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Abstract.  Cracks in plate-like structures are some of the main reasons for destruction of the entire structure. 
In this study, a novel two-stage methodology is proposed for damage detection of flexural plates using an 
optimized artificial neural network. In the first stage, location of damages in plates is investigated using 
curvature-moment and curvature-moment derivative concepts. After detecting the damaged areas, the 
equations for damage severity detection are solved via Bat Algorithm (BA). In the second stage, in order to 
efficiently reduce the computational cost of model updating during the optimization process of damage 
severity detection, multiple damage location assurance criterion index based on the frequency change vector 
of structures are evaluated using properly trained cascade feed-forward neural network (CFNN) as a 
surrogate model. In order to achieve the most generalized neural network as a surrogate model, its structure 
is optimized using binary version of BA. To validate this proposed solution method, two examples are 
presented. The results indicate that after determining the damage location based on curvature-moment 
derivative concept, the proposed solution method for damage severity detection leads to significant 
reduction of computational time compared with direct finite element method. Furthermore, integrating BA 
with the efficient approximation mechanism of finite element model, maintains the acceptable accuracy of 
damage severity detection. 
 

Keywords: damage detection; flexural plate structure; bat algorithm; curvature-moment derivative; 

optimized cascade feed-forward neural network 

 
 
1. Introduction 
 

In recent years, significant efforts have been done in the area of vibration-based damage 

detection methods. These methods are based on the fact that dynamic characteristics, i.e., natural 

frequencies, mode shapes and modal damping, are directly related to the structure stiffness. 

Therefore, a change in natural frequencies or a change in mode shapes may indicate a loss of 

stiffness. Some detailed literature reviews describing the state of the art in the methods for damage 

detection, localization, and characterization, by examining changes in the dynamic response of a 

structure can be found in (Hakim and Razak 2014, Fan and Qiao 2011). Many published results 
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(Ghodrati, Seyed Razaghi et al. 2011, Bai, He et al. 2012, Xiang, Matsumoto et al. 2013, Homaei, 

Shojaee et al. 2014, Dessi and Camerlengo 2014, Ghiasi, Torkzadeh et al. 2014) confirm that mode 

shapes and corresponding mode shape curvatures are highly damage sensitive and can be used for 

its detection and evaluation. In these works the modulus of the difference in the mode shape data, 

between the healthy and the damaged structure, is defined as a damage index, and its maximum 

value typically indicates the location of a certain defect. However, the major drawback of those 

methods is that they need, as a rule, to know some important data of the healthy structure, which 

very often cannot be obtained. Previous published results confirm that damage location and size 

can be assessed by employing exclusively the mode shape curvature data from the damaged 

structures. Damage index based on mode shape curvatures was successfully applied to identify the 

location and the size of a defect in a plate structure by Dessi and Camerlengo (2014).  

Another promising technique for damage detection of plates was 2-D version of the wavelet 

transform approach (Hou, Noori et al. 2000, Hera, Hou et al. 2013). For example, a 2-D discrete 

wavelet transform (DWT) of the flexural mode shape is uses to detect cracks in plate. The wavelet 

coefficients of the detail of the first level decomposition were used to determine the location, 

length and depth of the crack (Loutridis, Douka et al. 2005). The biggest disadvantage of the 

methods based on wavelet transform was to exactly detect the damages at the edges of flexural 

plate. For this purpose, to overcome this disadvantage in the present study, the method based on 

curvature-moment relations is applied. Recently, an adaptive-scale damage detection strategy was 

presented by He and Zhu (2015) based on a wavelet finite element model for thin plate structures. 
The use of approximate models known as surrogate models with a much lower computational 

cost instead of expensive computer analysis codes pervades much of today’s engineering design 

(Ghiasi, Ghasemi et al. 2015). The approximations, or meta-models, are used to replace the actual 

expensive computer analyses, facilitating multidisciplinary, multi-objective optimization and 

concept exploration (Huang, Chen et al. 2016). 

