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Abstract. Forced vibration analysis of a simple supported viscoelastic nanobeam is studied based on
modified couple stress theory (MCST). The nanocbeam is excited by a transverse triangular force impulse
modulated by a harmonic motion. The elastic medium is considered as Winkler-Pasternak elastic
foundation.The damping effect is considered by using the Kelvin—Voigt viscoelastic model. The inclusion of
an additional material parameter enables the new beam model to capture the size effect. The new
non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero.
The considered problem is investigated within the Timoshenko beam theory by using finite element method.
The effects of the transverse shear deformation and rotary inertia are included according to the Timoshenko
beam theory. The obtained system of differential equations is reduced to a linear algebraic equation system
and solved in the time domain by using Newmark average acceleration method. Numerical results are
presented to investigate the influences the material length scale parameter, the parameter of the elastic
medium and aspect ratio on the dynamic response of the nanobeam. Also, the difference between the
classical beam theory (CBT) and modified couple stress theory is investigated for forced vibration responses
of nanobeams.
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1. Introduction

With the great advances in technology in recent years, micro and nano structures have found
many applications. In these structures, micro beams and micro tubes are widely used in micro- and
nano electromechanical systems (MEMS and NEMS) such as sensors (Zook, Burns et al. 1992,
Pei, Tian et al. 2004), microactuators (Senturia 1998, Rezazadeh, Tahmasebi et al. 2006), atomic
force microscopes, micro-resonators. In investigation of micro and nano structures, the classical
continuum mechanics which is scale independent theories, are not capable of explanation of the
size-dependent behaviors. Nonclassical continuum theories such as higher order gradient theories
and the couple stress theory are capable of explanation of the size dependent behaviors which
occur in micro-scale structures.

At the present time, the experimental investigations of the micro materials are still a challenge
because of difficulties confronted in the micro scale. Therefore, mechanical theories and atomistic
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simulations have been used for micro structural analysis. The process of the atomistic simulations
is very difficult and takes much time. So, continuum theory is the most preferred method for the
analysis of the micro and nano structures. Classical continuum mechanics does not contain the size
effect, because of its scale-free character. The nonlocal continuum theory initiated by Eringen
(1972) which has been widely used to mechanical behavior of nano-micro structures.

The size effect plays an important role on the mechanical behavior of microstructures at the
micrometer scale that the classic theory has failed to consider when the size reduces from macro to
nano (Toupin 1962, Mindlin 1962, Mindlin 1963, Fleck and Hutchinson 1993, Yang, Chong et al.
2002, Lam, Yang et al. 2003). Therefore, higher-order theories modified couple stress theory and
modified strain gradient are used in the mechanical model of the nano-micro structures (Yang,
Chong et al. 2002, Lam, Yang et al. 2003).

The determination of the micro-structural material length scale parameters is very difficult
experimentally. So, Yang, Chong et al. (2002) proposed the modified couple stress theory (MCST)
in which the strain energy has been shown to be a quadratic function of the strain tensor and the
symmetric part of the curvature tensor, and only one length scale parameter is included. After this,
the modified couple stress and the strain gradient elasticity theories have been widely applied to
static and dynamic analysis of beams (Park and Gao 2006, Ma et al. 2008, Kong et al. 2008,
Asghari, Ahmadian et al. 2010, Wang 2010, Simgek 2010, Kahrobaiyan et al. 2010, Xia et al. 2010,
Ke, Wang et al. 2011, Kahrobaiyan, Asghari et al. 2011, Akgdz and Civalek 2012a, 2014a, b, 2016,
Movahedian 2012, Ansari, Ahmadian et al. 2012a,b, Simsek, Kocatirk et al. 2013, Wang, Xu et al.
2013, Kocatiirk and Akbas 2013, Tounsi, Benguediab et al. 2013, Kong 2013, Ghayesh, Amabili et
al. 2013, Daneshmehr, Abadi et al. 2013, Akgo6z and Civalek 2013, Simsek and Reddy 2013, Bayat,
Pakar et al. 2013, Bahraini, Eghtesad et al. 2014, Afkhami and Farid 2014, Besseghier, Heireche et
al. 2015, Benguediab, Tounsi et al. 2014, Mohammadimehr, Mohandes et al. 2014).

