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Abstract.  Forced vibration analysis of a simple supported viscoelastic nanobeam is studied based on 
modified couple stress theory (MCST). The nanobeam is excited by a transverse triangular force impulse 
modulated by a harmonic motion. The elastic medium is considered as Winkler-Pasternak elastic 
foundation.The damping effect is considered by using the Kelvin–Voigt viscoelastic model. The inclusion of 
an additional material parameter enables the new beam model to capture the size effect. The new 
non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. 
The considered problem is investigated within the Timoshenko beam theory by using finite element method. 
The effects of the transverse shear deformation and rotary inertia are included according to the Timoshenko 
beam theory. The obtained system of differential equations is reduced to a linear algebraic equation system 
and solved in the time domain by using Newmark average acceleration method. Numerical results are 
presented to investigate the influences the material length scale parameter, the parameter of the elastic 
medium and aspect ratio on the dynamic response of the nanobeam. Also, the difference between the 
classical beam theory (CBT) and modified couple stress theory is investigated for forced vibration responses 
of nanobeams. 
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1. Introduction 
 

With the great advances in technology in recent years, micro and nano structures have found 

many applications. In these structures, micro beams and micro tubes are widely used in micro- and 

nano electromechanical systems (MEMS and NEMS) such as sensors (Zook, Burns et al. 1992, 

Pei, Tian et al. 2004), microactuators (Senturia 1998, Rezazadeh, Tahmasebi et al. 2006), atomic 

force microscopes, micro-resonators. In investigation of micro and nano structures, the classical 

continuum mechanics which is scale independent theories, are not capable of explanation of the 

size-dependent behaviors. Nonclassical continuum theories such as higher order gradient theories 

and the couple stress theory are capable of explanation of the size dependent behaviors which 

occur in micro-scale structures.  

At the present time, the experimental investigations of the micro materials are still a challenge 

because of difficulties confronted in the micro scale. Therefore, mechanical theories and atomistic 
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simulations have been used for micro structural analysis. The process of the atomistic simulations 

is very difficult and takes much time. So, continuum theory is the most preferred method for the 

analysis of the micro and nano structures. Classical continuum mechanics does not contain the size 

effect, because of its scale-free character. The nonlocal continuum theory initiated by Eringen 

(1972) which has been widely used to mechanical behavior of nano-micro structures. 

The size effect plays an important role on the mechanical behavior of microstructures at the 

micrometer scale that the classic theory has failed to consider when the size reduces from macro to 

nano (Toupin 1962, Mindlin 1962, Mindlin 1963, Fleck and Hutchinson 1993, Yang, Chong et al. 

2002, Lam, Yang et al. 2003). Therefore, higher-order theories modified couple stress theory and 

modified strain gradient are used in the mechanical model of the nano-micro structures (Yang, 

Chong et al. 2002, Lam, Yang et al. 2003).  

The determination of the micro-structural material length scale parameters is very difficult 

experimentally. So, Yang, Chong et al. (2002) proposed the modified couple stress theory (MCST) 

in which the strain energy has been shown to be a quadratic function of the strain tensor and the 

symmetric part of the curvature tensor, and only one length scale parameter is included. After this, 

the modified couple stress and the strain gradient elasticity theories have been widely applied to 

static and dynamic analysis of beams (Park and Gao 2006, Ma et al. 2008, Kong et al. 2008, 

Asghari, Ahmadian et al. 2010, Wang 2010, Şimşek 2010, Kahrobaiyan et al. 2010, Xia et al. 2010, 

Ke, Wang et al. 2011, Kahrobaiyan, Asghari et al. 2011, Akgöz and Civalek 2012a, 2014a, b, 2016, 

Movahedian 2012, Ansari, Ahmadian et al. 2012a,b, Şimşek, Kocatürk et al. 2013, Wang, Xu et al. 

2013, Kocatürk and Akbaş 2013, Tounsi, Benguediab et al. 2013, Kong 2013, Ghayesh, Amabili et 

al. 2013, Daneshmehr, Abadi et al. 2013, Akgöz and Civalek 2013, Şimşek and Reddy 2013, Bayat, 

Pakar et al. 2013, Bahraini, Eghtesad et al. 2014, Afkhami and Farid 2014, Besseghier, Heireche et 

al. 2015, Benguediab, Tounsi et al. 2014, Mohammadimehr, Mohandes et al. 2014).  

More recently, Darijani and Mohammadabadi (2014) proposed a new deformation beam 

theory for static and dynamic analysis of microbeams which includes unknown functions takes 

into account shear deformation and satisfies both of shear and couple-free conditions on the upper 

and lower surfaces of the beam based on a modified couple stress theory. Tang, Ni et al. (2014) 

analyzed a theoretical model for flexural vibrations of microbeams in flow with clamped-clamped 

ends based on a modified couple stress theory. Sedighi, Changizian et al. (2014) investigated the 

dynamic pull-in instability of vibrating micro-beams undergoing large deflection under 

electrostatically actuation. Faraokhi and Ghayesh (2015) studied the three-dimensional motion 

characteristics of perfect and imperfect Timoshenko microbeams under mechanical and thermal 

forces based on the modified couple stress theory. Kural and Ö zkaya (2015) studied the vibration 

of a micro beam with conveying fluid and resting on an elastic foundation. Farokhi and Ghayesh 

(2015a) investigated the three-dimensional motion characteristics 

of perfect and imperfect Timoshenko microbeams under mechanical and thermal forces. Ansari, 

Ashrafi et al. (2015) studied an exact solution of vibrations of postbuckled 

microscale beams based on the modified couple stress theory. Al-Basyouni, Tounsi et al. (2015) 

studied bending and dynamic behaviors of functionally graded micro beams with a novel unified 

beam formulation and a MCST. Zamanian, Rezaei et al. (2015) investigated the mechanics 

behavior of piezoelectrically actuated microbeams on the discretization methods. Dai, Wang et al. 

(2015) developed a new nonlinear theoretical model for cantilevered microbeams and explore the 

nonlinear dynamics based on the modified couple stress theory, taking into account one single 

material length scale parameter. Farokhi and Ghayesh (2015b) investigated the nonlinear dynamics 

of microarches with internal modal interactions. Chaht, Kaci et al. (2015) studied bending and 
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buckling of size-dependent functionally graded nanobeams including the thickness stretching 

effect.  The mechanical responses of microbeams studied within shear deformation and strain 

gradient theories by Akgöz and Civalek (2014, 2015a, b), Zemri, Houari et al. (2015), Bounouara, 

Benrahou et al. (2016), Shafiei, Mousavi et al. (2016). Aissani, Bouiadjra et al. (2015) presented a 

new nonlocal hyperbolic shear deformation beam theory for the static, buckling and vibration of 

nanobeams embedded in an elastic medium. Bağdatlı (2015) studied nonlinear transverse vibration 

of tensioned Euler-Bernoulli nanobeams. Akbaş (2016) studied the analytical solution of cracked 

microbeams using MCST. Ahouel, Houari et al. (2016) investigated the bending, buckling, and 

vibration of functionally graded nanobeams using the nonlocal differential constitutive relations of 

Eringen. Ebrahimi and Shafiei (2016) investigated size dependent vibration of a rotating 

functionally graded nanobeam with Timoshenko beam theory based on Eringen's nonlocal theory. 

