-section are validated with 3D solution and strength of materials solution. Huang et al. 

(2007) investigated a functionally graded anisotropic cantilever beam subject to thermal and 

mechanical loads. The problem is solved analytically based on the plane stress assumption. Rao 

and Sinha (1997) proposed a finite element model to deal with the coupled thermoelastic analysis 

of composite beams. This model is based on Timoshenko beam theory and plane stress assumption, 

and the temperature is also assumed to be uniform through the thickness of the beam. It cannot 

yield the thermal and mechanical field over the cross-section but only an averaged temperature and 

the stress resultants. Vidal and Polit (2006) developed a three-noded thermoelastic beam element 

for composite beam analysis. The thermal problem separates into two problems to be solved 

consecutively: the heat conduction problem to solve for the thermal field and the one-way coupled 

thermoelastic problem for the structure under a prescribed thermal field. This work allowed the 

variations of thermal and mechanical fields along the thickness of cross-section. Trigonometric 

functions are used in the assumed displacement field to avoid shear correction factors. But one 

dimension over the cross-section, say the width, is neglected in the solution. Kapuria et al. (2003) 

reported a beam model based on zigzag theory for thermal analysis. By modifying the third-order 

zigzag model, the contribution of thermal expansion coefficient along thickness of the beam is 

considered while this model still neglects the variations along width on the cross-section. Another 

notable work was that of Ghiringhelli (1997a, b), where the thermal problem of general composite 

beams is solved using a finite element semi-discretization approach. The thermal field within a 

beam cross-section subject to prescribed boundary conditions was attained first taking into account 

any kind of thermal anisotropy or inhomogeneity. Then the thermoelastic problem in a beam 

having arbitrary nonhomogeneous, anisotropic material properties over the cross-section was 

solved under the thermal loads obtained in the previous step. This model can capture the thermal 

and mechanical fields on the cross-sections. 

Most of the previous described beam models can be classified into ad hoc models, which are 

based on a priori kinematic assumptions, and asymptotic models, which are derived by asymptotic 

expansions of the displacement field. The advantage of ad hoc models is that the reduced 
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A variational asymptotic approach for thermoelastic analysis of composite beams 

governing equations can be derived in a straightforward manner using variational statements; and 

this procedure is simple and straight forward for engineers to understand. While the disadvantages 

are: (1) it is a common source of error that the kinematic assumptions contradict each other in 1D 

and 2D analysis, (2) it is difficult to determine the shear correction factors needed in refined 

theories for composite laminated structures, and (3) it is difficult to make assumptions on 

distributions of mechanical and thermal fields over the cross sections for composite materials. 

Comparing with ad hoc models, the asymptotic method could develop elegant and rigorous 

models; however, it is very cumbersome and restricted from both geometric and material points of 

view. 

Variational-asymptotic method (VAM) is a powerful mathematical approach which is first 

proposed by Berdichevsky (1979) about three decades ago. It is applicable to any problem that can 

be posed in terms of seeking the stationary points of a functional involving some inherent small 

parameters. This method combines both merits of variational methods and asymptotic methods 

thus it does not rely on any ad hoc assumptions while is systematic and easy to be implemented 

numerically. Hodges et al. (1992) first applied VAM to yield the cross-sectional properties for 

prismatic beam. Cesnik and Hodges (1993) extended the model taking into consideration the 

influence of initial curvatures. Researchers have proposed the refined theories based on VAM 

(Popescu and Hodges 2000, Yu et al. 2002). Yu et al. (2012) reported the recent updates on this 

theory. Recently, the authors have extended VAM for thermal problem of composite beams (Wang 

and Yu 2011, 2013). Based on the previous work, the current paper presents a model for 

thermoelastic analysis of composite beams under different loadings and boundary conditions and 

features a new framework of thermoelasticity. 

 

 

2. Beam kinematics  
 
As sketched in Fig. 1(a), a beam can be represented by a reference line r , described by its 

arc-length 1x , and a typical reference cross-section normal to the reference line, described by local 
Cartesian coordinates x . (Here and throughout the paper, Greek indices assume values 2 and 3 
while Latin indices assume 1, 2, and 3. Repeated indices are summed over their range except 
where explicitly indicated.) At each point along the reference line, an orthonormal triad ib  is 
introduced such that ib  is tangent to ix . Any point of the undeformed beam structure is then 
located by the position vector r  as 

1 2 3 1( , , ) ( )x x x x x  r r b  (1) 

where r  is the position vector of a point on the reference line, 1
 r b  and ( )  means the 

partial derivative with respect to 1x . It is noted that ib could be functions of 1x due to existence 

of initial curvatures or twist. 

When the beam deforms, the triad ib rotates to coincide with a new triad iB . Here 1B  is not 

tangent to the deformed beam reference line if the transverse shear deformation is considered. 

iB coincides with ib before deformation and during deformation they can be related as 

 ·Bb Bb

i i ij jC B C b b  (2) 

where 
Bb Bb

ij j iCC b b  denotes the rotation tensor, and 
Bb

ijC  are the components of the 

corresponding direction cosine matrix. The deformed position vector, R, of the point which had r   
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(a) Schematic of beam deformation (b) Transverse shear deformation 

Fig. 1 Beam kinematics: (a) Schematic of beam deformation: undeformed and deformed states and (b) 

Coordinate systems used for transverse shear formulation 

 

 

in the undeformed state can be express as 

         ii )x,x,(xwx)x()x()x,x,(x BBur R 32111321    (3) 

where bi iuu  is the displacement vector of the reference line from the reference configuration 

and 1 2 3( , , )iw x x x  are the warping functions. 