More recently, Darijani and Mohammadabadi (2014) proposed a new deformation beam
theory for static and dynamic analysis of microbeams which includes unknown functions takes
into account shear deformation and satisfies both of shear and couple-free conditions on the upper
and lower surfaces of the beam based on a modified couple stress theory. Tang, Ni et al. (2014)
analyzed a theoretical model for flexural vibrations of microbeams in flow with clamped-clamped
ends based on a modified couple stress theory. Sedighi, Changizian et al. (2014) investigated the
dynamic pull-in instability of vibrating micro-beams undergoing large deflection under
electrostatically actuation. Faraokhi and Ghayesh (2015) studied the three-dimensional motion
characteristics of perfect and imperfect Timoshenko microbeams under mechanical and thermal
forces based on the modified couple stress theory. Kural and O zkaya (2015) studied the vibration
of a micro beam with conveying fluid and resting on an elastic foundation. Farokhi and Ghayesh
(2015a) investigated the three-dimensional motion characteristics
of perfect and imperfect Timoshenko microbeams under mechanical and thermal forces. Ansari,
Ashrafi et al. (2015) studied an exact solution of vibrations of postbuckled
microscale beams based on the modified couple stress theory. Al-Basyouni, Tounsi et al. (2015)
studied bending and dynamic behaviors of functionally graded micro beams with a novel unified
beam formulation and a MCST. Zamanian, Rezaei et al. (2015) investigated the mechanics
behavior of piezoelectrically actuated microbeams on the discretization methods. Dai, Wang et al.
(2015) developed a new nonlinear theoretical model for cantilevered microbeams and explore the
nonlinear dynamics based on the modified couple stress theory, taking into account one single
material length scale parameter. Farokhi and Ghayesh (2015b) investigated the nonlinear dynamics
of microarches with internal modal interactions. Chaht, Kaci et al. (2015) studied bending and
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buckling of size-dependent functionally graded nanobeams including the thickness stretching
effect. The mechanical responses of microbeams studied within shear deformation and strain
gradient theories by Akgtz and Civalek (2014, 20153, b), Zemri, Houari et al. (2015), Bounouara,
Benrahou et al. (2016), Shafiei, Mousavi et al. (2016). Aissani, Bouiadjra et al. (2015) presented a
new nonlocal hyperbolic shear deformation beam theory for the static, buckling and vibration of
nanobeams embedded in an elastic medium. Bagdatli (2015) studied nonlinear transverse vibration
of tensioned Euler-Bernoulli nanobeams. Akbas (2016) studied the analytical solution of cracked
microbeams using MCST. Ahouel, Houari et al. (2016) investigated the bending, buckling, and
vibration of functionally graded nanobeams using the nonlocal differential constitutive relations of
Eringen. Ebrahimi and Shafiei (2016) investigated size dependent vibration of a rotating
functionally graded nanobeam with Timoshenko beam theory based on Eringen's nonlocal theory.

In this study, the forced vibration response of a simple supported nanobeam embedded in an
elastic medium is studied under the effect of a force impulse based on the MCST theory within the
Timoshenko beam theory by using finite element method. The effects of the transverse shear
deformation and rotary inertia are included according to the Timoshenko beam theory. The elastic
medium is considered as Winkler-Pasternak elastic foundation. The Kelvin—\Voigt viscoelastic
model is used for the material of the nanobeam. In the dynamic solution of the problem, the
Newmark average acceleration method is used. The effect of the material length scale parameter,
the parameter of the elastic medium and aspect ratio on the forced vibration responses of the
nanobeam are investigated in both the classical beam theory (CBT) and MCST.