Detection of damage severity is effectively the solution to the inverse problem (Sarvi, Shojaee 

et al. 2014). However, it may be necessary in many cases to solve the forward problem to generate 

data for the solution of the inverse problem. Generation of data is usually computationally 

expensive and artificial neural network (ANN) models are created to reduce the computational 

expense (Gholizadeh 2015). Simulation of ANN model as an efficient surrogate model of finite 

element (FE) as a response of updating damaged structure employed in the optimization loop 

through an inverse process to ascertain the damage parameters (damage severity), can replace 

expensive numerical simulations while enhancing computation efficiency. A new solution 

procedure based on artificial neural network was proposed to reduce the computational time of 

model updating during the process of damage severity detection (Fathnejat, Torkzadeh et al. 2014).  

Hence, a novel two-stage methodology is proposed for the damage detection of flexural plates 

based on optimized artificial neural network (ANN) and Bat Algorithm (BA). In the first stage, 

damage location detection of plates is investigated using different damage indices such as 

curvature-moment and curvature-moment derivative. First, the structure is modeled utilizing 

OpenSees software (Mazzoni, Mckenna et al. 2006) and damages are simulated as thickness 

reduction of the elements. Then, the data for the fundamental mode shape of the damaged structure 

is obtained. The damaged areas are appeared as pick points using the damage indices. After 

detecting the damaged areas, the equations for damage severity detection are solved via Bat 

optimization algorithm. In the second stage, in order to efficiently reduce the computational cost of 

model updating during the optimization process of damage severity detection, multiple damage 

location assurance criterion (MDLAC) index (Nobahari and Seyedpoor 2013) based on the 
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frequency change vector of structures is evaluated using properly optimized cascade feed-forward 

neural network (OCFNN). To validate this proposed solution method, two examples are presented.  

The paper is organized as follows. The brief introduction given in this section is followed by 

the presentation of the analytical formulation and dynamic analysis for damaged plates given in 

Section 2. Section 3 then describes Bat algorithm. The brief discussion about CFNN algorithms 

and proposed optimized CFNN is presented in section 4. Proposed damage detection procedure is 

described in section 5. Numerical examples are studied in Section 6 and Finally, Section 7 

summarizes the conclusions of the work 

 

 

2. Damage detection algorithm 
 

2.1 Curvature-moment  
 
The idea of the proposed technique is based on the relationship between the mode shape 

curvature and the flexural stiffness of structures. Any damage induced reduction in the flexural 

stiffness of a structure subsequently causes an increase in the magnitude of the mode shape 

curvature. The increase in the magnitude of the curvature is naturally local, thus the mode shape 

curvature may be considered as an indicator for location of a certain defect. The damage index 

generalized to the two-dimensional space for the nth mode at grid point (i, j) is expressed as 

follows (Rucevskis, Sumbatyan et al. 2015) 

2 2
2 2
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where 
n  is a transverse displacement of a thin structure, n is the mode number, i and j are the 

numbers of a grid point along coordinates x and y , respectively. Note that we operate with a 

combination of squares of the second partial derivatives, to evaluate the damage index. In practice, 

experimentally measured mode shapes are inevitably corrupted by the measurement noise, 

resulting in local perturbations to the mode shape that may lead to some peaks in the mode shape 

curvature profiles. These peaks could be mistakenly interpreted as a damage, since they may mask 

the peaks induced by a real defect and therefore may lead to a false or missed detection of the 

damage. To overcome this difficulty, the damage index is then defined as an averaged summation 

of damage indices for all modes normalized with respect to the largest value of each mode 
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2.2 Curvature-moment derivative 
 

The previous proposed combination (moment-curvature) will not properly detect damage 

location if there is any damaged elements in the corners. Response matrix has also some 

fluctuations that get damage location mistaken. To overcome the drawbacks mentioned above, a 

new combination is proposed using 1e damage indicator. After examining the various cases, the 
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second derivative of 1e damage indicator is diagnosed as an efficient indicator. The Laplacian 

matrix 1e is used to compute this indicator. The finite difference method is used to calculate the 

derivative. This index is the equation below 

2

2 1e e                                      (3) 

where 2

1e is the second derivative of 1e . After obtaining 
2e matrix, two and three-dimensional 

diagram of this matrix is plotted by MATLAB software by Release (2012). Damage is identified 

with a sudden jump in the three-dimensional diagram. 