Although the expression in Eq. (3) is mathematically correct, it is not convenient for carrying 

out the dimensional reduction from the original 3D model to a 1D beam model using the 

variational-asymptotic method. Instead, we introduce another triad iT  associated with the 

deformed beam (see Fig. 1(b)), with 1T  tangent to the deformed beam reference line and T  

determined by a rotation about 1T . The difference in the orientations of iT  and iB  is due to 

small rotations associated with transverse shear deformation. The relationship between these two 

basis vectors can be expressed as 

         
1 12 13 1

2 12 2

3 13 3

1 2 2

2 1 0

2 0 1

 





      
    

    
         

B T

B T

B T

 (4) 

where 122  and 132  are the small angles characterizing the transverse shear deformation, and 

we know 12 1    due to the small strain assumption. The distinction between these two frames 

is important for the development of different levels of approximation. 

The material point having position vector  r  in the undeformed beam can also be expressed 

as 

)x()x,x,(xw)x(x)x()x()x,x,(x ii 1321111321 TTur R    (5) 

where iw  are the components of warping resolved in iT  base system. Note that in this 

formulation we choose 1T  to be tangent to the deformed beam reference line, which means that 

we classify the transverse shear deformation as part of the warping field. Within the framework of 

small strains this neither introduces any additional approximations nor results in any loss of 
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information. Eq. (5) is four times redundant because of the way warping was introduced. For 

simplicity of analysis we are choosing here a centroidal cross-sectional coordinate system, which 

can easily be relaxed if necessary. To remove the redundancy of the warping field, the following 

four constraints can be used 

       
2,3 3,2 0 0iw w w    (6) 

where angle bracket  denotes integration over the cross-section. The constraints in Eq. (6) 

can be written in matrix form as  

            0cw   (7) 

with   
T

wwww 321     and 

          

3 2

1 0 0

0 1 0

0 0 1

0

c

 
 
  
 
 

  

 (8) 

where 
x






 


. 

 

 

3. Heat conduction analysis 
 

3.1 3D formulation 

 

The 3D steady heat conduction problem of a composite beam is governed by the variation of 

the following functional 

             T TU I    (9) 

where we term TU  as the thermal potential and TI  as the power input with expressions as 

         
1 1

0 0

1
( ) 

2

l l
T

T TU T K T d x dx     U  (10) 

and  

           01
0 11

    xeLxe

l

T TqTqdxdscTqQTI  (11) 

T is the 3D temperature field, K is the conductivity matrix representing the second-order 

conductivity tensor expressed in the triad ib , Q  is the density of internal heat source, q is the 

given heat flux on the lateral boundary surfaces , and eq  is the given heat flux on the end 

surfaces. The notation gxxg
s

  ,dd 32  is the determinant of the metric tensor for the  
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undeformed geometry )det( jiij ggg   with .1 2332 kxkxg   
2

32
2 3

dxdx
c g x x

ds ds

 
   

 
 with 

ds as the differential arc length along the boundary curve. 1k  is the initial twist and k  are the 

initial curvatures. It is pointed out that if the convection heat transfer is taken into consideration, 

one more term should be included in the power input TI  as 1
0

)2(
2

1
dsdxcTTThc

l

   

where ch  is the convective heat transfer coefficient and T  is the temperature of adjacent fluid 

outside the boundary layer. The temperature gradient T  in a curvilinear coordinate system can 

be expressed as 

          i

i

T
T

x





g  (12) 

with the base vectors defined as 

           
2

ijk j ki

i

i

e

x g


 


g gr
g g  (13) 

where ijke  are the components of the permutation tensor in a Cartesian coordinate system. 

There are two types of thermal load for heat conduction analysis. 

   • Thermal load case 1: temperature field is not prescribed at any point over the cross-section 

except the end surfaces at 1 0x   and 1x l  (see Fig. 2(a)). For this case we are free to use the 

following change of variables for the 3D temperature field 

         1 2 3 1 1 2 3( , , ) ( ) ( , , )TT x x x x w x x x T  (14) 

with the 1D temperature variable )T( 1x defined as the average of T over the cross-section and 

Tw  is the thermal warping functions that describe the difference between the 3D temperature field 

and its cross-sectional average. According to the definition, we have the following constraint on 

thermal warping functions 

        1 2 3( , , ) 0Tw x x x   (15) 

and this should be valid for all the surfaces along the beam span including the end surfaces. 

• Thermal load case 2: temperature is prescribed at least one point of the cross-section along 

the beam span (see Fig. 2(b)). For this case, we lose the freedom of introducing the 1D 

temperature variable )T( 1x  as what we did in Eq. (14), and all the 3D temperature field must be 

represented by the thermal warping function as 

        1 2 3 1 2 3( , , ) ( , , )TT x x x w x x x  (16) 

And we cannot constrain the thermal warping functions as we did in Eq. (13) either. 

 

3.2 Dimensional reductional of case 1 
 

In view of Eq. (14), the temperature gradient components in Eq. (12) can be expressed in the 

following column matrix 
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(a) Thermal load case 1 (b) Thermal load case 2 

Fig. 2 Two types of heat conduction problem: (a) Thermal load case 1: temperature prescribed at the end 

surfaces of the beam and (b)Thermal load case 2: temperature prescribed at the lateral surfaces of 

the beam 

 

 

           1 1T T RT T TT e w w e w     T  (17) 

with   ,001
1

1

T

g
e   T as 1D temperature gradient, and 

            

1 3 2 2 3

2

3

0 ( )
1

       0

0

T RT

k x x

g

     
   

    
   
      

 (18) 

 

3.2.1 Zeroth-order approximation 
Substituting Eq. (17) into Eq. (9), we can obtain the first approximation of the functional as 

            0
0

100 11 


   xelxe

l

T TqTqdxTdsqQU  (19) 

where 

         0 1 1

1

2

T

T T T T Te w K e w    U T T  (20) 

Here terms higher than 
2( )O  T  are neglected, and   denotes the order of heat conduction 

coefficients. It is clear that the thermal warping functions can be solved by minimizing the 

zeroth-order thermal potential 0TU  subject to the constraint in Eq. (15) as other terms do not 

contain 1 2 3( , , )Tw x x x . 
To deal with the arbitrary cross-sectional geometry and anisotropic materials, we turn to the 

finite element method to find the stationary value of the functional. The thermal warping field can 

be discretized as 
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         1 2 3 2 3 1( , , ) ( , ) ( )T Tw x x x S x x V x  (21) 

with 2 3( , )S x x  representing the matrix of finite element shape functions, and TV  as a column 

matrix of the nodal values of the thermal warping over the cross-section. 
Substituting Eq. (21) back into Eq. (20) one obtains 