2. Theory and formulations

Consider a simple supported circular nanobeam of length L, diameter D, as shown in Fig. 1.
The nanobeam is excited by a transverse triangular force (P) impulse modulated by a harmonic
motion at the midpoint of the beam and resting on Winkler-Pasternak foundation with spring
constant k,, and k;, as as seen from Fig. 1. When the Pasternak foundation spring constant k,=0, the
foundation model reduces to Winkler type.

77 7 7 7 /\&/ Ekp
Ky

. e
1 L 1

Fig. 1 A simple supported nanobeam resting on Winkler-Pasternak foundation subjected to a force impulse
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2.1 The modified couple stress theory

The modified couple stress theory was proposed by Yang, Chong et al. (2002). Based on this
theory, the strain energy density for a linear elastic material which is a function of both strain
tensor and curvature tensor is introduced for the modified couple stress theory

U= [, (e:e+m:x)adv (1)

where ¢ is the stress tensor, ¢ is the strain tensor, m is the deviatoric part of the couple stress tensor,
y is the symmetric curvature tensor, defined by

o = Atr(e)l + 2ue 2)
& = [Vu+ (Vu)'] (3)
m=20uy (4)

x =3[V6 + (V)] (5)

where 1 and ¢ are Lame’s constants, | is a material length scale parameter which is regarded as a
material property characterizing the effect of couple stress, u is the displacement vector and 6 is
the rotation vector, given by

0= %curl u (6)

The parameters 4 and u in the constitutive equation are given by

_ Ev _ E
= a2y ' * T aey

()

where E is the modulus of elasticity and v is the Poisson's ratio.
2.2 Governing equations of the problem

According to the coordinate system (X,Y,Z) shown in Fig. 1, based on Timoshenko beam theory,
the axial and the transverse displacement field are expressed as

ulX,Y,t) =uy(X,t) —Yo(X,t) (8)
v(X,Y,t) = vy(X,t) 9)
w(X,Y,t) =0 (10)

where u, v, w are X, y and z components of the displacements, respectively. @ is the total bending
rotation of the cross-sections at any point on the neutral axis. Also, up and vq are the axial and the
transverse displacements in the mid-plane, t indicates time.

Because the transversal surfaces of the beam is free of stress, then

Oyz = Oyy = 0 (11)
By using Egs. (3), (8) and (9) and strain- displacement relation can be obtained

e = du _ dup(X,t) Ya(z)(x,t)
XX T ax T ax ax

(12a)
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Exz =&, =0 (12b)
283y = Vay = z_z —0(x,t) (12c)

By using Egs. (6), (8), (9) and (10),
6,=3(EE0 4 o(x,1)), 6,=0,=0 (13)

Substituting Eq, (13) into Eg. (5), the curvature tensor y can be obtained as follows

1 (3%v(Xx,t)  00(Xt)
Z( axz T ox )’

Xxz = Xox = Xy = Xyy = Xyz = Xzz = 0 (14)

In the damping effect, the Kelvin—Voigt viscoelastic model is used for the material. The
constitutive relations for the Kelvin— Voigt viscoelastic model between the stresses and strains
become

Oxx = E(Sxx + nl‘éxx) (153)
Oxy = ks M(ny + 772)7xy) (15b)
m = 2020 (x + 13%) (150)

where E, Oyx, Exx, Oxys Vys M, X 5 Exxr Vay aNd ) indicate Young’s modulus, normal stresses,
normal strains in the X direction, shear stresses, shear strains, the couple stress tensor, the
symmetric curvature tensor, the time derivatives of the normal strains, time derivatives of the shear
strains and the time derivatives of the curvature tensor, respectively. u is shear modulus which is
defined by Eq. (7). Also, 71, n,and #zindicate the damping ratios of the viscoelastic nanobeam in
bending, shearing and couple stress, respectively, as follows

c

Th=£, TI2=£' 773=ﬁ (16)

where c is the damping coefficient.
Substituting Egs. (14) and (12) into Eq. (15), the stresses can be obtained as follows