 

 

3. Bat algorithm 
 
In this study, a Bat Algorithm (BA) is employed to determine the damage severity detected 

properly by the BA binary version has been used for structure optimization of CFNN. The aim is 

to find a set of reduced damage variables rX maximizing the MDLAC as 

𝑑𝐹𝑖 = (
𝐹𝑢𝑖−𝐹𝑑𝑖

𝐹𝑢𝑖
) , 𝑑𝐹𝑀𝑖 = (

𝐹𝑢𝑖−𝐹𝑀𝑖

𝐹𝑢𝑖
) , 𝑀𝐷𝐿𝐴𝐶 =

|𝑑𝐹𝑀𝑖
𝑇 .𝑑𝐹𝑖|

2

(𝑑𝐹𝑀𝑖
𝑇 .𝑑𝐹𝑀𝑖)(𝑑𝐹𝑖

𝑇 .𝑑𝐹𝑖)
          (4) 

and 

𝐹𝑖𝑛𝑑             𝑋𝑟
𝑇 = [𝑥𝑟1, 𝑥𝑟2, … , 𝑥𝑟𝑚] 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:   𝑤(𝑋𝑟) = −𝑀𝐷𝐿𝐴𝐶(𝑋𝑟) 

𝑥𝑟𝑖 ∈ 𝑅𝑑, 𝑖 = 1, … 𝑚                            (5) 

where uiF  and diF denote the natural frequency vectors of the undamaged and damaged structure, 

the subscript M denotes the updating frequency obtained from modal analysis (first five modes for 

subscript i in this research). dR is a given set of discrete values and the damage severity 

( 1, , )rix i m  can take values only from this set. Also, w is an objective function that should be 

minimized. 

BA is a meta-heuristic population based optimization algorithm which was first inspired from 

the search of bats to find their food (Yang and Gandomi 2012). Bats send some signals to the 

environment and then listen to its echo which is called echolocation process. BA is mainly 

constructed by the use of 4 main ideas (Komarasamy and Wahi 2012): 1) the difference between 

the prey and food is distinguished through the use of echolocation  process; 2) Each bat in the 

position iX flies with the velocity of 
iV producing a especial pulse with the frequency and loudness 

of 
if and iA respectively; 3) the loudness of iA changes in different ways such as reducing from a 

large value to a low value; and 4) the frequency 
if and rate ir of each pulse is regulated 

automatically. Initially, all bats fly randomly in the search space producing random pulses. After 

each fly, the position of each bat is updated as follows (Gholizadeh and Shahrezaei 2015) 

𝑉𝑖
𝑛𝑒𝑤 = 𝑉𝑖

𝑜𝑙𝑑 + 𝑓𝑖
(𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖); 𝑖 = 1, … . , 𝑁𝐵𝑎𝑡 

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖

𝑜𝑙𝑑 + 𝑉𝑖
𝑛𝑒𝑤; 𝑖 = 1, … . , 𝑁𝐵𝑎𝑡 

𝑓𝑖 = 𝑓𝑖
min + 𝜑1 (𝑓𝑖

max − 𝑓𝑖
min

) ; 𝑖 = 1, … , 𝑁𝐵𝑎𝑡                   (6) 
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where Gbest is the best bat from the objective function point of view; 
BatN is the number of bats 

in the population;  /max min
i if f are the maximum/minimum frequency values of the thi bat and 1

is a random value in the range [0,1]. In order to reach a better random walking, another random fly 

is also simulated. In this regard, a random number  is generated randomly. In each iteration, if the 

random value  is larger than ir ,then a new solution around iX is generated as follows 

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖

𝑜𝑙𝑑 + 𝜀𝐴𝑚𝑒𝑎𝑛
𝑜𝑙𝑑 ; 𝑖 = 1, … , 𝑁𝐵𝑎𝑡                       (7) 

where  is a random value in the range of [−1,1] and old
meanA is the mean value of the loudness of all 

bats. If the random value  is less than ir then a new position new
iX is generated randomly. The 

new position is accepted if the bellow equation is satisfied 

   &[ ]i iA f X f Gbest 
                         (8) 

The values of loudness and rate are also updated as follows 

 1 0[1 exp ]

new old
i i

Iter
i i

A A

r r Iter







   
                       (9) 

where  and  are constant values and Iter is the number of the iteration during the optimization 

process. The detailed flowchart of BA is presented in Fig. 1. 