         
2

02 2T T

T T T T T TV E V V D K   U T T  (22) 

where the newly introduced matrices are defined as 

      

   

  1

11

T

T T T

T

T T

E S K S

D S Ke

K K

  

 



 (23) 

Minimizing Eq. (22) subject to constraints in Eq. (15), we can obtain the thermal warping function 

in the following form 

    0 0T T TV V V T  (24) 

Having solved TV , we can approximate the original functional in Eq. (19) using the following 1D 

functional 

           



l

xelxeT TqTqdxTdsqQU
0

0100 11
 (25) 

and  

       2 2

0 0 0

1 1

2 2

T

T T TV D K K   U T T  (26) 

The scalar 0K  can be viewed as a generalized heat conduction coefficient of a classical model for 

composite beams. Now we have constructed a reduced beam model under thermal load case 1 for 

heat conduction analysis. It is clear that the 1D constitutive model in Eq. (26) is asymptotically 

correct through the order of 
2( )O  T  . 

 

3.2.2 Discussion on convection heat transfer 

It is known that there are three modes of heat transfer: conduction, convection, and radiation. In 

this chapter, a conduction model for beam analysis is constructed. Now this model is extended to 

incorporate convection heat transfer for thermal load case 1. An important application of 

convection is the analysis of a cooling fin. 

The convection heat transfer is governed by Newton's law of cooling (Reddy 2008), which 

states that at a solid-fluid interface the heat flux is related to the difference between the 

temperature at the interface and that in the fluid 

       ( )n cq h T T   (27) 
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where ch  is the heat transfer coefficient or film conductance. The functional that governs 

convection can be written as 

          1
0

l

h T Th dx   U I  (28) 

where dscTThThI ccTh   )
2

1
( 2 . Substitute Eq. (17) and Eq. (14) into Eq. (28), the first 

approximation can be written as 

       1
0

2
00

)2(
2

1
dxdscTThU

l

cTh   







   (29) 

Here terms are kept up to the order of
2( )O  T . From this equation we can see that the convection 

does not influence the zeroth-order solution of warping function. Thus, the governing functional 

for the first approximation can be written as 

            







 

l

ch
dxdscThK

0
1

22'
0

0
)2(

2

1

2

1
 (30) 

where 0K  was found in Eq. (26). Carrying out calculus of variations to the above 1D functional, 

we obtain the following governing equation 

        0)(''
0   dscThTK c  (31) 

with boundary conditions 

      0(0) TT  (32) 

      ( ) 0l T  (33) 

where 0T  is the temperature at the end of beam. The 1D temperature T  can be obtained

by solving this boundary value problem. 

 

3.2.3 First-order approximation 

To obtain the first-order approximation with respect to initial twist and curvatures, we simply 

perturb the thermal warping function as 

      0T T TRV V V   (34) 

where ~ ( )TRV O h T  and h  denotes the order of /h R  and /h l , i.e., ~ / ~ /h h R h l  

with h , l , and R  the characteristic dimensions of the cross-section, wavelength of deformation, 

and radius of initial curvatures and twist, respectively. 

Now we proceed to solve for the first-order approximation of the thermal warping 

function, TRV . Substituting Eq. (34) along with Eq. (24) into Eq. (10), and neglecting all the terms 

higher than
2 2( )O h T  , we obtain 
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 

 
1 0 0 0 0

0 0 0

2 2 2

2 2

T T T

T T T Re T RT RT T

T T T T T

TR T TR TR Re TR RT RT T T RR T

V D V D D V

V E V V D V D D V V D V

   

    

U U T

T
 (35) 

where the newly defined matrices are 

     

 

   

   

1

T

Re RT

T

RT RT T

T

RR RT RT

D S Ke

D S K S

D S K S

 

  

  

 (36) 

The leading terms with respect to the unknown TRV  from Eq. (35) are 

      
*

12 2T T

T TR T TR TR RV E V V D  U T  (37) 

with   0

T

R Re RT RT TD D D D V   . It is noted that g  contains k , and it is should be 

expanded in the asymptotic analysis so that 

            3 2 2 3

T T

T T T T TE S K S S K S x k x k        (38) 

For simplicity of notation, we continue to use TE  in derivation with the understanding that such 

expansion are actually carried out in the numerical implementation. 

Minimizing the leading terms in Eq. (37) subject to the constraint in Eq. (15), we can obtain the 

thermal warping function in the following form 

      TR TRV V  T  (39) 

Having obtained 0TV  and TRV , we can approximate the original functional in Eq. (9) using the 

following 1D functional 

        01
0

11 11 


   xelxe

l

T qqdxdsqQU  (40) 

where 

       

  2

1 0 0 0 0 0

2

1

2

1

2

T T T T T

T T T T R T Re T RR T TR R

R

V D K V D V D V D V V D

K 

     



U T

T

 (41) 

 

3.3 Dimensional reduction of case 2 
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3.3.1 Zeroth-order approximation 

The temperature field of this case is provided in Eq. (16) and can be discretized as 

       1 2 3 1 2 3 2 3 1( , , )  ( , , ) ( , ) ( )T TT x x x w x x x S x x V x   (42) 

For simplicity of illustration, let us assume Q , q  and eq  vanish, then the zeroth-order 

approximation of the thermal warping function should be solved from minimizing the following 

functional 

       0 0 02 T

T T T TV E VU  (43) 

with some values of 0TV  prescribed at certain nodes. As long as there is at least one point having 

prescribed temperature, the thermal warping function can be solved uniquely. 