_ duo(X,t) ., 88(x,t) B (dup(X,D)  , 9(x,t)
Oxx = E (( ax Y X ) tm at( ax Y ax )) (17a)
a a (0
Oy = ks 1 (32— 00, 0) + 2 57 (- 01, 0)) (17b)
_ 1, 2%v(x,t)  9p(X,t) a9 2%v(X,t) . 09(X,t)
Mz =310 <( axz T ox )+ 3 at( axz T ox )) (17c)
Myy = Myy = Myy, =My, =My, =0 (17d)

when the total bending rotation is @ = a"/ax, the beam model reduces to Euler-Bernoulli beam

model.
Based on Timoshenko beam theory, the elastic strain energy (U;) of the nanobeam is expressed
as

L
Up =31y Jy (03 &) + myj xij) dA dX (18)
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By substituting Egs. (12), (14) and (17) into Eq. (18), elastic strain energy (U;) can be rewritten
as follows

0= 036 (B2 51 (22 (2 0+ (25224 220

D, ]dx (19)

e (X, )2 + ey ()

where A is the area of the cross section, and | is the moment of inertia.
The kinetic energy (T) of the nanobeam is expressed as follows

Pt o [ @) ¢ () anar @

By substituting Egs. (8), (9) and (10) into Eq. (20), the kinetic energy (T) can be rewritten as
follows

Tk [ (Ge) +oa () +o (5) ] x “

where p is the mass density of the nanobeam.
The dissipation function of the nanobeam at any instant t is

9 20 o - 2 socx
R—-f [1EA uo(;(f)) mEl( (xt)) nsz‘uA(i—@(x)t)) +n3%l2uA( YD

ax2
2
D (X,t)
) ] ax (22)
where "." indicates the time derivative. The potential energy of the external load can be written as
Ue = — fOL[P(x, t) U(X, t)] dX (23)

The Lagrangian functional of the problem is given as follows
[=T—- U+ Uy) (24)

Total nodal displacements q which is written for a two-node beam element, each node has three
degrees of freedom, shown in Fig. 2 are defined as follows

@@l = [u@®. v, 0,1 ®), v @), 8{ () ]T (25)

V. V.

@i (TJ Qj} ‘{F’
U. : Hlfj
I 1 J

Fig. 2 A two-node finite element
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The displacement field of the finite element is expressed in terms of nodal displacements as
follows

u@ X, 1) = {0 1 (&) + % (X) (1)

= [o®]{ 3} = [0t (26)
v, 0 = @ X) (1) + 03”0 0i(8) + 957 (X) 1) + 9 () 95(1)
Vi
0,
[0™]1 v p = [V Haly @7)
9;
PO X, 1) = 02 () 1:(6) + 0 (X) Bi() + 9L (0 v;(0) + 9P (X0 9, (1)
(&)
[0®] i vj} = [0@{a}o (28)
9;

where u;, v; and @; are axial displacements, transverse displacements and rotations at the two end
nodes of the beam element, respectively. <p§”>, cp(V) and cpw) are shape functions for axial,

i i

transverse and rotation degrees of freedom, respectively, and are given as Chakraborty, Mahapatra

et al. (2002).
The shape functions for axial degrees of freedom are
PO = [p ) ¢ x| (29)
where
000 =(-£+1) (302)
03”0 = (7 (30b)
The shape functions for transverse degrees of freedom are
pVX = [p" X 9P ¢ ® o )| (31)
where
A
X = <1 " ) (3522) * LZ((‘:Z/E?)) (322)
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W) o (6+4213)x  (e+252002)x%  La/Ei B (6Le+5113) \ L4

92 (X) = <(12+—L2) Le(12+4212) = (17 o(12+4512) X (32b)

