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Abstract. The Subspace based System Identification Techniques (SSIT) have been very popular within the
research circles in the last decade due to their proven superiority over the other existing system identification
techniques. For operational (output only) modal analysis, the stochastic SSIT and for operational modal
analysis in the presence of exogenous inputs, the combined deterministic stochastic SSIT have been used in
the literature. This study compares the application of the two alternative techniques on a typical school
building in Istanbul using 100 Monte Carlo simulations. The study clearly shows that the combined
deterministic stochastic SSIT performs superior to the stochastic SSIT when the techniques are applied on
noisy data from low to mid rise stiff structures. 

Keywords: subspace based system identification; structural health monitoring; ambient vibration; opera-
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1. Introduction

Vibration monitoring of civil engineering structures for the purposes of damage detection is

becoming increasingly popular due to the technological advances in sensors and data acquisition

systems as well as the improvements in robust system identification techniques. Damage in

structures results in changes in their modal parameters such as the eigenfrequencies, the damping

ratios and the mode shapes (Celep 2001). Very successful vibration monitoring projects have been

carried out on bridges by Bayraktar et al. (2009a, 2009b, 2009c, 2010), Wiberg et al. (2009),

Magalhaes et al. (2009) and on buildings by Safak (1993), Kohler et al. (2005), Yoshimoto et al.

(2005) and Ventura et al. (2003). Many system identification algorithms are used in the literature for

identifying the modal parameters of structures (Zhou and Yan 2006, Katkhuda et al. 2010, Peeters

2000). Subspace based System Identification Techniques (SSIT) are known to be the most powerful

class of the system identification techniques used for modal parameter identification of aerospace,

mechanical and civil structures. A detailed description of the unified theory of the SSI techniques

can be found in the book by Van Overschee and De Moor (1996).
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During the past 30 years or so, the so-called experimental modal analysis (EMA) technique has

been used to monitor and identify the modal parameters of structures (Ewins 2000). In EMA, the

structure is subjected to a measured force, where the response of the structure is also recorded.

From this input-output data, a system model can be identified by the deterministic SSIT. 

EMA techniques are quite useful for laboratory testing on small specimens or mechanical

structures. However, in large civil engineering structures, only a small portion of the response is

due to the artificial excitation sources as it is practically very difficult to shake the large civil

structures by shakers or drop weights to appreciable amplitudes (Peeters 2000). Furthermore, the

mobilization of drop weights or shakers to civil engineering structures is rather expensive. This

gave rise to a new testing technique known as the ambient vibration testing or operational modal

analysis (OMA). The advantage of this technique is that only the output data due to the readily

available ambient excitations such as wind and traffic is recorded and the modal parameters are

identified using the stochastic SSIT which assumes that the input is zero (Van Overschee and De

Moor 1995). The OMA technique has many advantages. It is cheaper than EMA and it is more

practical. 

In the literature, the combined deterministic stochastic SSIT by Van Overschee and De Moor

(1996) has recently been popular due to the fact that both the unknown ambient excitations and the

known input can be modeled efficiently with this technique. Consequently, it is argued that better

predictions of the modal parameters are obtained. The analysis associated with the combined

deterministic stochastic SSIT is called the operational modal analysis with eXogenous (or deterministic)

inputs (OMAX) as suggested by Cauberghe (2004). 

In 2008, a scientific project sponsored by the Scientific and Technological Research Council of

Turkey (TUBITAK) has been started for the continuous monitoring of a typical school building in

Istanbul, Turkey (Bakir 2008). Within the context of the project, a typical school building is

instrumented with 18 sensors and monitored continuously. During the project, an important need has

emerged for determining the best SSIT for stiff mid rise reinforced concrete buildings. This study is

a modest attempt of identifying the best system identification technique for the project. In the

literature, it has been over emphasized that the predictions of the stochastic algorithm are as

accurate as the predictions of the combined algorithm. Most of these studies were carried out on

numerical models of ideal structures where the number of degrees of freedom were substantially

lower as compared to the number of degrees of freedom of large civil structures. Moreover, these

idealized structures had undeformable rigid floors, where it sufficed to measure 3 degrees of freedom

per floor and the sensors' degrees of freedom were at least 1/3 of the total degrees of freedom in the

structure. However, in this study, the SSIT are applied on a real life civil structure with 18 sensor

degrees of freedom and several thousand degrees of freedom in the finite element (FE) model.