 

 
4. Optimized cascade feed-forward neural network (OCFNN) 
     

A common type of feed-forward ANNs is constructed by a layer of inputs, a layer of output 

neurons, and one or more hidden layers of neurons. Feed-forward ANNs are used typically to 

parameter prediction and data approximation. 

A cascade type of feed-forward ANNs consists of a layer of input, a layer of output neurons, 

and one or more hidden layers. Similar to a common type of feed-forward ANNs, the first layer 

has weights coming from the input. But each subsequent layer has weights coming from the input 

and all previous layers. All layers have biases. The last layer is the network output. Each layer’s 

weights and biases must be initialized. A supervised training method is used to train considered 

cascade feed-forward ANNs (Hedayat, Davilu et al. 2009). The additional connections in cascade 

feed-forward neural network (CFNN) improve the speed at which the network learns the desired 

relationship (Makas, Yumusak et al. 2013). The Cascade-Correlation architecture has several 

advantages over existing algorithms: it learns very quickly, the network determines its own size 

and topology and it retains the structures it has built even if the training set changes (Hagan, 

Demuth et al. 1996). Fig. 2 shows the general structure of cascade feed-forward neural network. 

So far, several methods to determine the optimal number of hidden layer neurons has been 

presented. (Panchal, Ganatra et al. 2011) presented a method for analyzing the behavior of MLP 

network. The number of hidden layer neurons with minimal error is inversely proportional. 

Cascade Correlation algorithm begins the training process with minimum number of hidden 

layer neurons and then during the process of training, adds this number. This algorithm helps to 

improve the network structure because of preventing the random selection of the type of network 

structure.  
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Fig. 1 Bat algorithm flowchart 
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Fig. 2 Cascade feed-forward neural network general structure 

 

 

 

In order to improve the performance of CFNN as an efficient surrogate model, an intelligent 

method to select simultaneously optimized number of hidden layer neurons and type of hidden 

layer transfer function has been presented. By selecting root mean square error of testing data as an 

objective function, and number of hidden layer neurons and type of hidden layer transfer function 

as variables of optimization problem, can achieve optimized structure of CFNN. For this purpose, 

a set of transfer functions which are suited for hidden layer such as linear, sigmoid, radial basis 

function and Morlet's basic wavelet are selected (Fathnejat, Torkzadeh et al. 2014). 

( )
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Pureline U U                              (10) 

( )
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
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It is the underlying principle that the number of hidden layer neurons must be two or three 

times or somewhat bigger than the number of input feature (Ng 2004). Optimizer should select its 

variables from sets presented in Fig. 3. In this figure, N is indicator of number of input feature. 
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Fig. 3 variables of optimizer 

 
 

5. Main steps for proposed damage detection method 
 

The main steps for the proposed damage detection method using BA are summarized as 

follows: 

Step 1: Computing the curvature-moment and curvature-moment derivative indices to 

determine suspected elements. 

Step 2: Generating failure scenarios with the damage severity range between 0.05 and 0.35 with 

the pace of 0.05, when the number of suspected elements is determined. (It is be noted that 

maximum 35% damage severity percent is hypothetical, although we detect the damages with low 

rates by structural health monitoring.) 

Step 3: Developing FE model which computes the natural frequencies of the structure and 

finally the MDLAC corresponding to the failure scenarios that have been defined in the previous 

step. 

Step 4: Using the finite element (FE) model of the structure in order to generate training and 

testing datasets for development of ANN model that is used in the optimization process of damage 

severity detection. 

Step 5: Choosing the best alternatives for number of hidden layer neurons based on number of 

input variables (damaged elements) and setting mentioned transfer functions as variables of ANN 

structure in ANN structure optimization problem. 

Step 6: Implementing the binary BA to select the optimized number of hidden layer neurons 

and type of transfer function.   

Step 7: Engaging directly the optimized ANN model by the optimizer to evaluate the objective 

function to be minimized to determine the damage severities of suspected elements. (Applying the 

surrogate model). 