W)y — 12X 3(5D)X* aquasEnx
3 (X) = <L (12+8212) * (12482512)  Le(12+5513) (32¢)

o) _ex (Ha-e)x®  quasenx
X) = ( (12+—L2) (12+8512) + (12+—L2)> (32d)

The shape functions for rotation degrees of freedom are

T

9@ = [0 o0 (0 PP ] (33)
where
@ o _ [ 6(MA/EDX | 6(RA/EDX?
o &) _< (12442 L2)+Le(12+ L2)> (342)
() _ _ (ZML2+6)X GA/EI _ (6Le+ L3) 2
b2 (X)_<1 Le(12+—L2)+ 2 (1 Le(12+52 LZ) X (34b)
© yy _ (SEDx__ _s(E)x

3 (X) = ((12+—L2) Le(12+5212) (34c)

2@ %) = <_

where L. indicates the length of the finite beam element.
By substituting Egs. (26), (27) and (28) into Egs. (19), (21) and (22), energy functions can be
rewritten as follows

2(573-6)X | 3(uas/EnX?
L (12+—L2) + (12+—L2) (34d)

Ui =20y [EA {q}u) + EI( {q}qj) + kA ("";—ff) {akv - ¢(®){q}@)2 +
L2 (222 (q)y + 22 (q)) + kw(v(x,t)f+kw("”’f,§'”)2] dx (35)
=1 [ a(“’(u){q}”)) +pA (W)z 4 pl (%)2] dx (36)
R=3[; nlEA< (@)) +1 EI< (@)) + 1, ks,uA< (%)
(50 v (35500 + (52 )) | e

37)

After substituting Egs. (26), (27) and (28) into Eq. (24) and then using the Lagrange’s equations
gives the following equation
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ol 6 24 _
(6) ata (9) + QDk 0; k—l,2,3,4,5,6 (38)

where

dR
aq(e)

QDk = (39)

Qp, Is the generalized damping load which can be obtained from the dissipation function by

differentiating R with respect to q,(j’). Where q,(f) indicates the time derivatives of nodal
displacements g.

The Lagrange’s equations yield the system of equations of motion for the finite element and by
use of usual assemblage procedure the following system of equations of motion for the whole
system can be obtained as follows

[K1{q(®)} + [D{q (D)} + [M]{G()} = {F ()} (40)

where, [K] is the stiffness matrix, [D] is the damping matrix, [M] is mass matrix and {F(t)} is the
load vector.

The components of the stiffness matrix [K] :

The stiffness matrix [K] can be expressed as a sum of three submatrices as shown below

[K] = [Kp] + [Ky] + [Kp] (41)
where
kY] o 0

K1=| 0 [K] [K°] (42a)

o [k [K7]
kY] = Sl pa2el] [ (42b)

1= e 25 [

V] — Le 6¢(V) 2™ 1 2 az(p(V) 820

(V] = fye (kouA [22—] [2e-]+ 22ua [0 [E5] ) ax (42¢)
)= 8T = Sy (s 5] L@+ B[] o] )ax )
[Kf] =, <(EI +112u4) [aj—f)]T [ajf)] + kSuA[(p(m)]T[(p(w)]) dx (42¢)
= [ ky [0V] [90]ax (42f)
[ ]_fLek [6(p(V)] [aq,(V)]d (429)

where L. indicates the length of the finite beam element. The components of the mass matrix [M]
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[MY] 0 0
MI=| 0 [MY] O (43)
0 0 [M7]
where [My], [My]and [My] are the contribution of u, v and @ degree of freedom to the mass
matrix. Explicit forms of [M] are given as follows

= [ pA[p®] [p®]dx (442)
= fy=pa[e"]" [p®]dx (44b)
= [2pl [p@] [p@]dx (440)
The components of the damping matrix [D]