In this study, the forced vibration response of a simple supported nanobeam embedded in an 

elastic medium is studied under the effect of a force impulse based on the MCST theory within the 

Timoshenko beam theory by using finite element method. The effects of the transverse shear 

deformation and rotary inertia are included according to the Timoshenko beam theory. The elastic 

medium is considered as Winkler-Pasternak elastic foundation. The Kelvin–Voigt viscoelastic 

model is used for the material of the nanobeam. In the dynamic solution of the problem, the 

Newmark average acceleration method is used. The effect of the material length scale parameter, 

the parameter of the elastic medium and aspect ratio on the forced vibration responses of the 

nanobeam are investigated in both the classical beam theory (CBT) and MCST. 

 

 

2. Theory and formulations 
 

Consider a simple supported circular nanobeam of length L, diameter D, as shown in Fig. 1. 

The nanobeam is excited by a transverse triangular force (P) impulse modulated by a harmonic 

motion at the midpoint of the beam and resting on Winkler-Pasternak foundation with spring 

constant kw and kp, as as seen from Fig. 1. When the Pasternak foundation spring constant kp=0, the 

foundation model reduces to Winkler type. 

 

 

 

Fig. 1 A simple supported nanobeam resting on Winkler-Pasternak foundation subjected to a force impulse 
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2.1 The modified couple stress theory 
 

The modified couple stress theory was proposed by Yang, Chong et al. (2002). Based on this 

theory, the strain energy density for a linear elastic material which is a function of both strain 

tensor and curvature tensor is introduced for the modified couple stress theory 

𝑈 = ∫ (𝝈: 𝜺 +𝒎:𝝌)
𝑉

𝑑𝑉                   (1) 

where σ is the stress tensor, ε is the strain tensor, m is the deviatoric part of the couple stress tensor, 

χ is the symmetric curvature tensor, defined by      

                                 𝝈 = 𝜆 𝑡𝑟(𝜺)𝐼 + 2𝜇𝜺                          (2) 

                         𝜺 =
1

2
,∇𝒖 + (∇𝒖)𝑇-                     (3) 

                         𝒎 = 2𝑙2𝜇 𝝌                          (4) 

                         𝝌 =
1

2
,∇𝜽 + (∇𝜽)𝑇-                             (5) 

where λ and μ are Lame’s constants, l is a material length scale parameter which is regarded as a 

material property characterizing the effect of couple stress, u is the displacement vector and θ is 

the rotation vector, given by                      

                         𝜽 =
1

2
curl 𝒖                                   (6) 

The parameters λ and μ in the constitutive equation are given by 

                     𝜆 =
𝐸  𝜈

(1+𝜈)(1−2𝜈)
 ,  𝜇 =

𝐸

2(1+𝜈)
                        (7) 

where E is the modulus of elasticity and ν is the Poisson's ratio. 

 
2.2 Governing equations of the problem 
 
According to the coordinate system (X,Y,Z) shown in Fig. 1, based on Timoshenko beam theory, 

the axial and the transverse displacement field are expressed as   

𝑢(𝑋, 𝑌, 𝑡) = 𝑢0(𝑋, 𝑡) − 𝑌 (𝑋, 𝑡)                     (8) 

                       𝑣(𝑋, 𝑌, 𝑡) = 𝑣0(𝑋, 𝑡)                         (9)    

                       𝑤(𝑋, 𝑌, 𝑡) = 0                                (10) 

where u, v, w are x, y and z components of the displacements, respectively.    is the total bending 

rotation of the cross-sections at any point on the neutral axis. Also, u0 and v0 are the axial and the 

transverse displacements in the mid-plane, t indicates time. 

Because the transversal surfaces of the beam is free of stress, then 

 𝜎𝑧𝑧 = 𝜎𝑦𝑦 = 0                            (11) 

By using Eqs. (3), (8) and (9) and strain- displacement relation can be obtained 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑋
=

𝜕𝑢0(𝑋,𝑡)

𝜕𝑋
− 𝑌

𝜕 (𝑥,𝑡)

𝜕𝑋
                     (12a)                         
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                        𝜀𝑥𝑧 = 𝜀𝑦𝑧 = 0                                  (12b) 

                      2𝜀𝑥𝑦 = 𝛾𝑥𝑦 =
∂𝑣

∂x
−  (𝑥, 𝑡)                       (12c)   

By using Eqs. (6), (8), (9) and (10), 

𝜃𝑧 =
1

2
.
𝜕𝑣(𝑋,𝑡)

𝜕𝑋
+  (𝑥, 𝑡)/,  𝜃𝑥 = 𝜃𝑦 = 0         (13) 

Substituting Eq, (13) into Eq. (5), the curvature tensor χ can be obtained as follows 

𝜒𝑥𝑧 =
1

4
 .
𝜕2𝑣(𝑋,𝑡)

𝜕𝑋2
+

𝜕 (𝑋,𝑡)

𝜕𝑋
/,  𝜒𝑥𝑥 = 𝜒𝑥𝑦 = 𝜒𝑦𝑦 = 𝜒𝑦𝑧 = 𝜒𝑧𝑧 = 0           (14) 

In the damping effect, the Kelvin–Voigt viscoelastic model is used for the material. The 

constitutive relations for the Kelvin– Voigt viscoelastic model between the stresses and strains 

become 

                               𝜎𝑥𝑥 = 𝐸(𝜀𝑥𝑥 + 𝜂1𝜀�̇�𝑥)                        (15a) 

𝜎𝑥𝑦 =    𝜇(𝛾𝑥𝑦 + 𝜂2�̇�𝑥𝑦)                            (15b) 

𝒎 = 2𝑙2𝜇 (𝝌 + 𝜂3�̇�)                    (15c) 

where E, 𝜎𝑥𝑥, 𝜀𝑥𝑥 , 𝜎𝑥𝑦 , 𝛾𝑥𝑦 ,𝒎 , χ , 𝜀�̇�𝑥, �̇�𝑥𝑦 and �̇� indicate Young’s modulus, normal stresses, 

normal strains in the X direction, shear stresses, shear strains, the couple stress tensor, the 

symmetric curvature tensor, the time derivatives of the normal strains, time derivatives of the shear 

strains and the time derivatives of the curvature tensor, respectively. μ is shear modulus which is 

defined by Eq. (7). Also, η1, η2 and η3 indicate the damping ratios of the viscoelastic nanobeam in 

bending, shearing and couple stress, respectively, as follows 

𝜂1 =
𝑐

𝐸
, 𝜂2 =

𝑐

𝜇
, 𝜂3 =

𝑐

2𝑙2𝜇
                        (16)     

where c is the damping coefficient.    