In this study, in order to generate failure scenarios which completely span the design space, 

Latin Hypercube Sampling (LHS) method has been applied. LHS generates a sample of plausible 

collections of parameter values from a multidimensional distribution. The LHS was presented by 

McKay in 1979 (Iman 2008). 
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6. Numerical results 
 

Two numerical examples are discussed in this section. In example one, point defects, or notches, 

are considered and damage location and severity detection is performed using proposed solution 

method. In the second example, the proposed method is extended and employed for detection of 

linear defects. 

 

6.1 Example 1: Square steel plate 1000 ×1000 mm with 5 mm thickness (point defects) 
 

The flexural steel plate with 41 divisions in the x and y directions modeled utilizing OpenSees 

software. Damages are simulated as reduction in the thickness of the elements. This reduction is 20 

percent for two elements (element number: 1286 and 1287). The spatial coordinates (0.3, 0.4) 

meter in the manner shown in Fig. 4 is intended. 

 

6.1.1 Finding the damage location using moment curvature 
By computing proposed damage indices, three-dimensional representation of damage location 

is presented in Figs. 5 and 6. 

As the Fig. 5 demonstrates the moment-curvature index is identifying mistakenly the corners of 

the plate as damaged areas.  

One of the disadvantages of the methods such as wavelet and wavelet packet transform is that 

In addition to identifying failure in its original location, the corners of the bending plate are 

mistakenly identified as damaged areas (Loutridis, Douka et al. 2005). The results (Fig. 6) show a 

high accuracy of curvature-moment derivative method in detecting the damage locations, 

especially at the corners of the plate. 

 

 

 

Fig. 4 Damage Location 
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Fig. 5 Two and three-dimensional view of damage location by curvature-moment index 

 

Fig. 6 Two and three-dimensional view of damage location by curvature-moment derivative index 
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6.1.2 Determining the damage severity 
6.1.2.1 Obtaining the optimized structure for CFNN 
Optimized CFNN is CFNN with log-sigmoid transfer function and four hidden layer neurons 

(2*N) (as mentioned in section 3). Table 1 shows the root mean square error (RMSE) of testing 

datasets for set of selective hidden layer transfer functions for CFNN. 

Given that the total number of damage scenarios per two marked suspected elements for this 

flexural steel plate with the damage severity range between 0.05 and 0.35 with the pace of 0.05 is 

equal to 28 (Eq. (15)). These scenarios are used to train and test the CFNN model. Eighty percent 

of these scenarios are used as a testing dataset. CFNN inputs are damage severities of failure 

scenarios and output is MDLAC. 

𝐴𝑙𝑙 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐷𝑎𝑚𝑎𝑔𝑒 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 = 𝑠𝑑                     (15) 

where s is the number of existing damage severities and d is the number of damaged elements.  

Based on Table 1 the result of structure optimization for CFNN (log-sigmoid transfer function 

and four neurons (2*N)) is verified by having the least RMSE. 

For validation of the proposed method to design optimally network architecture (type of transfer 

function and number of neurons), four extra scenarios are considered for this example. The stage of 

determining suspected elements is done in accordance with the process provided in first stage. 

According to Table 2 for all damaged scenarios, log sigmoid function is selected as the optimal 

function. However, the number of hidden layer neurons will change by changing the number of input 

data features. On the other hand, because of good ability of BA to design quickly optimum network 

architecture using minimal data, solution procedure proposed in this study can be used at the 

beginning of each damage detection problem regardless the type of structures. 

 

 

 
Table 1 The RMSE of testing datasets for CFNN with the 2*N number of hidden layer neurons 

 
RBF  

transfer func. 

log-sigmoid transfer 

func. 

Tan-sigmoid transfer 

func. 

Pureline  

transfer func. 

Wavelet transfer 

func. 