Moreover, the data is low pass filtered, which introduces additional numerical poles into the system

and then noise is added to the data in such a way as to make the noise to signal ratio, 5%.

This paper is organized as follows. The next section presents the theory of the deterministic,

stochastic and the combined deterministic stochastic SSIT. In section 3, the identification method is

explained. In section 4, the application of the techniques is shown on noisy data from a mid-rise

reinforced concrete building and a Monte Carlo analysis is presented consisting of 100 runs. Within

this context, a discussion is provided regarding the results from the parametric studies. Section 5

summarizes the conclusions. The results show that the combined algorithm yields better estimates

than the stochastic algorithm. 
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2. Subspace based system identification

In this section, the three different types of the SSIT are explained, namely, deterministic, stochastic

and the combined deterministic stochastic SSIT. 

2.1 Deterministic SSIT

Deterministic SSIT represents the ideal case, where the input and the output are known and are

free of noise. Naturally, this is not really possible in real life measurements, which makes the

deterministic identification clearly an academic issue. The algorithm explained and used here is

essentially the det-alt algorithm in Van Overschee and De Moor (1996). In deterministic identification,

given s measurements of the input  and the output  at the time instant k, the idea is

to determine the state space system matrices , , ,  and the

order n of the system in the following state space model

(1)

(2)

where, l is the number of outputs, xk is the state at time instant k, m is the number of inputs and finally,

A, B, C and D are the system matrices of the state space model.

2.1.1 Construction of block Hankel matrices

Block Hankel matrices play an important role in SSIT. They can be constructed from the input

and output data as follows 

= (3)

= (4)
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Hankel matrices. From a statistical point of view, j should be much larger than i. To ensure that all the

samples are used, j is taken as equal to s−2i+1, where s is the number of samples of the measurement.

U0|i−1 is denoted by Up and Ui|2i−1 by Uf, the subscripts p and f denote the past and the future,

respectively.

The output block Hankel matrices  are defined similar to Eqs. 3 and 4. A

block Hankel matrix W0|i−1, consisting of inputs and outputs can be defined as

(5)

where Wp is the block Hankel matrix containing the past inputs and outputs. 

2.1.2 Deterministic algorithm

The deterministic algorithm starts with the calculation of the oblique projection of the output data

as follows

(6)

where the oblique projection of the row space of E along the row space of F on the row space of G is

defined as follows

(7)

where 

(8)

 
 = Ij − (9)

Here,  shows the operator that projects the row space of a matrix onto the row space of the matrix F

as follows

= FT(FFT)†F (10)

where (•)† defines the Moore-Penrose pseudo-inverse of the matrix (•). In the second step, the singular

value decomposition of the weighted oblique projection is calculated as

(11)
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(13)

The state space system matrix A is calculated as follows 

(14)

where  represents the extended observability matrix  without the last l rows,  represents the

extended observability matrix  without the first l rows. The state space matrix C is calculated as the

first l rows of . With 

(15)

(16)

B and D are solved from 

(17)
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This technique computes the state space models only from the output data. The algorithm is

essentially the sto-alt algorithm in Van Overschee and De Moor (1996).The stochastic model that

will be identified is given by 
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(20)

where ,  and . The vectors and are unmeasurable, Gaussian distributed

zero mean white noise vector sequences. Stochastic SSIT starts with the calculation of the orthogonal

projection of the output data as follows 
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In the third step, the extended observability matrix  takes the following form 

(23)

Hence the state space system matrix A is computed as

 

(24)

The state space matrix C is calculated as the first l rows of .