Substituting Eqs. (14) and (12) into Eq. (15), the stresses can be obtained as follows 

𝜎𝑥𝑥 = 𝐸 (.
𝜕𝑢0(𝑋,𝑡)

𝜕𝑋
− 𝑌

𝜕 (𝑥,𝑡)

𝜕𝑋
/ + 𝜂1

𝜕

𝜕𝑡
.
𝜕𝑢0(𝑋,𝑡)

𝜕𝑋
− 𝑌

𝜕 (𝑥,𝑡)

𝜕𝑋
/)            (17a) 

              𝜎𝑥𝑦 =    𝜇 (.
∂𝑣

∂x
−  (𝑥, 𝑡)/ + 𝜂2

𝜕

𝜕𝑡
.
∂𝑣

∂x
−  (𝑥, 𝑡)/)                (17b) 

           𝑚𝑥𝑧 =
1

2
𝑙2𝜇 (.

𝜕2𝑣(𝑋,𝑡)

𝜕𝑋2
+

𝜕 (𝑋,𝑡)

𝜕𝑋
/ + 𝜂3

𝜕

𝜕𝑡
.
𝜕2𝑣(𝑋,𝑡)

𝜕𝑋2
+

𝜕 (𝑋,𝑡)

𝜕𝑋
/)       (17c) 

𝑚𝑥𝑥 = 𝑚𝑥𝑦 = 𝑚𝑦𝑦 = 𝑚𝑦𝑧 = 𝑚𝑧𝑧 = 0                 (17d) 

when the total bending rotation is  = ∂v
∂x ⁄ , the beam model reduces to Euler-Bernoulli beam 

model. 

Based on Timoshenko beam theory, the elastic strain energy (Ui) of the nanobeam is expressed 

as 

𝑈𝑖 =
1

2
∫ ∫ (𝜎𝑖𝑗  𝜀𝑖𝑗 +𝑚𝑖𝑗  𝜒𝑖𝑗)𝐴

𝑑𝐴 𝑑𝑋
𝐿

0
                   (18) 
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By substituting Eqs. (12), (14) and (17) into Eq. (18), elastic strain energy (Ui) can be rewritten 

as follows 

𝑈𝑖 =
1

2
∫ [𝐸𝐴 .

𝜕𝑢0(𝑋,𝑡)

𝜕𝑋
/
2

+ 𝐸𝐼 .
𝜕 (𝑥,𝑡)

𝜕𝑋
/
2

+   𝜇𝐴 .
∂𝑣

∂x
−  (𝑥, 𝑡)/

2

+
1

8
𝑙2𝜇𝐴 .

𝜕2𝑣(𝑋,𝑡)

𝜕𝑋2
+

𝜕 (𝑋,𝑡)

𝜕𝑋
/
2

+
𝐿

0

                      𝑤(𝑣(𝑋, 𝑡))
2 +  𝑝(

∂𝑣(𝑋,𝑡)

∂x
)2] 𝑑𝑋         (19) 

where A is the area of the cross section, and I is the moment of inertia.  

The kinetic energy (T) of the nanobeam is expressed as follows 

𝑇 =
1

2
∫ ∫ 𝜌 [.

𝜕𝑢

𝜕𝑡
/
2
+ .

𝜕𝑣

𝜕𝑡
/
2
+ .

𝜕𝑤

𝜕𝑡
/
2
]

𝐴
𝑑𝐴 𝑑𝑋

𝐿

0
                  (20) 

By substituting Eqs. (8), (9) and (10) into Eq. (20), the kinetic energy (T) can be rewritten as 

follows 

𝑇 =
1

2
∫ [𝜌𝐴 .

𝜕𝑢0

𝜕𝑡
/
2
+ 𝜌𝐴 .

𝜕𝑣0

𝜕𝑡
/
2
+ 𝜌𝐼 .

𝜕 

𝜕𝑡
/
2
] 𝑑𝑋

𝐿

0
                 (21) 

where 𝜌 is the mass density of the nanobeam.  

The dissipation function of the nanobeam at any instant t is 

𝑅 =
1

2
∫ [𝜂1𝐸𝐴 .

𝜕�̇�0(𝑋,𝑡)

𝜕𝑋
/
2
+ 𝜂1𝐸𝐼 .

𝜕 ̇(𝑥,𝑡)

𝜕𝑋
/
2

+ 𝜂2  𝜇𝐴 .
∂�̇�

∂x
−  ̇(𝑥, 𝑡)/

2
+ 𝜂3

1

8
𝑙2𝜇𝐴 .

𝜕2�̇�(𝑋,𝑡)

𝜕𝑋2
+

𝐿

0

                
𝜕 ̇(𝑋,𝑡)

𝜕𝑋
/
2

] 𝑑𝑋           (22) 

where ". " indicates the time derivative. The potential energy of the external load can be written as 

                           𝑈𝑒 = −∫ ,𝑃(𝑥, 𝑡) 𝑣(𝑥, 𝑡)- 𝑑𝑋
𝐿

0
                       (23) 

The Lagrangian functional of the problem is given as follows 

𝐼 = 𝑇 − (𝑈 + 𝑈 )                           (24) 

Total nodal displacements q which is written for a two-node beam element, each node has three 

degrees of freedom, shown in Fig. 2 are defined as follows   

* (𝑡)+ = 0𝑢𝑖
(𝑒)(𝑡), 𝑣𝑖

(𝑒)(𝑡),   𝑖
(𝑒)(𝑡), 𝑢𝑗

(𝑒)(𝑡), 𝑣𝑗
(𝑒)(𝑡),   𝑗

(𝑒)(𝑡)  1
𝑇

         (25) 

 

 

 

Fig. 2 A two-node finite element 
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The displacement field of the finite element is expressed in terms of nodal displacements as 

follows 

𝑢( )(𝑋, t) =  1
( )(𝑋) 𝑢 (𝑡) +  2

( )(𝑋) 𝑢 (𝑡)    

                             = [ ( )] {
 𝑢 
 𝑢 
} = [ ( )]* +                         (26) 

𝑣( )(𝑋, t) =  1
(𝑉)(𝑋) 𝑣 (𝑡) +  2

(𝑉)(𝑋)   (𝑡) +  3
(𝑉)(𝑋) 𝑣 (𝑡) +  4

(𝑉)(𝑋)   (𝑡)     

[ (𝑉)]

{
 

 
 𝑣 
   
 𝑣  
   }
 

 

= [ (𝑉)]* +𝑉                      (27) 

 ( )(𝑋, t) =  1
( )(𝑋) 𝑣 (𝑡) +  2

( )(𝑋)   (𝑡) +  3
( )(𝑋) 𝑣 (𝑡) +  4

( )(𝑋)   (𝑡)     

[ ( )]

{
 

 
 𝑣 
   
 𝑣  
   }
 

 

= [ ( )]* +                       (28) 

where ui, vi and  i are axial displacements, transverse displacements and rotations at the two end 

nodes of the beam element, respectively.  𝑖
( )

,  𝑖
(𝑉)

 and  𝑖
( )

 are shape functions for axial, 

transverse and rotation degrees of freedom, respectively, and are given as Chakraborty, Mahapatra 

et al. (2002).  