RMSE 0.0019 0.0016 0.0020 0.0021 0.0608 

 

 
Table 2 The RMSE of testing datasets for CFNN using various transfer functions 

 Damaged element 

numbers 

CFNN with 

RBF transfer 

function 

CFNN with 

log-sigmoid 

transfer function 

BPNN with 

log-sigmoid 

transfer function 

BPNN with 

tan-sigmoid 

transfer function 

WRBFNN 

R
M

S
E

 

Scenario A 1286, 1287 0.0016 0.0015 0.0017 0.0017 0.0421 

Scenario B 
1286, 1287, 

1288,1289 
0.0018 0.0014 0.0019 0.0020 0.0401 

Scenario C 
20, 21, 22, 23, 24, 

25 
0.0042 0.0031 0.0039 0.0035 0.0702 

Scenario D 
150, 151, 152, 

153, 154, 156, 157 
0.004 0.0033 0.0038 0.0035 0.071 
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Table 3 Bat algorithm parameters 

Parameter Description Value 

  Population size 50 

minf  Minimum frequency 0 

maxf  Maximum frequency 1 

0

maxil l  Initial loudness 1 

  Loudness adaption parameter 0.95 

0

minir r  Initial pulse rate 0.5 

  Pulse rate adaption parameter 0.98 

  Standard deviation 2 

  Penalty coefficient 1 

 

 

6.1.2.2 Using BA engaged by FE model vs. BA engaged by Optimized CFNN model to 
detect damage severity 

At this stage the reduced damage detection problem having two damage variables instead of 

1681 original ones can be solved via the optimization algorithm. The BA is employed to find a set 

of damage severity variables minimizing the Eq. (10). The BA algorithm with the specifications 

listed in Table 3 is applied to solve the problem. 

In this section, the new procedure for solving the damage severity detection problem has been 

proposed. This procedure contains the BA which has been engaged by optimized appropriate ANN 

model (CFNN model with log-sigmoid transfer function for hidden layer based on results of 

structure optimization of CFNN). To optimize CFNN structure as mentioned in section 4, the 

binary version of BA is used. In this example, the number of input features (N) is equal to two 

(Number of damaged elements). In all of the solution procedures, BA specifications are the same. 

 

 
Table 4 Comparison the results between two solution methods in terms of computational time and accuracy 

Algorithm 

Damage severity using 

optimized CFNN 

(percent) 

Damage severity using 

direct FE model (percent) 

Exact damage 

severity  

(percent) 

Damaged 

element 

number 

1286 19.93% 20.05% 20 % 

1287 19.9% 20.02% 20 % 

Number of iterations 200 200 

 

Damage severity 

detection process time 

(sec) 

782 3912 

Number of FE analyses 300 10000 
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Fig. 7 The convergence history of BA for plate 

 

 

Table 4 shows the results of comparing between two solution methods in terms of 

computational speed and accuracy. To compute process time when using an ANN model, data 

generation time, training and testing time and BA implementation time are considered together 

(core™ i5 2.67 GHz CPU). The proposed method of using appropriate ANN model instead of 

direct FE model as an updating model in optimization process of damage severity detection has 

been analyzed and compared in this section. 

It can be concluded from Table 4 that the idea of using an ANN model as a surrogate model of 

FE model, substantially reduces the computation time of damage severity detection. By this 

proposed solution method, computation time of proposed procedure is reduced to one-fourth of the 

former one. Using ANN model in process of damage severity detection done by optimization 

algorithm accelerates this process besides of maintaining the acceptable detection accuracy. 

The convergence history of BA cost function value for different models which has been 

engaged by BA algorithm versus the maximum number of iterations (200) has been illustrated In 

Fig. 7. 

As the Fig. 7 illustrates, the CFNN model with log-sigmoid transfer function has the least cost 

function value for the first iteration of BA, it leads to increase the speed of BA convergence. Direct 

FE model as model updating has the most cost function value for the first iteration and for this 

model, BA has the least speed of convergence. 

 

6.2 Example 2: Square steel plate 1000 ×1000 mm with 5 mm thickness (line defects) 
 
6.2.1 Finding the damage location using moment curvature 
The flexural steel plate with 100 divisions in the x and y directions has been modeled. In order 

to model a damage with a linear shape as show in Fig. 8, the thickness of elements have reduced 

by 10 percent. 