 
3.3.2 First-order approximation 
For the refined model with respect to initial twist and curvatures based on the first-order 

approximation, we expand the unknown thermal warping function TV  asymptotically as we did 

for thermal load case 1 in Eq. (34) where ~ ( )TRV O h T  and it should be zero at the points where 

the temperature is prescribed as the prescribed condition has already been satisfied by 0TV . 

Following what we did before, we obtain the following equation to solve for the first-order thermal 

warping 

       0

T

T TR RT RT T TE V D D E V     (44) 

Here it is noted that the zero constraints for TRV  at the prescribed points should be introd

uced to solve the linear system. The prescribed temperature at certain nodes can be consid

ered as single-point constraint that sets a single degree of freedom to a known value. The 

solution procedure of this kind of problem can be found in a typical textbook of finite ele

ment method such as by Cook et al. (2001). 
 
3.4 Recovery of 3D thermal field 
 
Thus far, we have obtained a generalized beam model for heat conduction analysis of thermal 

load case 1. The generalized heat conduction coefficients 0K  and RK  can be used as an input 

for a 1D beam analysis to calculate the global thermal behavior. In other words, 1( )xT  can be 

solved using Eq. (25) or Eq. (40). However, only predicting the global behavior is not sufficient, 

and the original 3D results should be recovered for detailed analysis. The recovery procedure of 

heat conduction analysis can be summarized as 

1. Using Eq. (25) or Eq. (40) to find 1( )xT  ; 

2. Using Eq. (21) along with Eq. (34) to calculate the thermal warping function; 

3. Using Eq. (14) to obtain the 3D temperature field; 

4. Having the 1D temperature 1( )xT  and warping functions 0TV  and TRV , it is straight  
forward to obtain the 3D temperature gradient using Eq. (17) as 

        1 0T RT T TRT e S S V V        T  (45) 
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and 3D heat flux within the beam using 

         

1

2

3

q

q K T

q

 
 

   
 
 

 (46) 

The recovery of temperature field for thermal load case 2 is easier than that for case 1. Since 

there is no 1D variables like 1( )xT , the temperature can be obtained directly from Eq. (42) along 

with the solution of thermal warping functions in Eqs. (43) and (44). 

 
 

4. Thermoelastic analysis 

 
4.1 Governing functional  
 
The kinematics of the composite beam will remain the same as the isothermal condition. As  

derived in Yu et al. (2002), the 3D strain field can be expressed as 

    
'www lRh    (47) 

where   is the column matrix of engineering strains arranged as 

     
11 12 13 22 23 33[ 2 2 2 ]T         (48) 

 32111  κ    contains the generalized 1D strain measures for a classical beam model. The 

operators in Eq. (47) are defined as 

      

2

3

2

3 2

3

0 0 0

0 0

0 0

0 0

0

0 0

h

 
 

 
 

   
 

  
 

  

 (49) 

    

3 2

3

2

1 0

0 0 0

0 0 01

0 0 0 0

0 0 0 0

0 0 0 0

x x

x

x

g


 
 


 
 

   
 
 
 
 

 (50) 
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1 3 2 2 3 3 2

3 1 3 2 2 3 1

2 1 1 3 2 2 3

( )

( )

( )1

0 0 0

0 0 0

0 0 0

R

k x x k k

k k x x k

k k k x x

g

    
 

   
 
    

   
 
 
 
 

 (51) 

       

1 0 0

0 1 0

0 0 11

0 0 0

0 0 0

0 0 0

l
g

 
 
 
 

   
 
 
 
 

 (52) 

The thermoelastic energy of an elastic solid can be described using the Helmholtz free energy. For 

beam structures, it can be written as 

           1
0

l

A AU dx  U  (53) 

AU  is the energy density defined as 

        
1

2

T T

A T   U D D  (54) 

where T  is the difference between the temperature in the structure and the reference 

temperature when the beam is stress free, D is the 6 6  material matrix, which contains elements 

of the fourth-order elasticity tensor expressed in the triad ib , and   is a 6 1 column matrix 

containing the components of the second-order thermal expansion tensor expressed in the triad  

ib . These matrices are in general fully populated. It needs to be pointed out that Eq. (54) is based 

on small strain assumption and small temperature change assumption and the material properties 

are independent of temperature change. However, it can be directly generalized to handle finite 

temperature change and account for the dependency of material properties which will be shown 

later. 

 

4.2 Dimensional reduction 

 

4.2.1 Zeroth-order approximation - generalized Euler-Bernoulli model 

For the zeroth-order approximation, we keep the terms up to )( 2


O , where   and 


  

denote the order of elastic constants and 1D generalized strains, respectively. The Helmholtz free 
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energy per unit span can be written as 

         0 0 0 0

1

2

T T

A T    U D D  (55) 

with 0  obtained from Eq. (47) by dropping the last two higher order terms as 

           wa0  (56) 

The unknown 3D warping functions 1 2 3( , , )iw x x x  can be solved from the following much 

simpler variation statement 

           0 0A U  (57) 

along with the constraints in Eq. (7). Similarly, to deal with arbitrary cross-sectional geometry and 

anisotropic materials, we need to discretize the mechanical warping field as 

        1 2 3 2 3 1 ( , , )  ( , ) ( )w x x x S x x V x  (58) 

with 2 3( , )S x x  representing the matrix of finite element shape functions, and V  as a column 

matrix of the nodal values of the warping functions over the cross-section. 

Substituting Eq. (56) along with Eq. (58) into Eq. (55), one can express the zeroth-order 

Helmholtz free energy in discretized form as 

         





   

T

a
TT

a
TT

A VDDVEVVU 222 0  (59) 

where the newly introduced matrices carry information of both the geometry of the cross-section 

and material properties, defined as 

        

     

   

   









DD

TDDSD

TDSSDSE

T

TT

aa

T

aaa

T

a





          

       

 (60) 

Substituting Eq. (58) into Eq. (7), we can express the constraints in a discretized form as 

      0T

cV D   (61) 

with
T

c cD S  . We also denote the corresponding kernel matrix of E  as   so that 

0E . 