2.3 Combined deterministic stochastic SSIT

The algorithm is essentially the com-alt algorithm in Van Overschee and De Moor (1996). Given

s measurements of the input uk ε Rm and the output yk ε Rl of the unknown system of order n

(25)

(26)

with wk and vk zero mean, white vector sequences with covariance matrix

(27)

where ,  and , the idea is to determine the order of the system and the
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represented by  are computed as

(33)

 
(34)

The following equation is solved for A, C and K

(35)

The matrices L, M and K are defined as
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The matrices Q, S and R can be computed from the residuals ρw and ρv as

(41)

2.4 Determining the modal parameters from the system matrices

The system matrix A can be decomposed as (Reynders et al. 2008)

(42)

where  is the eigenvector matrix and  is a diagonal matrix that contains the

discrete time eigenvalues µi. The eigenfrequencies are calculated from

(43)

where λi denotes the continuous time eigenvalues and ∆t is the sampling time. The damping ratio (in %)

is computed from
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where | · | denotes the complex modulus and λi is expressed as

(45)

The mode shape V is computed from
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by the first author (Bakir 2010) rather than picking the poles from the stabilization diagrams for each

Monte Carlo simulation. 

4. Identification results

The first four mode shapes of the building are shown in Figs. 2, 3, 4 and 5 (Bakir 2011). The first

mode is the first bending mode in the long direction, the second mode is the first bending mode in

the short direction, the third mode is the torsional mode and the fourth mode is the second bending

mode in the long direction. 

The modal frequencies calculated using the FE model are given in Table 1. It should be stated

here that the damping ratios from the FE model are 2% for the first and the third mode, 1.88% for

the second mode and 2.71% for the fourth mode. The true or real modal parameters are those

obtained from the modal analysis using the FE model. The estimates are the modal parameters

identified from the response data obtained from the FE model using the three alternative SSIT.

These two set of modal parameters are compared with each other in this study. The ratios of the

estimates for each mode to the true value obtained from the modal analysis of the FE model are

shown in Figs. 6, 7 and 8 for the frequencies, mode shapes and the damping ratios, respectively for

Fig. 1 The instrumented school building (website of the instrumented building 2009)

Fig. 2 The first vibration mode (the first bending mode in the longitudinal direction)



162 Pelin Gundes Bakir, Serhat Alkan and Ender Mete Eksioglu

100 Monte Carlo simulations. Ideally, these ratios should approach 1 for the frequencies and the

damping ratios and 100 for the Modal Assurance Criterion (MAC), which are shown with full lines.

The dashed lines represents the ratio of the average value of the estimates from 100 Monte Carlo

Fig. 3 The second vibration mode (the first bending mode in the transversal direction)

Fig. 4 The third vibration mode (the torsional mode)

Fig. 5 The fourth vibration mode (the second bending mode in the longitudinal direction)
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simulations to the real value of the modal parameters from the FE analysis corresponding to that

particular mode. This quantity is a measure of the bias in the identifications. The parametric studies

regarding the deterministic SSIT represent rather academic, idealized investigations as the algorithm

does not consider the process and the measurement noise, which is not possible in real world

applications. Thus, the algorithm is not further discussed and the comparison is made between the

stochastic SSIT and the combined deterministic stochastic SSIT. 

Fig. 6 reveals that all the algorithms estimate the frequencies corresponding to the bending modes

in the two orthogonal directions very accurately. The real differences are in the estimates of the

Table 1 Modal frequencies calculated using the FE model

 Number Frequency (Hz)  Mode type

 1  2.62  First bending mode in the z direction 

 2  4.84  First bending mode in the x direction

 3  5.90  First torsion mode

 4  10.007  Second bending mode in the z direction 

 5-12  10.133  Local modes of the ground storey beams

 13  14.262  Local mode of the slabs

 14  14.294  Local mode of the slabs 

 15  14.324  Local mode of the slabs

 16  14.602  Local mode of the slabs

 17  15.693  Local mode of the slabs 

 18  15.754  Local mode of the slabs

 19  15.873  Local mode of the slabs

 20  15.953  Local mode of the slabs

Fig. 6 Eigenfrequency estimation results (from 100 Monte Carlo simulations)
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torsional and the second bending modes, where the stochastic algorithm is overly and steadily

biased in the identifications of the frequencies as compared to the combined deterministic stochastic

SSIT and substantially overestimates the frequencies.