This example is to demonstrate the ability of each of the two proposed indices to find the 

damage with linear shape. Figs. 9 and 10 are showing the two and three dimensional view of 

damage location by curvature-moment and curvature-moment derivative, respectively.  
Based on Fig. 9, moment-curvature index does not have the ability to locate linear damage. 
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Fig. 8 Damage location 

 

 

 

Fig. 9 Two- and three-dimensional view of damage location by curvature-moment index 
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Fig. 10 Two- and three-dimensional view of damage location by curvature-moment derivative index 

 

 

As the Fig. 10 shows that moment-curvature derivative index has the ability to efficiently find 

linear damage. In addition, this index does not have moment-curvature's disadvantages such as 

detecting wrongly presence of damage at corners and presence of large fluctuations. 

 

6.2.2 Determining the damage severity using BA engaged by FE model vs. BA 
engaged by ANN model 

In this example, ANN based surrogate model is used instead of direct FE model as an updating 

model in optimization process of damage severity detection with more damaged elements. Table 5 

shows the results of comparing between two solution methods in terms of computational speed and 

accuracy. 
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Table 5 Comparison the results between two solution methods in terms of computational speed and accuracy 

Algorithm 

Damage severity using 

CFNN  

(percent) 

Damage severity using 

direct FE model 

(percent) 

Exact damage severity  

(percent) 

Damaged 

element number 

455 9% 10.04% 10 % 

456 9.24% 10.01% 10 % 

457 9.9% 9.9% 10 % 

458 9.8% 9.85% 10 % 

459 9.2% 10.2% 10 % 

460 8.9% 12% 10 % 

461 10.14% 9.5% 10 % 

462 10.7% 10.02% 10 % 

Number of iterations 200 200 

 
Damage severity detection 

process time (sec) 
801 4021 

Number of FE analyses 300 10000 

 

 

Using ANN model as a surrogate model of FE model in the optimization process leads to just 

300 (number of scenarios picked by LHS method among the total scenarios based on Eq. (15)) FE 

structure analyses in order to generate training and testing dataset for ANN model, whereas using 

direct FE model as an updating model in this process, leads to 10000 FE structure analyses which 

is equal to maximum number of BA cost function computation based on Eq. (16). 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝐴 𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑛𝑝𝑜𝑝 × 𝑛𝑖𝑡𝑒𝑟    (16) 

where npop is population size of bat algorithm whose value is 50 and niter is maximum number 

of BA iteration whose value is 200. On the other hand, number of FE analyses is equal to maximum 

number of BA cost function computation. As can be considered, using this new solution procedure 

contributes to a substantial reduction in the number of FE structural analysis which shows its 

priority in damage severity detection of large-scale structures. 

According to these results, it is observed that the obtained severities have an acceptable 

accuracy and thus the proposed solution procedure is not sensitive to the number of suspected 

elements. 

 

 

7. Conclusions 
 

In this paper, after locating the damage occurrence in plate-like structures using curvature- 

moment derivative indicator, an efficient solution procedure has been proposed for damage 

severity detection. Based on this new solution procedure, to reduce effectively computational time 

of model updating during the process of damage severity detection, Bat algorithm as an optimizer 

is engaged by an appropriate ANN model as a surrogate of direct FE model. In order to assess the 

performance of this proposed solution procedure, point defects or notches, as well as linear defects 

are considered and two numerical plates model have been studied. Based on the numerical results, 

the following conclusions can be resulted: 

1248



 

 

 

 

 

 

Damage detection of plate-like structures using intelligent surrogate model 

 

 The results show a high accuracy of curvature-moment derivative method to detect the damage 

locations, especially at the corners of the plate. 

 Curvature-moment derivative index does not have moment-curvature's, wavelet and wavelet 

packet transform disadvantages such as detecting wrongly presence of damage at corners and 

presence of large fluctuations. 

 The computational time of damage severity detection using BA engaged by ANN model as a 

surrogate of FE model is significantly reduced compared to using direct FE model based on BA 

(about one-fourth). Using this new solution procedure contributes to a substantial reduction in 

the number of FE structural analysis (about One-thirtieth) which is further highlighted in 

damage severity detection of plate-like structures. 

 In order to optimize the CFNN structure, a new method based on BA has been proposed. 

Results show that CFNN with log-sigmoid transfer function and adequate number of neurons for 

the hidden layer has the best structure to increase the accuracy of process of replacing the FE 

model with surrogate model in damage severity detection procedure. 
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