The shape functions for axial degrees of freedom are    

𝜑( )(X) = 0𝜑1
( )(X)  𝜑2

( )(X)1
𝑇

                    (29) 

where 

𝜑1
( )
(X) = .−

𝑋

𝐿e
+ 1/                   (30a) 

𝜑2
( )
(X) = .

𝑋

𝐿e
/                             (30b) 

The shape functions for transverse degrees of freedom are 

𝜑(𝑉)(X) = 0𝜑1
(𝑉)(X)  𝜑2

(𝑉)(X)  𝜑3
(𝑉)(X)  𝜑4

(𝑉)(X)1
𝑇

             (31) 

where 

𝜑1
(𝑉)
(X) = (1 −

12𝑋

𝐿e.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
−

3.
𝜇𝐴

𝐸𝐼
/𝑋2

.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
+

2(𝜇𝐴/𝐸𝐼)𝑋3

𝐿e.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
)           (32a) 
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𝜑2
(𝑉)
(X) = (

.6+
𝜇𝐴

𝐸𝐼
𝐿e
2/𝑋

.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
−

.6+2
𝜇𝐴

𝐸𝐼
𝐿e
2/𝑋2

𝐿e.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
+

𝜇𝐴/𝐸𝐼

6
(1 −

.6𝐿e+
𝜇𝐴

𝐸𝐼
𝐿e
3/

𝐿e.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
)𝑋3)       (32b) 

𝜑3
(𝑉)
(X) = (

12𝑋

𝐿e.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
+

3.
𝜇𝐴

𝐸𝐼
/𝑋2

.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
−

2(𝜇𝐴/𝐸𝐼)𝑋3

𝐿e.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
)          (32c) 

𝜑4
(𝑉)
(X) = (−

6𝑋

.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
−

.
𝜇𝐴

𝐸𝐼
𝐿e
2−6/𝑋2

.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
+

(𝜇𝐴/𝐸𝐼)𝑋3

.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
)             (32d) 

The shape functions for rotation degrees of freedom are 

𝜑( )(X) = 0𝜑1
( )(X)  𝜑2

( )(X)  𝜑3
( )(X)  𝜑4

( )(X)1
𝑇

             (33) 

where 

                𝜑1
( )
(X) = (−

6(𝜇𝐴/𝐸𝐼)𝑋

.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
+

6(𝜇𝐴/𝐸𝐼)𝑋2

𝐿e.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
)                (34a) 

𝜑2
( )
(X) = (1 −

2.2
𝜇𝐴

𝐸𝐼
𝐿e
2+6/𝑋

𝐿e.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
+

𝐺𝐴/𝐸𝐼

2
(1 −

.6𝐿e+
𝜇𝐴

𝐸𝐼
𝐿e
3/

𝐿e.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
)𝑋2)       (34b) 

𝜑3
( )(X) = (

6.
𝜇𝐴

𝐸𝐼
/𝑋

.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
−

6.
𝜇𝐴

𝐸𝐼
/𝑋2

𝐿e.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
)               (34c) 

𝜑4
( )
(X) = (−

2.
𝜇𝐴

𝐸𝐼
𝐿e
2−6/𝑋

𝐿e.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
+

3(𝜇𝐴/𝐸𝐼)𝑋2

.12+
𝜇𝐴

𝐸𝐼
𝐿e
2/
)              (34d) 

where 𝐿  indicates the length of the finite beam element.  

By substituting Eqs. (26), (27) and (28) into Eqs. (19), (21) and (22), energy functions can be 

rewritten as follows 

         𝑈𝑖 =
1

2
∫ *𝐸𝐴 .

𝜕𝜑(𝑈)

𝜕𝑋
* + /

2

+ 𝐸𝐼 .
𝜕𝜑( )

𝜕𝑋
* + /

2

+   𝜇𝐴 .
𝜕𝜑(𝑉)

𝜕𝑋
* +𝑉 − 𝜑( )* + /

2

+
𝐿

0

        
1

8
𝑙2𝜇𝐴 (

𝜕2𝜑(𝑉)

𝜕𝑋2
* +𝑉 + 

𝜕𝜑( )

𝜕𝑋
* + )

2

+   𝑤(𝑣(𝑋, 𝑡))
2
+  𝑤(

∂𝑣(𝑋,𝑡)

∂x
)
2

+ 𝑑𝑋         (35) 

𝑇 =
1

2
∫ *𝜌𝐴 (

𝜕(𝜑(𝑈)*𝑞+𝑈)

𝜕𝑡
)
2

+ 𝜌𝐴 (
𝜕(𝜑(𝑉)*𝑞+𝑉)

𝜕𝑡
)
2

+ 𝜌𝐼 (
𝜕(𝜑( )*𝑞+ )

𝜕𝑡
)
2

+ 𝑑𝑋
𝐿

0
         (36) 

𝑅 =
1

2
∫ [𝜂1𝐸𝐴 (

𝜕

𝜕𝑋
(
𝜕(𝜑(𝑈)*𝑞+𝑈)

𝜕𝑡
))

2

+ 𝜂1𝐸𝐼 (
𝜕

𝜕𝑋
(
𝜕(𝜑( )*𝑞+ )

𝜕𝑡
))

2

+ 𝜂2  𝜇𝐴 (
𝜕

𝜕𝑋
(
𝜕(𝜑(𝑉)*𝑞+𝑉)

𝜕𝑡
) −

𝐿

0

                                              (
𝜕(𝜑( )*𝑞+ )

𝜕𝑡
))

2

+  𝜂3
1

8
𝑙2𝜇𝐴 (

𝜕2

𝜕𝑋2
.
𝜕𝜑(𝑉)

𝜕𝑡
* +𝑉/ +

𝜕

𝜕𝑋
.
𝜕𝜑( )

𝜕𝑡
* + /)

2

] 𝑑𝑋  

(37) 

After substituting Eqs. (26), (27) and (28) into Eq. (24) and then using the Lagrange’s equations 

gives the following equation 
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𝜕𝐼

𝜕𝑞 
( ) −

𝜕

𝜕𝑡

𝜕𝐼

𝜕�̇� 
( ) +    = 0,     k=1,2,3,4,5,6                    (38)                    

where 

                                 = −
∂ 

𝜕�̇� 
( )                              (39) 

    is the generalized damping load which can be obtained from the dissipation function by 

differentiating R with respect to   ̇𝑘
(𝑒)

. Where   ̇𝑘
(𝑒)

 indicates the time derivatives of nodal 

displacements q.  

The Lagrange’s equations yield the system of equations of motion for the finite element and by 

use of usual assemblage procedure the following system of equations of motion for the whole 

system can be obtained as follows 

, -* (𝑡)+ + , -* ̇(𝑡)+ + , -* ̈(𝑡)+ = * (𝑡)+                  (40) 

where, [K] is the stiffness matrix, [D] is the damping matrix, [M] is  mass matrix and {F(t)} is the 

load vector.  