[DY] 0 0
[p1=| 0o [pY] [D"’] (45)

o [p%] [p%]

where

[DV] = [ nlEA[q)( )] [‘g;u)]dx (462)
R e R o o N | E O

2,77
049) = 071" = 3= (~maksua 5] (0@ + s[5 2] )ax oo

[D°] = fOLe <(;71EI+ 773%12#1) [ag_f)] [aqo(w)] + 1k uA[ @] [(p(‘f’)])dX (46d)

The load vector {F(t)} is expressed as

(FO)} = 2l F(X,t) dX (47)
The dimensionless quantities can be expressed as

T kwl* 7 kpl?®

kw === kp = — (48)

where k,, is the dimensionless value of Winkler parameter and k,, is the dimensionless value of
Pasternak parameter.

3. Results and discussions

In this section, various numerical examples are presented and discussed to investigate the
forced vibration responses of viscoelastic nanobeam resting on Winkler-Pasternak foundation. In
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order to determine the effects of the foundation parameters, material length scale parameters and
different dimensions of the beam on the forced vibration responses of the nanobeam, result are

obtained in conjunctions with the MCST and the CBT. The nanobeam is taken to be made of
epoxy (E=1,44 GPa, v=0.38, [= 17.6um, p= 1600%, c=14.4Pa/s ). The shear
correction factor is taken as kg = 0.8922. In the numerical calculations, the number of finite
elements is taken as n=300. In the numerical integrations, five-point Gauss integration rule is
used.

Numerical calculations in the time domain are made by using Newmark average acceleration
method. The system of linear differential equations which are given by Eq. (40), is reduced to a
linear algebraic system of equations by using average acceleration method. The beam is excited by
a transverse triangular force impulse (with a peak value 1 pN) modulated by a harmonic function
(Fig. 3).

In order to investigate the effect of Winkler parameter on the dynamic responses of the
nanobeam in both MCST and CBT, the maximum transverse displacements of the nanobeam
obtained for different aspect ratios (L/D) and the material length scale parameter (D/I) in Figs. 4
and 5, respectively for Ep =0.

As seen from Fig. 4, the displacement waves which appear after the time interval of the applied
impulse force are the excitation wave and primary waves (reflecting waves from the supports of
the nanobeam). Also, it is seen Fig. 6 that the displacement waves gradually disappear with
increase in time because of the damping effect. It is seen from Fig. 4 that with increase in the
aspect ratio, the difference between the results of CBT and MCST decrease considerably. For high
values of the aspect ratio, the displacement waves of CBT and MCST interfere with each other.
The number of waves for both of CBT and MCST decrease with increase in the aspect ratio. It is
observed from Fig. 4 that for the smaller value of aspect ratio, MCST must be used instead of CBT.
Also, with increasing the Winkler parameter k,,, the transverse displacements are decreases, as
expected. Increases with the dimensionless stiffness parameter of the Winkler foundation, the
differences between results of CBT and MCST decrease significantly. For the smaller ratio of L/D,
the MCST must be used instead of the CBT.

F (1N)

1 T

a)

0.5 b)
-0.5

- H | ! | 0 400 800 1200 1600

002040608 1 121416 18 2_3 Frequency [KH:Z]
Time (s) x10

Fig. 3 The shape of the excitation impulse in the (a) time domain and (b) frequency domain
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Fig. 4 Effect of Winkler parameter on the transverse displacements for CBT and MCST for different the
aspect ratios; (a) k,,=0 for L/D=15, (b) k,,=100 for L/D=15, (c) k,,=0 for L/D=30, (d) k,,=100 for
L/D=30, (e) k,,=0 for L/D=60 and (f) k,,=100 for L/D=60

As seen from Fig. 5, one observes that an increase in the material length scale parameter (D/I)
results in a considerable decrease in the difference between the results of the MCST and CBT for
different EW. With increase in the D/I, the number of displacements waves for both of CBT and
MCST decrease significantly. Also, it is seen Fig. 5 that the displacements of the MCST and CBT
interfere with each other in the higher value of the k. It is shown results that the Winkler
parameter is very effective for mechanical behavior of hanobeam and decreasing in the difference
between the MCST and CBT.