Now the problem has been transformed to numerical minimization of Eq. (59) subject to 

constraints in Eq. (61). The Euler-Lagrange equation for this problem can be obtained by usual 

procedure of calculus of variations with the aid of Lagrange multipliers   as follows 

           caa DDEV   (62) 
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Multiplying both sides by 
T  and considering the properties of the kernel matrix , one 

calculates the Lagrange multiplier   as 

            aa
T

c
T DD   

1
 (63) 

It is clear that   vanishes because   0  DSD
T

aa
T  , similarly 0T

a  , which 

implies that the constraints will not affect the minimum value of 0AU . Then the linear system in 

Eq. (62) becomes 

         aaDEV    (64) 

There exists a unique solution linearly independent of , the null space of E , for V  because 

the right-hand-side of Eq. (64) is orthogonal to the null space. Because of the uniqueness of the 

solution, the linear system in Eq. (64) can be solved by letting the numerical algorithm to 

determine where the singularities are and properly remove the singularities of the coefficient 

matrix. Let us denote the solution of Eq. (64) obtained this way as
*V , the complete solution can 

be written as 

      
*V V    (65) 

where   can be determined by Eq. (61) as 

         *
T

T T

c cD D V


    (66) 

Hence the final solution minimizing the functional in Eq. (59) and satisfying the constraints in Eq. 

(61) is 

          000
* VVVVDDV t

T
c

T

c
T 





 


  (67) 

where 0tV  is the mechanical warping caused by the applied temperature field. 

Substituting Eq. (67) back into Eq. (59), one can obtain the total energy asymptotically correct 

up to the 
2( )O ò  as 

        






















  0000

ˆ
2

1
2ˆ2 t

T
aa

TT

a
T

T

A VDVDDVU   (68) 

Note the quadratic terms associated with temperature 0

T

t aV   and 0 0

T

t tV EV  are dropped because 

they will not contribute to the corresponding 1D thermoelastic beam model. This is the 

asymptotically correct energy for a beam without correction for initial curvature and twist. This 

energy can be written in an explicit matrix form as 

      

11 11 1111 12 13 14 1

1 1 112 22 23 24 1

0

2 2 213 23 33 34 2

3 3 314 24 34 44 3

2 2

T T t

t

A t

t

S S S S f

S S S S m

S S S S m

S S S S m

  

  

  

  

       
       

              
  

     
  

                

U  (69) 
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which implies a 1D constitutive model of the following form 

         

1 1111 12 13 14 1

1 112 22 23 24 1

2 213 23 33 34 2

3 314 24 34 44 3

t

t

t

t

F S S S S f

M S S S S m

M S S S S m

M S S S S m









     
     

        
     
              

 (70) 

where 1F  is the axial stress resultant conjugate to the extensional strain 11  and iM  are the 

moment resultants conjugate to the twists and curvatures i , i.e., 

          0 0
1

11

A A
i

i

F M
 

 
 
 

U U
 (71) 

This model can be considered as a generalized Euler-Bernoulli beam model while we have not 

used any ad hoc kinematic assumptions. Next we will construct a refined thermoelastic beam 

model to capture the transverse shear effects as well as the effects due to initial twist and 

curvatures. 

 

4.2.2 First-order approximation 

For the refined modeling, we keep terms up to  22 hvO


   in the expression of the Helmholtz 

free energy. Perturbing the warping functions to be 

      10010 VVVVVV t 


 (72) 

Substituting Eq. (72) into Eq. (58), then into Eq. (47), and finally into Eq. (54), we obtain the 

following functional after neglecting terms higher than )( 22 hvO


  
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(73) 

where 

        

       

       
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(74) 
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As we are interested in the interior solution for the beam without consideration of edge effects, we 

can integrate by parts to get rid of the derivatives of the warping 1V 
 and neglect the boundary 

terms. The leading terms (without the constant terms) of Eq. (73) are 

)(2222 1

'

1111
*

1 STRT
T

S
T

R
TT

A DDVDVDVEVVU   (75) 

where 

         R
T
aRaRR DVDVDD 00  (76) 

        l
T
alalS DVDVDD 00  (77) 

         0

T

RT aR aR t RD D V   D  (78) 

         0

T

ST al al t lD D D V      (79) 

Similar to the zeroth-order warping, the first-order warping could be solved as 

      TSR VVVV 1

'

111   (80) 

Using Eq. (80), the second-order asymptotically correct Helmholtz free energy can now be 

obtained from Eq. (54) as 

      3
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(82) 

with  
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(83) 

 

4.2.3 Transformation to a generalized Timoshenko model 
The energy of the form in Eq. (81) is not convenient for engineering applications because it 

involves derivatives of the 1D generalized strains. To get rid of these derivatives, we can transform 

this asymptotically correct energy expression to a generalized Timoshenko model following the 

procedure in Yu et al. (2012). 

The key to the energy transformation is to find expressions for , ,  and    in terms of 

  and s . Following the procedure in Yu et al. (2012), we can finally express the energy up to 

the second order as 

       
tT

s
tT

s
T
ss

TT
AT FFGYXU 21 2222    (84) 

where 1 1 1 2 3        
T

t t t t tF    F M M M  and 2 2 3  
T

t t tF    F F . We can rewrite this model in an 

explicit matrix form as 

   

11 11 12 13 14 15 16 11

12 12 22 23 24 25 26 12
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 (85) 

which implies the following 1D constitutive model 
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3 16 26 36 46 56 66 3

2

2

F S S S S S S

F S S S S S S

F S S S S S S

M S S S S S S

M S S S S S S

M S S S S S S













     
     
     
      

     
     
     
     
          

1

2

3

1

2

3

t

t

t

t

t

t

 
 
 
  

  
 
 
 
  

F

F

F

M

M

M

 (86) 

where  
T

FFF 321    are the stress resultants conjugate to the force strain  
T

131211 22   and 

 
T

MMM 321    are the moment resultants conjugate to the moment strains  
T

321    ; 

 
Tttt FFF

31
  2  and  

Tttt MMM
31

  2  are temperature induced resultants  corresponding to the force 

strains and moment strains, respectively. 
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4.3 Recovery of 3D mechanical field 
 

In this section, we are going to recover the original 3D results based on the developed 1D 

constitutive models. 