The components of the stiffness matrix [K] : 

The stiffness matrix [K] can be expressed as a sum of three submatrices as shown below 

, - = ,  - + , 𝑤- + [ 𝑝]                         (41) 

where 

,  - = [

[  
 ] 0 0

0 [  
𝑉] [  

𝑉 ]

0 [  
 𝑉] [  

 ]

]                        (42a) 

[  
 ] = ∫ 𝐸𝐴

𝐿e
0

0
𝜕𝜑(𝑈)

𝜕𝑋
1
𝑇

 0
𝜕𝜑(𝑈)

𝜕𝑋
1 𝑑𝑋                    (42b) 

[  
𝑉] = ∫ (  𝜇𝐴 0

𝜕𝜑(𝑉)

𝜕𝑋
1
𝑇

 0
𝜕𝜑(𝑉)

𝜕𝑋
1 + 

1

8
𝑙2𝜇𝐴 0

𝜕2𝜑(𝑉)

𝜕𝑋2
1
𝑇

0
𝜕2𝜑(𝑉)

𝜕𝑋2
1)

𝐿e
0

𝑑𝑋           (42c) 

[  
𝑉 ] = [  

 𝑉]
T
= ∫ (−  𝜇𝐴 0

𝜕𝜑(𝑉)

𝜕𝑋
1
𝑇

 [𝜑( )] +  
1

8
𝑙2𝜇𝐴 0

𝜕2𝜑(𝑉)

𝜕𝑋2
1
𝑇

0
𝜕𝜑( )

𝜕𝑋
1)

𝐿e
0

𝑑𝑋    (42d) 

[  
 ] = ∫ (.𝐸𝐼 +

1

8
𝑙2𝜇𝐴/ 0

𝜕𝜑( )

𝜕𝑋
1
𝑇

 0
𝜕𝜑( )

𝜕𝑋
1 +   𝜇𝐴[𝜑

( )]
𝑇
[𝜑( )])

𝐿e
0

𝑑𝑋        (42e) 

, 𝑤- = ∫  𝑤
𝐿e
0

[𝜑(𝑉)]
𝑇
 [𝜑(𝑉)]𝑑𝑋                    (42f) 

[ 𝑝] = ∫  𝑝
𝐿e
0

0
𝜕𝜑(𝑉)

𝜕𝑋
1
𝑇

 0
𝜕𝜑(𝑉)

𝜕𝑋
1 𝑑𝑋                    (42g) 

where Le indicates the length of the finite beam element. The components of the mass matrix [M]  
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, - = [

,  - 0 0

0 , V- 0

0 0 [  ]

]                        (43) 

where ,  -, , 𝑉- and ,  - are the contribution of u, v and   degree of freedom to the mass 

matrix. Explicit forms of , - are given as follows  

,  - = ∫ 𝜌𝐴
𝐿e
0

[𝜑( )]
𝑇
 [𝜑( )]𝑑𝑋                     (44a) 

, 𝑉- = ∫ 𝜌𝐴
𝐿e
0

[𝜑(𝑉)]
𝑇
 [𝜑(𝑉)]𝑑𝑋                    (44b) 

,  - = ∫ 𝜌𝐼
𝐿e
0

[𝜑( )]
𝑇
 [𝜑( )]𝑑𝑋                     (44c) 

The components of the damping matrix [D]  

, - = [

,  - 0 0

0 , V- [ 𝑉 ]

0 [  𝑉] [  ]

]                       (45) 

where 

,  - = ∫ 𝜂1𝐸𝐴
𝐿e
0

0
𝜕𝜑(𝑈)

𝜕𝑋
1
𝑇

 0
𝜕𝜑(𝑈)

𝜕𝑋
1 𝑑𝑋                   (46a) 

, 𝑉- = ∫ (𝜂2  𝜇𝐴 0
𝜕𝜑(𝑉)

𝜕𝑋
1
𝑇

 0
𝜕𝜑(𝑉)

𝜕𝑋
1 +  𝜂3

1

8
𝑙2𝜇𝐴 0

𝜕2𝜑(𝑉)

𝜕𝑋2
1
𝑇

0
𝜕2𝜑(𝑉)

𝜕𝑋2
1)

𝐿e
0

𝑑𝑋       (46b) 

[ 𝑉 ] = [  𝑉]
T
= ∫ (−𝜂2  𝜇𝐴 0

𝜕𝜑(𝑉)

𝜕𝑋
1
𝑇

 [𝜑( )] +  𝜂3
1

8
𝑙2𝜇𝐴 0

𝜕2𝜑(𝑉)

𝜕𝑋2
1
𝑇

0
𝜕𝜑( )

𝜕𝑋
1)

𝐿e
0

𝑑𝑋   (46c) 

[  ] = ∫ (.𝜂1𝐸𝐼 +  𝜂3
1

8
𝑙2𝜇𝐴/ 0

𝜕𝜑( )

𝜕𝑋
1
𝑇

 0
𝜕𝜑( )

𝜕𝑋
1 + 𝜂2  𝜇𝐴[𝜑

( )]
𝑇
[𝜑( )])

𝐿e
0

𝑑𝑋      (46d) 

The load vector {F(t)} is expressed as             

* (𝑡)+ = ∫ *𝜑(X)+T  (X, 𝑡) 
𝐿e
x=0

𝑑𝑋                     (47) 

The dimensionless quantities can be expressed as 

 ̅𝑤 =
𝑘𝑤𝐿

4

𝐸𝐼
,  ̅𝑝 =

𝑘𝑝𝐿
2

𝐸𝐼
                         (48) 

where  ̅𝑤 is the dimensionless value of Winkler parameter and  ̅𝑝 is the dimensionless value of 

Pasternak parameter.  

 

 

3. Results and discussions  
 

In this section, various numerical examples are presented and discussed to investigate the 

forced vibration responses of viscoelastic nanobeam resting on Winkler-Pasternak foundation. In 
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order to determine the effects of the foundation parameters, material length scale parameters and 

different dimensions of the beam on the forced vibration responses of the nanobeam, result are 

obtained in conjunctions with the MCST and the CBT. The nanobeam is taken to be made of 

epoxy (E=1,44 GPa, 𝜈 = 0.38,  𝑙 =  17.6 μm, 𝜌 = 1600
kg

m3 , c = 14.4 Pa/s ). The shear 

correction factor is taken as   = 0.8922. In the numerical calculations, the number of finite 

elements is taken as n=300. In the numerical integrations, five-point Gauss integration rule is 

used. 

Numerical calculations in the time domain are made by using Newmark average acceleration 

method. The system of linear differential equations which are given by Eq. (40), is reduced to a 

linear algebraic system of equations by using average acceleration method. The beam is excited by 

a transverse triangular force impulse (with a peak value 1 μN) modulated by a harmonic function 

(Fig. 3). 