Fig. 6 show that the effect of the Pasternak foundation parameter (Ep) on the maximum

transverse displacements for different the material length scale parameter for k,, = 80.
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Fig. 5 Effect of Winkler parameter on the transverse displacements for CBT and MCST for different the
DII ratios; (a) k,,=0 for D/I=2, (b) k,,=100 for D/I=2, (c) k,,=0 for D/I=5, (d) k,,=100 for D/I=5, (e)
k,,=0 for D/I=10 and (f) k,,=100 for D/I=10

As seen from Fig. 6, with increase in the Pasternak parameter, the differences between results
of CBT and MCST decrease significantly. Also, the number of displacement waves decrease with
increase in the Pasternak parameter. It can be found Figs. 4-6 that the effect of the Winkler
parameter more effective than that of the Pasternak parameter. In small values of the foundation
parameter, the difference between results of the MCST and CBT is quite noticeable. As seen from
figures that increase in the L/D and D/, the effect of the foundation parameter on the dynamic
responses decrease, considerably.
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Fig. 6 Effect of Pasternak parameter on the transverse displacements for CBT and MCST for different the
D/l ratios; (a) k,=0 for D/I=2, (b) k,=20 for D/I=2, (c) k,=0 for D/I=5, (d) k,=20 for D/I=5, (e) k,=0
for D/I=10 and (f) k,=20 for D/I=10

In order to investigate the difference between results of Euler-Bernoulli beam theory (EBT) and
Timoshenko beam theory (TBT) the maximum transverse displacements of the nanobeam
presented for different aspect ratios (L/D) in both CBT and MCST in Figs. 7 and 8, respectively
for k,, =0, k, = 0, D/I=5.

It is observed from Figs. 7 and 8 that, , with decrease in the ratio L/h, the difference between
the results of Euler Bernoulli beam theory and Timoshenko beam theory coincide with each other
in both MCST for CBT. the difference between the results of Euler-Bernoulli beam theory and
Timoshenko beam theory increases considerably with decreases in the slenderness ratio. Therefore,
for small slenderness of beam, Timoshenko beam theory must be used instead of Euler-Bernoulli
beam theory because of the effect of the shear stresses on the deformation.
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4. Conclusions

Based on the MSCT, the forced vibration behavior of a simple supported viscoelastic
nanobeam resting on Winkler-Pasternak elastic foundation is studied with Timoshenko beam
theory by using finite element method. The damping effect is considered by using the Kelvin—
Voigt viscoelastic model. The obtained system of differential equations is reduced to a linear
algebraic equation system and solved in the time domain by using Newmark average acceleration
method. Numerical results are presented to investigate the influences the material length scale
parameter, aspect ratio, and the foundation parameters on the forced vibration behavior of
viscoelastic nanobeams. The difference between the classical beam theory and modified couple
stress theory is investigated for forced vibration of viscoelastic hanobeams.

From these results presented and discussed, the main conclusions are as follows:

e The aspect ratio and material parameter have a very important role on the forced vibration
responses of the nanobeams.

e The Winkler and Pasternak foundation parameters are very effective for the dynamic
response of the nanobeam.

e With increase in the aspect ratio and the dimensionless material length scale parameter, the
difference between the dynamic responses of CBT and MCST decrease considerably.

e For high values of the aspect ratio and the dimensionless material length scale parameter,
the displacement waves of CBT and MCST interfere with each other.

e The number of displacement waves for both of CBT and MCST decrease with increase in
the aspect ratio and the dimensionless material length scale parameter.

o For the smaller ratio of L/D, the MCST must be used instead of the CBT.

e Increases with the stiffness parameter of the Winkler and Pasternak foundation, the
differences between results of CBT and MCST decrease significantly.

e The Winkler parameter more effective than that of the Pasternak parameter in the dynamic
responses of the nanobeams.
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