For the generalized thermoelastic Timoshenko model of an initially curved and twisted beam, 

the warping function that is asymptotically correct up to the order of ~ / ~ /h h R h l  can be 

expressed as 

       )()ˆ(),,( 10110321 TtSR VVSSVVVSxxxw   (87) 

From Eq. (5) and Eq. (1), we can calculate the 3D displacement field as 

               1 2 3 1 1 1 2 3, , , ,Tb Tb

i i i i ji ju x x x u x x C x C w x x x         (88) 

where iu  are the 3D displacements, iu  the 1D beam displacements, and 
Tb

ijC  the components 

of the direction cosine matrix representing the finite rotation from triad ib  to triad iT . 

The 3D strain field can be recovered by substituting 1D strain measures, cross-sectional 

warping and their derivatives into Eq. (47). Substituting Eq. (87) into Eq. (47), we obtain 

           )ˆ()( 10 RRa VVS  

  )ˆ()( 101 RlSRa VVSSV  

 Sl SV1  

)()()( '
1

'
010 TtlTtRa VVSVVS   

(89) 

Finally, the stress can be obtained from the 3D constitutive relations based on the Helmholtz free 

energy in Eq. (54) so that 

     TDD    (90) 

where   is a column matrix containing ij as 

       
T

332322131211         (91) 

 
4.4 Thermoelastic beam modeling under large temperature changes 

 

To relax the assumption of small temperature changes, we need to derive a Helmholtz free 

energy suitable for materials with temperature dependent properties and experiencing finite 

temperature changes as what has been done in Teng et al. (2012) for micromechanics modeling of 

heterogeneous materials. Although the derivation is similar, some of the derivations in Teng et al. 

(2012) is repeated here for the paper to be self contained. 

The Helmholtz free energy density ),( Tf ij  is a function of strain field ij  and the 

absolute temperatureT . Let us not put any restriction on T  but assuming ij  to be small, then 

we can carry out a Taylor expansion of  ),( Tf ij  in terms of the small strain field, ij , as 
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klij
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klij
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ijij

TfTf
TfTf  (92) 

Here only up to the quadratic terms of the strain field are kept due the assumption of 

small strains. As the constant term (0, )f T  will not affect our thermoelastic analysis (Boley

 and Weiner 1997), the constant term (0, )f T  is dropped. We know 
ij

ij

f




  , that is 

        )()( TlTC ijklijklij   (93) 

with 0
),(

)(

2







ij
klij

ij

ijkl

Tf
TC  as the fourth-order elasticity tensor and 

0
),(

)( 





ij
ij

ij

ij

Tf
Tl  as the second-order thermal stress tensor. We can also rewrite the 

stress-strain relations as 

        )()( TmTS ijklijklij    (94) 

with ijklS  as the fourth-order compliance tensor and ijm  as the second-order thermal strain 

tensor and we have klijklij lSm  . The coefficients of thermal expansion, ij , as a function of 

stress field and temperature, is defined as 

          

constant






ij

T

ij

ij



  (95) 

Then from Eqs. (94) and (95), we have 

         
dT

dm

dT

dS ij

kl

ijkl

ij    (96) 

From Eq. (96), we have 

        
dT

dm
T

ij

ij ),0(  (97) 

where we can obtain 

         )(),0( 0
0

Tmdm ij

T

T
ijij     (98) 

Note here (0, )kl T  are the stress-free coefficients of thermal expansion which can be  measured 

at a specific temperature T . We normally choose our reference state to be at 0T T  with stress 

and strain free, which implies 0( ) 0ijm T   in view of Eq. (94). Then we can express our thermal 

strain tensor in a form similar as that we used for small temperature variations 

112



 

 

 

 

 

 

A variational asymptotic approach for thermoelastic analysis of composite beams 

       ( )ij ijm T T   (99) 

with  

            
0

0

1
( ) (0, )

T T

ij ij
T

T d
T

  



   (100) 

where ( )ij T  is commonly called as the secant stress-free thermal expansion coefficients. We 

can also express the thermal stress tensor as 

       ( ) ( ) ( ) ( ) ( ) ( )ij ijkl kl ijkl ij ijl T C T m T C T T T T T         (101) 

Here,  ( )ij T  can be similarly called secant strain-free thermal stress coefficients. 

Substituting Eq. (101) into Eq. (92), we have the Helmholtz energy for thermoelastic analysis 

considering the temperature-dependent material properties without assuming small temperature 

changes as 

        TTCTf ijijklijijklij  )(
2

1
),( 


 (102) 

Given the derivation, current VABS thermoelastic model can be easily extended to incorporate 

the temperature dependent properties of materials. If temperature change is small,   is the 

conventional CTE, also known as the tangent or instantaneous CTE. Otherwise, for finite 

temperature change, one just needs to use the secant CTE, which can be obtained from Eq. (100), 

in Eq. (54). 

 

 

5. Numerical examples 
 

The theory developed in the previous chapter has been implemented into the computer program 

Variational Asymptotic Beam Sectional Analysis (VABS). To validate the present model, we have 

used VABS to analyze several examples and the results are compared with 3D finite element 

analysis in the commercial software ANSYS. 

 

5.1 Example 1: two-layer beam under thermal load case 1 and convection analysis 

 

The first example is a two-layer angle-ply composite beam with the lay-up angle as 30 / 30   
. 

The length of the beam is 0.2 m ( 1x  direction), the thickness of each layer is 0.01  m ( 3x  

direction), and the width equals to 0.04 m ( 2x  direction). The beam is made of an orthotropic 

material with thermal conductivities given by 
11 0.3k   W/(m· C), 

22 33 0.16k k   W/(m· C). 