In order to investigate the effect of Winkler parameter on the dynamic responses of the 

nanobeam in both MCST and CBT, the maximum transverse displacements of the nanobeam 

obtained for different aspect ratios (L/D) and the material length scale parameter (D/l) in Figs. 4 

and 5, respectively for  ̅𝑝 = 0. 

As seen from Fig. 4, the displacement waves which appear after the time interval of the applied 

impulse force are the excitation wave and primary waves (reflecting waves from the supports of 

the nanobeam). Also, it is seen Fig. 6 that the displacement waves gradually disappear with 

increase in time because of the damping effect. It is seen from Fig. 4 that with increase in the 

aspect ratio, the difference between the results of CBT and MCST decrease considerably. For high 

values of the aspect ratio, the displacement waves of CBT and MCST interfere with each other. 

The number of waves for both of CBT and MCST decrease with increase in the aspect ratio. It is 

observed from Fig. 4 that for the smaller value of aspect ratio, MCST must be used instead of CBT. 

Also, with increasing the Winkler parameter  ̅𝑤, the transverse displacements are decreases, as 

expected. Increases with the dimensionless stiffness parameter of the Winkler foundation, the 

differences between results of CBT and MCST decrease significantly. For the smaller ratio of L/D, 

the MCST must be used instead of the CBT. 

 

 

 

Fig. 3 The shape of the excitation impulse in the (a) time domain and (b) frequency domain 
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Fig. 4 Effect of Winkler parameter on the transverse displacements for CBT and MCST for different the 

aspect ratios; (a)  ̅𝑤=0 for L/D=15, (b)  ̅𝑤=100 for L/D=15, (c)  ̅𝑤=0 for L/D=30, (d)  ̅𝑤=100 for 

L/D=30, (e)  ̅𝑤=0 for L/D=60 and (f)  ̅𝑤=100 for L/D=60 

 

 

 

As seen from Fig. 5, one observes that an increase in the material length scale parameter (D/l) 

results in a considerable decrease in the difference between the results of the MCST and CBT for 

different  ̅𝑤. With increase in the D/l, the number of displacements waves for both of CBT and 

MCST decrease significantly. Also, it is seen Fig. 5 that the displacements of the MCST and CBT 

interfere with each other in the higher value of the  ̅𝑤. It is shown results that the Winkler 

parameter is very effective for mechanical behavior of nanobeam and decreasing in the difference 

between the MCST and CBT. 

Fig. 6 show that the effect of the Pasternak foundation parameter ( ̅𝑝) on the maximum 

transverse displacements for different the material length scale parameter for  ̅𝑤 = 80. 
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Fig. 5 Effect of Winkler parameter on the transverse displacements for CBT and MCST for different the 

D/l ratios; (a)  ̅𝑤=0 for D/l=2, (b)  ̅𝑤=100 for D/l=2, (c)  ̅𝑤=0 for D/l=5, (d)  ̅𝑤=100 for D/l=5, (e) 

 ̅𝑤=0 for D/l=10 and (f)  ̅𝑤=100 for D/l=10 

 

 

 

As seen from Fig. 6, with increase in the Pasternak parameter, the differences between results 

of CBT and MCST decrease significantly. Also, the number of displacement waves decrease with 

increase in the Pasternak parameter. It can be found Figs. 4-6 that the effect of the Winkler 

parameter more effective than that of the Pasternak parameter. In small values of the foundation 

parameter, the difference between results of the MCST and CBT is quite noticeable. As seen from 

figures that increase in the L/D and D/l, the effect of the foundation parameter on the dynamic 

responses decrease, considerably. 
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Fig. 6 Effect of Pasternak parameter on the transverse displacements for CBT and MCST for different the 

D/l ratios; (a)  ̅𝑝=0 for D/l=2, (b)  ̅𝑝=20 for D/l=2, (c)  ̅𝑝=0 for D/l=5, (d)  ̅𝑝=20 for D/l=5, (e)  ̅𝑝=0 

for D/l=10 and (f)  ̅𝑝=20 for D/l=10 

 

 

 

In order to investigate the difference between results of Euler-Bernoulli beam theory (EBT) and 

Timoshenko beam theory (TBT) the maximum transverse displacements of the nanobeam 

presented for different aspect ratios (L/D) in both CBT and MCST in Figs. 7 and 8, respectively 

for  ̅𝑤 = 0,  ̅𝑝 = 0, D/l=5. 

It is observed from Figs. 7 and 8 that, , with decrease in the ratio L/h, the difference between 

the results of Euler Bernoulli beam theory and Timoshenko beam theory coincide with each other 

in both MCST for CBT. the difference between the results of Euler-Bernoulli beam theory and 

Timoshenko beam theory increases considerably with decreases in the slenderness ratio. Therefore, 

for small slenderness of beam, Timoshenko beam theory must be used instead of Euler-Bernoulli 

beam theory because of the effect of the shear stresses on the deformation. 
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Fig. 7 Effect of aspect ratio on the transverse displacements for CBT for EBT and TBT; (a) L/D=6, (b) 

L/D=10 and (c) L/D=20 

 

 

 

 

Fig. 8 Effect of aspect ratio on the transverse displacements for MCST for EBT and TBT; (a) L/D=6, (b) 

L/D=10 and (c) L/D=20 
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4. Conclusions 

  

Based on the MSCT, the forced vibration behavior of a simple supported viscoelastic 

nanobeam resting on Winkler-Pasternak elastic foundation is studied with Timoshenko beam 

theory by using finite element method. The damping effect is considered by using the Kelvin–

Voigt viscoelastic model. The obtained system of differential equations is reduced to a linear 

algebraic equation system and solved in the time domain by using Newmark average acceleration 

method. Numerical results are presented to investigate the influences the material length scale 

parameter, aspect ratio, and the foundation parameters on the forced vibration behavior of 

viscoelastic nanobeams. The difference between the classical beam theory and modified couple 

stress theory is investigated for forced vibration of viscoelastic nanobeams.  

From these results presented and discussed, the main conclusions are as follows: 

 

 The aspect ratio and material parameter have a very important role on the forced vibration 

responses of the nanobeams. 

 The Winkler and Pasternak foundation parameters are very effective for the dynamic 

response of the nanobeam. 

 With increase in the aspect ratio and the dimensionless material length scale parameter, the 

difference between the dynamic responses of CBT and MCST decrease considerably.  

 For high values of the aspect ratio and the dimensionless material length scale parameter, 

the displacement waves of CBT and MCST interfere with each other. 

 The number of displacement waves for both of CBT and MCST decrease with increase in 

the aspect ratio and the dimensionless material length scale parameter. 

 For the smaller ratio of L/D, the MCST must be used instead of the CBT. 

 Increases with the stiffness parameter of the Winkler and Pasternak foundation, the 

differences between results of CBT and MCST decrease significantly.  

 The Winkler parameter more effective than that of the Pasternak parameter in the dynamic 

responses of the nanobeams. 

 
 

References 
 

Aissani, K., Bouiadjra, M.C, Ahouel, M. and Tounsi, A. (2015), “A new nonlocal hyperbolic shear 

deformation theory for nanobeams embedded in an elastic medium”, Struct. Eng. Mech., 55(4), 743-764. 