Fig. 7 shows that all the algorithms predict the mode shapes for the first two modes almost

Fig. 7 Mode shape estimation results (from 100 Monte Carlo simulations)

Fig. 8 Damping ratio estimation results (from 100 Monte Carlo simulations)
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exactly. However, the stochastic SSIT can not identify the third and the fourth modes. The combined

deterministic stochastic SSIT, on the other hand, adequately predicts these modes albeit a small

amount of bias. 

Fig. 8 shows that the combined deterministic stochastic SSIT accurately predicts the damping

ratios for the first two modes without any bias. The stochastic algorithm also gives very good

predictions for the first two modes, however, the standard deviations are higher than the combined

algorithm. For the third mode, the bias of the estimates of the combined algorithm is smaller

compared to that of the stochastic algorithm. However, its standard deviation is substantially higher,

with a large variability of the estimates. The stochastic algorithm shows on the other hand a steady,

very significant bias with a very small standard deviation. For the fourth mode, stochastic SSIT

again gives a clear bias and the technique substantially overestimates the damping ratio. The combined

algorithm, on the other hand, gives very accurate estimates with a very small bias value for this

mode. 

It should be stated here that these parametric studies are also repeated for a noise to signal ratio of

zero although not shown here for the purposes of brevity. Even for the case without noise, the

stochastic algorithm could not identify the mode shape for the third mode. 

5. Conclusions

In this study, the application feasibility of the deterministic, the stochastic and the combined

deterministic-stochastic SSIT algorithms on a stiff reinforced concrete school building is evaluated.

For this purpose, a Monte Carlo analysis consisting of 100 simulations is carried out using the three

alternative subspace system identification techniques. The results show that the stochastic algorithm

falls short of accurately identifying the torsional and the second bending mode shapes of the structure.

The technique also overestimates the eigenfrequencies and damping ratios substantially with pronounced

bias values for the third and the fourth mode. The best results are certainly obtained when the

combined deterministic stochastic SSIT is used for identifying the modal parameters of the structure.

These identifications show very small bias and substantially better results as compared to the stochastic

algorithm.

In the literature, it has been over emphasized that the estimates of the stochastic algorithm are as

accurate as the estimates of the combined algorithm. Most of these studies were carried out on

numerical models of ideal structures where the number of degrees of freedom were substantially

lower as compared to the number of degrees of freedom of large civil structures. Moreover, these

idealized structures had undeformable rigid floors, where it sufficed to measure 3 degrees of

freedom per floor and the sensors’ degrees of freedom were at least 1/3 of the total degrees of

freedom in the structure. However, in this study, the techniques are applied on a real life civil

structure with 17 sensor degrees of freedom and a total of several thousand degrees of freedom in

the FE model. Moreover, the data is low pass filtered, which introduces numerical poles into the

system and then noise is added in such a way that the noise to signal ratio is 5%. When the three

algorithms are tested in such difficult conditions, it becomes apparent that the stochastic algorithm

does not give equally accurate estimates as the combined algorithm. The combined algorithm's

predictions clearly yield superior estimates compared to those of the stochastic algorithm. Thus, for

real life measurements, it must be borne in mind that the stochastic algorithm is very susceptible to

noise and modeling errors. It is therefore believed that the combined deterministic stochastic SSIT
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algorithm ought to be considered more frequently for system identification in mid rise reinforced

concrete buildings.
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