Three thermal load cases are considered 

•  Case A: constrained temperature on the end surfaces of the beam such as 

      
0 0 C 100 CLT T    (103) 

•  Case B: the constrained temperature in the previous case together with input heat flux 
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(a) Temperature distribution along width (b) Temperature distribution along thickness 

Fig. 4 Recovered temperature field over the cross-section: (a) temperature distribution along the width at 

3 0.005x   m and (b) temperature distribution along the thickness at 
2 0.01x   m. 

 

 

of 5 W/m
2

 in 3x  direction on the top surface of the beam. 

•  Case C: temperature is prescribed at the left end as 
1( 0) 50 CT x    and the tip is  

insulated. The ambient temperature is 20 C  and the heat transfer coefficient

ch  is 22W/m K . 

The geometry and loads of this beam refer to Fig. 3. For VABS analysis, this cross-section is 

meshed with 32 four-noded quadrilateral elements (eight elements along the width, two elements 

along the thickness of each layer). SOLID70 thermal elements are used to carry out a thermal 

analysis in ANSYS with the same cross-sectional mesh and the length is discretized into eight 

divisions. For comparison, we plot the temperature distribution over the cross-section at 

1 0.1x  m along the width and the thickness in Fig. 4(a) and Fig. 4(b), respectively. It can be 

observed that VABS agrees with ANSYS very well for both cases along the width and the  

 
Fig. 3 Sketch of a composite beam used in Example 1 
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(a) Heat flux 

1q   (a) Heat flux 
2q  (a) Heat flux 

3q  

Fig. 5 Recovered heat flux over the cross-section: distributions of heat flux along width at 
3 0.005x   m 

(a)
1q  ; (b)

2q  and (c)
3q . 

 

 

thickness of the cross-section, within differences less than 0.02%  and 0.04%  for the first and 

second load case, respectively. In addition to accurately predicting the temperature field, the 

present model is also able to predict the heat flux within the structure. As shown in Figs. 5(a), 5(b), 

and 5(c), this model also accurately predicts the heat flux. For the first load case, the error 

compared with 3D ANSYS analysis is less than 0.1%  in predicting the heat flux. For the second 

load case, the distribution of 3q  has been sharply changed due to the heat flux input on the top 

surface of the beam. The maximum error between VABS and 3D ANSYS analysis for this case is 

around 3% . 

For Case C, the temperature distribution at the centroid along the beam axis is plotted in Fig.6. 

Good agreement between results from VABS calculation and those from 3D analysis can be 

observed. 

 
5.2 Example 2: analysis of a sandwich beam 

 

Sandwich beam structure refers to a special class of composite beams that is fabricatedby 

attaching two thin but stiff skins, often not identical, to a lightweight but thick core (Wikipedia 

2011, Frostig et al. 1992). Comparing to the skins, the rigidity of the core is about several orders  

 
Fig. 6 Temperature distribution along beam axis of Case C 
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Table 1 Material properties and geometric properties of a sandwich beam 

Layer Material Properties Geometric Properties 

Top Skin 
E = 59 MPsi, 14.0  

 80  K,/104 6   k W / (m K)  

1 0.125t   in. 

30w  in. 

Core Material 1 
E = 0.048 MPsi, 12.0  

 3.0  K,/101 6   k W / (m K)  
2 1.5t   in. 

30w  in. 

Core Material 2 
E = 0.004 MPsi, 49.0  

 13.0  K,/109.39 6   k W / (m K)  
2 1.5t   in. 

30w  in. 

Bottom Skin 

E = 7.64 MPsi, 32.0  

 80  K,/106.1 6   kx W / (m K)  

K/101.28 6y  

3 0.25t   in. 

30w  in. 

 

lower. But its higher thickness provides the sandwich structure with high bending stiffness with 

overall low density. A typical application of sandwich structure is thermal protection system. The 

second example is analysis of a sandwich beam with different configurations under thermal load 

case 2. 

Fig. 7 shows the configuration of the cross-section of the sandwich beam used in the current 

example. It is a beam of infinity long along 1x  direction and the core can be Material 1 and 

Material 2, so two cases are analyzed. The first case where Core Material 1 is used is called Case 1, 

and the second case is called Case 2 where Core Material 2 is used in the beam. The geometric and 

material properties are listed in Table 1. A temperature of 2000 F  is applied at the top surface, 

and the bottom surface is constrained as 600 F . 

The temperature distributions are plotted in Fig. 8(a), and the non-zero stress components are 

plotted in Figs. 8(b) and 8(c). Although the ratio of rigidity between skin and core materials 

changing from 1,000 to 10,000, the current model does a pretty good job in predicting thermal and 

mechanical behavior of the sandwich beam. 

 
5.3 Example 3: thermoelastic analysis of a realistic rotor blade 
 
The authors are not aware of any previous studies on thermoelastic analysis of realistic blade 

with prediction of the stresses over the entire cross-section, so this example shows that the current  

 
Fig. 7 Sketch of the cross-section of a sandwich beam used in Example 2 
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(a) Temperature (a) 11  (a) 22  

Fig. 8 Recovered 3D field over the cross-section: (a) temperature distribution along thickness at
2

1

2
x w ; 

(b) distribution of 11  along thickness at 
2

1

2
x w ; and (c) distribution of 22  along thickness 

at
2

1

2
x w  

 

 

  
(a) 11    (b) 22   

  
 (c) 33    (d) 23   

Fig. 10 Contour plot of non-zero stress components within the cross-section at mid-span: (a) 11 ; (b) 

22 ; (c) 33 ; and (d) 23  

 

 

VABS thermal model has the ability of analyzing a realistic blade structure at an affordable 

computational cost. 

A NACA2412 airfoil is used in this case. A schematic of this blade as well as the coordinate 

 
Fig. 9  Sketch of a cross-section for NACA2412 blade 
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system is depicted in Fig. 9, where 1x  direction is coming out of the page. The chord length l is 

0.1524 m while the length of the realistic blade L is 1.524 m. This realistic blade is made of 

Aluminum as the skin and a typical aerospace foam as the core. The Aluminum has the properties 

72.4E  GPa, 0.3  , and 622.5 1 C0 /    , and the properties for the aerospace foam are 

2.76E  GPa, 0.22  , and 62.2 1 C0 /    . This blade is cantilevered since most 

applications like helicopter rotor blade and wind turbine blade can be analyzed as cantilevered 

beam. A uniform temperature of 100 C  is applied to this blade. 
 