Afkhami, Z. and Farid, M. (2014), “Thermo-mechanical vibration and instability of carbon nanocones 

conveying fluid using nonlocal Timoshenko beam model”, J. Vib. Control, Doi: 

10.1177/1077546314534715. 

Ahouel, M., Houari, M.S.A.E.A., Bedia, A. and Tounsi, A. (2016), “Size-dependent mechanical behavior of 

functionally graded trigonometric shear deformable nanobeams including neutral surface position 

concept”, Steel Compos. Struct., 20(5), 963-981. 

Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), “Size dependent bending and vibration analysis 

of functionally graded micro beams based on modified couple stress theory and neutral surface position”, 

Compos. Struct., 125, 621630. 

Akbaş, Ş.D. (2016), “Analytical solutions for static bending of edge cracked micro beams”, Struct. Eng. 

Mech., 59(3), 579-599. 

Akgöz, B. and Civalek, Ö. (2012a), “Analysis of microtubules based on strain gradient elasticity 

and modified couple stress theories”, Adv. Vib. Eng., 11(4), 385-400. 

1140



 

 

 

 

 

 

Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium 

 

Akgöz, B. and Civalek, Ö. (2013), “Buckling analysis of linearly tapered micro-Columns based on strain 

gradient elasticity”, Struct. Eng. Mech., 48(2), 195-205. 

Akgöz, B. and Civalek, Ö . (2014a), “Thermo-mechanical buckling behavior of functionally graded 

microbeams embedded in elastic medium”, Int. J. Eng. Sci., 85, 90-104. 

Akgöz, B. and Civalek, Ö. (2014b), “Longitudinal vibration analysis for microbars based on strain gradient 

elasticity theory”, J. Vib.Control, 20(4), 606-616. 

Akgöz, B. and Civalek, Ö . (2014c), “Shear deformation beam models for functionally graded microbeams 

with new shear correction factors”, Compos. Struct., 112, 214-225. 

Akgöz, B. and Civalek, Ö . (2015a), “A novel microstructuredependent shear deformable beam model”, Int. J. 

Mech. Sci., 99, 10-20. 

Akgöz, B. and Civalek, Ö . (2015b), “Bending analysis of FG microbeams resting on Winkler elastic 

foundation via strain gradient elasticity”, Compos. Struct., 134, 294-301. 

Akgöz, B. and Civalek, Ö . (2016), “Bending analysis of embedded carbon nanotubes resting on an elastic 

foundation using strain gradient theory”, Acta Astronautica, 119, 1-12. 

Ansari, R, Gholami, R. and Darabi, M.A. (2012a), “A nonlinear Timoshenko beam formulation based on 

strain gradient theory”, J. Mech. Mater. Struct., 7(2), 95-211. 

Ansari, R., Gholami, R and Rouhi, H (2012b), “Various gradient elasticity theories in predicting vibrational 

response of single-walled carbon nanotubes with arbitrary boundary conditions”, J. Vib. Control, 19(5), 

708-719 

Ansari, R., Ashrafi, M.A. and Arjangpay, A. (2015), “An exact solution for vibrations of postbuckled 

microscale beams based on the modified couple stress theory”, Appl. Math. Model., 39(10-11), 

3050-3062. 

Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H. and Rahaeifard M. (2010), “On the size dependent 

behavior of functionally graded micro-beams”, Mater. Design, 31, 2324-3249. 

Bahraini, M.S., Eghtesad, M., Farid, M. and Ghavanloo, E. (2014), “Analysis of an electrically actuated 

fractional model of viscoelastic microbeams”, Struct. Eng. Mech., 55(4), 743-763. 

Bağdatlı, S.M. (2015), “Non-linear transverse vibrations of tensioned nanobeams using nonlocal theory”, 

Struct. Eng. Mech., 55(2), 281-298. 

Bayat, M.I., Pakar, I. and Emadi, A. (2013), “Vibration of electrostatically actuated microbeam by means of 

homotopy perturbation method”, Struct. Eng. Mech., 48(6), 823-831. 

Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014), “Chirality and scale effects on mechanical 

buckling properties of zigzag doublewalled carbon nanotubes”, Compos. Part B, 57, 2124. 

Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A., Benzair, A. (2015), “Nonlinear vibration properties 

of a zigzag singlewalled carbon nanotube embedded in a polymer matrix”, Adv. Nano Res., 3(1), 2937. 

Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), “A nonlocal zerothorder Shear 

deformation theory for free vibration of functionally graded nanoscale plates resting on elastic 

foundation”, Steel Compos. Struct., 20(2), 227-249. 

Broek, D. (1986), Elementary engineering fracture mechanics, Martinus Nijhoff Publishers, Dordrecht. 

Chakraborty, A., Mahapatra, D.R. and Gopalakrishnan, S. (2002), “Finite element analysis of free vibration 

and wave propagation in asymmetric composite beams with structural discontinuities”, Compos. Struct., 

55(1), 23-36  

Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Bég, O. and Mahmoud, S.R., (2015), “Bending 

and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including 

the thickness stretching effect”, Steel Compos. Struct., 18(2), 425-442.  

Dai, H.L., Wang, Y.K. and Wang, L. (2015), “Nonlinear dynamics of cantilevered microbeams based 

on modified couple stress theory”, Int. J. Eng. Sci., 94,103-112. 

Daneshmehr, A.R., Abadi, M.M. and Rajabpoor, A. (2013), “Thermal effect on static bending, vibration and 

buckling of reddy beam based on modified couple stress theory”, Appl. Mech. Mater., 332,331-338. 

Darijani, H. and Mohammadabadi, H. (2014), “A new deformation beam theory for static and dynamic 

analysis of microbeams”, Int. J. Mech. Sci., 89, 31-39. 

Ebrahimi, F. and Shafiei, N. (2016), “Application of Eringen's nonlocal elasticity theory for vibration 

1141

http://www.techno-press.org/?page=search2#1


 

 

 

 

 

 

Şeref D. Akbaş 

 

analysis of rotating functionally graded nanobeams”, Smart Struct. Syst., 17(5), 837-857. 

Eringen, AC (1972), Nonlocal polar elastic continua. Int. J. Eng. Sci., 10(1),1-16. 

Farokhi, H. and Ghayesh, M.H. (2015a), “Nonlinear size-dependent dynamics of microarches with modal 

interactions”, J. Vib. Control, Doi: 10.1177/1077546314565439. 

Farokhi, H. and Ghayesh, M.H. (2015b), “Thermo-mechanical dynamics of perfect and imperfect 

Timoshenko microbeams”, Int. J. Eng. Sci., 91, 12-33. 

Fleck, N.A. and Hutchinson, J.W. (1993), “A phenomenological theory for strain gradient effects in 

plasticity”, J. Mech. Phys. Solids, 41, 1825-1857. 

Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013), “Three-dimensional nonlinear size-dependent 

behaviour of Timoshenko microbeams”, Int. J. Eng. Sci., 71, 1-14. 

Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M. and Ahmadian M.T. (2010), “Investigation of the size 

dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified 

couple stress theory”, Int. J. Eng. Sci., 48, 1985-1994. 

Kahrobaiyan, M.H., Asghari, M., Hoore, M. and Ahmadian, M.T. (2011), “Nonlinear size-dependent forced 

vibrational behavior of microbeams based on a non-classical continuum theory”, J. Vib. Control, 

Doi:10.1177/1077546311414600. 

Ke, L.L., Wang, Y.S. and Wang, Z.D. (2011), “Thermal effect on free vibration and buckling of 

size-dependent microbeams”, Physica E: Low-Dimensional Systems and Nanostructures, 43(7), 

1387-1393. 

Kocatürk, T. and Akbaş, Ş.D., (2013), “Wave propagation in a microbeam based on the modified couple 

stress theory”, Struct. Eng. Mech., 46, 417-431. 

Kong, S.L., Zhou, S., Nie, Z. and Wang, K. (2008), “The size-dependent natural frequency of Bernoulli–

Euler micro-beams”, Int. J. Eng. Sci., 46, 427-437. 

Kong, S.L. (2013), “Size effect on natural frequency of cantilever micro-beams based on 

a modified couple stress theory”, Adv. Mater.Res., 694-697, 221-224. 

Kural, S. and Erdogan, O. (2015), “Size-dependent vibrations of a micro beam conveying fluid and resting 

on an elastic foundation”, J. Vib. Control, Doi: 10.1177/1077546315589666. 

Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), “Experiments and theory in strain 

gradient elasticity”, J. Mech. Phys. Solids, 51(8), 1477-1508. 

Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), “A microstructure-dependent Timoshenko beam model based 

on a modified couple stress theory”, J. Mech. Phys. Solids, 56, 3379-3391. 

Mohammadimehr, M., Mohandes, M. and Moradi, M. (2014), “Size dependent effect on the buckling and 

vibration analysis of double-bonded nanocomposite piezoelectric plate reinforced by boron nitride 

nanotube based on modified couple stress theory”, J. Vib. Control., Doi: 10.1177/1077546314544513. 

Mindlin, R.D. and Tiersten, H.F. (1962), “Effects of couple-stresses in linear elasticity”, Arch. Ration Mech. 

Anal., 11,415-448. 

Mindlin, R.D. (1963), Influence of couple-stresses on stress concentrations”, Exp. Mech., 3, 1-7.  

Movahedian, B. (2012), “Dynamic stiffness matrix method for axially moving micro-beam”, Iteraction 

Multis. Mech., 5(4), 385-397.  

Newmark, N.M. (1959), “A method of computation for structural dynamics”, Eng. Mech. Div. – ASCE, 85, 

67-94. 

Park, S.K. and Gao, X.L. (2006), “Bernoulli–Euler beam model based on a modified couple stress theory”, J. 

Micromech. Microeng., 16,2355-2359. 

Pei, J., Tian, F. and Thundat, T. (2004), “Glucose biosensor based on the microcantilever”, Anal. Chemistry, 

76, 292-297. 

Rezazadeh, G., Tahmasebi, A. and Zubtsov, M. (2006), “Application of piezoelectric layers in electrostatic 

MEM actuators: controlling of pull-in voltage”, J. Microsyst. Technol., 12, 1163-1170. 

Sedighi, H.M., Changizian, M. and Noghrehabadi, A. (2014), “Dynamic pull-in instability of geometrically 

nonlinear actuated micro-beams based on the modified couple stress theory”, Latin Am. J. Solids Struct., 

11(5), 810-825. 

Senturia, S.D. (1998), “CAD challenges for microsensors, microactuators, and microsystems”, Proceeding 

1142

http://www.techno-press.org/?page=search2#1


 

 

 

 

 

 

Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium 

 

of IEEE 86,1611-1626. 

Shafiei, N., Mousavi, A. and Ghadiri, M. (2016), “Vibration behavior of a rotating nonuniform FG 

microbeam based on the modified couple stress theory and GDQEM”, Compos. Struct., 149, 157-169. 

Şimşek, M. (2010), “Dynamic analysis of an embedded microbeam carrying a moving microparticle based 

on the modified couple stress theory”, Int. J. Eng. Sci., 48, 1721-1732. 

Şimşek, M., Kocatürk, T. and Akbaş, Ş.D. (2013), “Static bending of a functionally graded microscale 

Timoshenko beam based on the modified couple stress theory”, Compos. Struct., 95,740-747. 

Şimşek, M. and Reddy, J.N. (2013), “A unified higher order beam theory for buckling of a functionally 

graded microbeam embedded in elastic medium using modified couple stress theory”, Compos. 

Struct., 101, 47-58. 

Tang, M., Ni, Q., Wang, L., Luo, Y. and Wang, Y. (2014), “Size-dependent vibration analysis of a microbeam 

in flow based on modified couple stress theory”, Int. J. Eng. Sci., 85, 20-30. 

Tada, H., Paris, P.C. and Irwin, G.R. (1985), The Stress Analysis of Cracks Handbook, Paris Production 

Incorporated and Del Research Corporation.  

Tounsi, A, Benguediab, S., Adda Bedia, E.A., Semmah, A., Zidour, M. (2013), “Nonlocal effects on thermal 

buckling properties of doublewalled carbon nanotubes”, Adv. Nano Res., 1(1), 1-11. 

Toupin, R.A. (1962), “Elastic materials with couple stresses”, Arch. Ration Mech. Anal., 11,385-414. 

Xia, W., Wang, L. and Yin, L. (2010), “Nonlinear non-classical microscale beams: static, bending, 

postbuckling and free vibration”, Int. J. Eng. Sci., 48, 2044-2053. 

Wang, L. (2010), “Size-dependent vibration characteristics of fluid-conveying Microtubes”, J. Fluids Struct., 

26, 675–684. 

Wang, L., Xu, Y.Y. and Ni, Q. (2013), “Size-dependent vibration analysis of three-dimensional cylindrical 

microbeams based on modified couple stress theory: A unified treatment”, Int. J. Eng. Sci., 68, 1-10.   

Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), “Couple stress based strain gradient theory for 

elasticity”, Int. J. Solids Struct., 39(10), 2731-2743. 

Zamanian, M., Rezaei, H., Hadilu, M. and Hosseini, S.A.A. (2015), “A comprehensive analysis on the 

discretization method of the equation of motion in piezoelectrically actuated microbeams”, Smart Struct.  

Syst., 16(5), 891-918. 

Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), “A mechanical response of functionally 

graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory”, 

Struct. Eng. Mech., 54(4), 693710. 

Zook, J.D., Burns, D.W., Guckel, H., Smegowsky, J.J., Englestad, R.L. and Feng, Z. (1992), “Characteristics 

of polysilicon resonant microbeams”, Sensors and Actuators, 35, 31-59. 

 

 

CY 
 

1143

http://www.techno-press.org/?page=search2#1
http://www.techno-press.org/?page=search2#1