 

  
(a) Normal stresses along path 1 (b) 23  along path 1 

  
 (c) Normal stresses along path 2  (d) 23  along path 2 

Fig. 11 Distributions of non-zero stress components along comparison paths at mid-span: (a) Distributions 

of normal stresses along comparison path 1; (b) Distribution of 23   along comparison path 1; 

(c) Distributions of normal stresses along comparison path 2; and (d) Distribution of 23   along 

comparison path 2 

 
Table 2 Summary of Model Statistics 

 ANSYS 3D VABS 

Element Type SOLID186 8-noded quadrilateral 

Number of Elements 362,408 2,459 

Number of Nodes 1,638,866 7,965 

Running Time 3h 5min 23s 11s + 26s 
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The contour plots of the non-zero stress components 11 , 22 , 33  and 23  are shown in 

Fig.10. For quantitative comparison, we plot these non-zero stress components at mid-span of the 

blade along two comparison paths shown in Fig. 9 in the following figure. From Fig. 11, it is 

observed that the predictions of VABS have excellent agreement with those of ANSYS 3D along 

both chord-line-direction (Comparison Path 1) and through-the-thickness (Comparison Path 2) 

direction. 

The computational efficiency of the two models is now shown. Figs.12 and 13 show the mesh 

used in ANSYS and VABS, respectively. Type of elements used, the total number of elements and 

nodes in calculations, and the running time of each model are tabulated in Table 2. It needs to be 

pointed out that the two running times for VABS analysis are for constitutive modeling and 

recovery, respectively. Both programs are running on a computing server with AMD Opteron(tm) 

Processor 6174 2.20 GHz (2 processors) and 128 GB RAM. The operating system is 64-bit 

Windows 7 Professional. It can be observed that the computational cost of VABS calculation is 

several orders lower than that of 3D analysis. 

 

 

 

 

 
5.4 Example 4: thermoelastic analysis of a composite beam under finite temperature change 
 

In this section, a cantilever two-layer composite beam is used to examine the  

 
Fig. 12 3D mesh of a realistic blade for Example 3 

 
Fig. 13 2D mesh of a realistic blade for VABS calculation 
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Fig. 14 Schematic of a two-layer composite beam for finite temperature change analysis 

 

   

(a) 11   (b) 22   (c) 33   

Fig. 15 Distributions of non-zero stress components along the thickness at 
2 0x   for small temperature 

change 

 

   

(a) 11   (b) 22   (c) 33   

Fig. 16 Distributions of non-zero stress components along the thickness at 
2 0x   for finite temperature 

change 

 
Table 3 Material properties of two-layer composite beam in Example 4 

 0 C   200 C  500 C  

Material 1: 

CFCCs 

83GPaE    

0.27   
64.28 10 / C      

82.47GPaE   

0.27   
64.278 10 / C     

81.67GPaE   

0.27   
64.275 10 / C     

Material 2: 

DCF 

2.76GPaE    

0.22   
61.22 10 / C      

2.76GPaE    

0.22   
62.06 10 / C      

2.76GPaE    

0.22   
62.56 10 / C      
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temperature-dependent properties and the framework of thermoelasticity based on finite 

temperature change. Two load cases are studied here, one is the beam under small temperature 

change and the other is the beam experiencing finite temperature change. The geometry is given 

by Fig. 14 with the dimensions 1L  m, 0.1b  m, and 0.05t  m. The material properties are 

listed in Table 3. Firstly, the beam is experiencing a small temperature change, from 480 C  to 

500 C . The stress distributions of mid-span along thickness are plotted in Fig. 15. The curves and 

data points labeled “Inst” are calculated based on the traditional framework of thermoelasticity 

where instantaneous CTEs are used. The curves and data points labeled “Sect” are from the current 

framework of thermoelasticity where secant CTEs are used in the analysis. Excellent agreement 

exists between predictions from VABS and ANSYS 3D analysis. Moreover, due to the small 

temperature change in this case, the newly developed framework of finite temperature change 

thermoelasticity does not have a significant impact on the results. In other words, the predictions 

from traditional constitutive framework of thermoelasticity are adequate for this case. 

For the second case, the composite beam is experiencing a large temperature change from 0 C  

to 500 C . Fig. 16 shows the plots of non-zero stress components 11 , 22 , and 33 , respectively. 

Again, excellent agreements exist between results from 3D analysis and VABS based on different 

theories. A striking observation from these three figures is that two different frameworks of 

thermoelasticity result in huge different stress distributions for this case. It demonstrates that the 

influence of temperature-dependent material properties and framework of thermoelasticity on 

thermal stresses is quite significant for finite temperature change cases. 

 
 

6. Conclusions  
 

The theory for the cross-sectional analysis of beams based on VAM is extended to incorporate 

thermoelastic analysis. The quasisteady theory of linear thermoelasticity, which neglects the 

temperature changes due to deformations, is adopted to avoid the fully-coupled thermoelasticity 

problem. A heat conduction beam model is constructed first to obtained the thermal field. A 

discussion shows that the current model is also able to handle convection heat transfer problem. 

Using the solved thermal field as input loads, classic and refined beam models have been 

developed. The conventional thermoelastic framework is extended for composite materials which 

removed the restriction on temperature variations and added the dependence of material properties 

with respect to temperature based on the Kovalenoko’s small-strain thermoelasticity theory. All 

these newly developed beam models are numerically implemented by using finite element method. 

VABS now is capable of handling thermal problem of composite beams composed of arbitrary 

materials and geometries. The recovery of 3D field quantities in terms of 1D variables has been 

derived so that the cross-sectional distributions of displacements, strains, stresses, and thermal 

field quantities can be obtained. 
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