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Abstract.  The reliability of a Bridge management System depends on the quality of visual inspection and 
the reliable estimation of bridge condition rating. However, the current practices of visual inspection have 
been identified with several limitations, such as: they are time-consuming, provide incomplete information, 
and their reliance on inspectors‟ experience. To overcome such limitations, this paper presents an approach 
of automating the prediction of condition rating for bridges based on digital image analysis. The proposed 
methodology encompasses image acquisition, development of 3D visualization model, image processing, 
and condition rating model. Under this method, scaling defect in concrete bridge components is considered 
as a candidate defect and the guidelines in the Ontario Structure Inspection Manual (OSIM) have been 
adopted for developing and testing the proposed method. The automated algorithms for scaling depth 
prediction and mapping of condition ratings are based on training of back propagation neural networks. The 
result of developed models showed better prediction capability of condition rating over the existing methods 
such as, Naïve Bayes Classifiers and Bagged Decision Tree. 
 

Keywords:  visual inspection; 3D visualization model; condition rating; neural networks; image analysis; 

depth perception; bridge defects 

 
 
1. Introduction 
 

Civil infrastructure systems around the world are deteriorating at an alarming rate because of 

increased traffic, aging, environmental changes, radiation, and structural damages. The 2013 report 

card for America‟s Infrastructures reveals that the average age of 607,380 American bridges is 42 

years; and about 11% of them are rated as structurally deficient (ASCE 2013).In Canada, more 

than 40% of the bridges currently in use were built over 50 years ago and are in need of immediate 

upgrade (Bisby and Briglio 2004). To ensure effective management of civil infrastructure, it is 

necessary to identify the critical structures, and evaluate their performance in order to verify that 

previously designed structures still satisfy the current code requirements. In general, the 

performance of a bridge is evaluated using two approaches. The first approach is based on 

reliability analysis of bridge structures considering the load and resistance models of 

infrastructures (Frangopol et al. 2008a, b, Ghodoosi et al. 2013). In recent years, the tracking of 
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real time performance of structures has been made possible by Structural Health Monitoring (SHM) 

systems using several types of sensors installed either on the surface or embedded inside bridge 

components (Humar et al. 2006, Lee et al. 2007, Bagchi et al. 2010). However, the application of 

SHM using various sensors can be expensive as compared to visual inspection (Orcesi and 

Frangopol (2010). On the other hand, the second approach of bridge performance evaluation is 

based on visual inspection which is one of the widely accepted methods adopted by government, 

as well as, by private agencies (AASHTO 2001, FHWA 2004). However, the performance 

evaluation based on visual inspections possesses several limitations, including them being 

time-consuming, providing incomplete information, and reliance on inspectors‟ experience (Moore 

et al. 2001).  

In order to enhance the reliability of visual inspection, several non-destructive tests based on 

remote sensing technologies have been studied in the literature (Yehia et al. 2007). A systematic 

study by Ahlborn et al. (2010) on the condition assessment of concrete bridge decks demonstrated 

that the three dimensional optical bridge evaluation techniques, the bridge viewer remote camera 

system, and the GigaPan techniques based on Street View-style photography are the best 

technologies for defect measurement during bridge inspections. In their work, Agisoft Photo Scan, 

which is a close range 3D photogrammetric commercial software program, was used to develop 

3D models with minimal digital photographic input. To ensure 60% overlap of photographs as 

required for image stitching, a truck was driven over the bridge deck at a speed of 1 mile per hour. 

Recently, Hinzen (2013) demonstrated that a systematic comparison of building damage 

evaluation is possible with Google street view data. The study showed that the Google street view 

resolution was sufficient to detect structural components damage, as well as defects like a crack as 

reported by the author. The above research shows the importance of digital image processing 

application for condition assessment of civil infrastructure. However, the application of digital 

image processing for automatic prediction of condition rating of structural components has not 

been studied earlier. 

Abudayyeh et al. (2004) developed an imaging data model for automation of bridge monitoring 

and inspection. The developed model was integrated with PONTIS to enhance the reliability of 

visual inspection. Although the imaging data model demonstrated the capability of producing 

inspection reports automatically based on the stored information, the process of assigning 

condition rating for the structural components was done manually by experts. The current paper 

proposes a scheme for automated prediction of condition rating for bridge elements using artificial 

neural networks based on digital image processing. To illustrate the process, scaling defect of 

concrete structures is considered here as a candidate defect. The guidelines for assigning condition 

rating are based on Ontario Structure Inspection Manual (OSIM 2008). However, other inspection 

guidelines can also be used in this process. 

 

 

2. Background 
 

In current practices, bridge conditions are mainly assessed by bridge inspectors through their 

visual observations of defects occurred on bridge components, such as columns, girders, and decks 

(Zhu et al. 2010). As discussed in the previous section, the reliability of the visual inspection 

method has been questioned in the literature, and several measures have been suggested to enhance 

it (Moore et al. 2001). For example, visual inspections are time-consuming, and observational 

results are heavily dependent on inspectors‟ personal experiences (FHWA1991). In order to 
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overcome such limitations, several attempts have been made toautomate visual inspection using 

computer vision techniques. One of such attempts is to automatically retrieve the three 

dimensional (3D) as-built/as-is bridge information, as well as quantification of defects using 

remote sensing techniques (Ahlborn et al. 2010, Zhu et al. 2010, and Adhikari et al. 2014). 

However, the application of digital image processing for developing defect quantification and 3D 

visualization models has several practical challenges.  

The application of remote sensing in civil engineering can be defined as deriving information 

about the characteristics of civil infrastructure without being in contact with them (Aronoff 2005). 

Although, image-based remote sensing can be carried out using any part of the light spectrum, the 

common form of light bands used for imaging of civil infrastructure includes visible and infrared 

light bands. The digital photography is limited to visible light bands occupying a small portion of 

light spectrum varying from 400 nanometers (nm) to 700 nm (Ahlborn et al. 2010). For detection 

and quantification of bridge defects, a number of remote sensing technologies need to be 

integrated. The commonly used non-destructive techniques for condition evaluation of concrete 

decks are visual inspection, liquid penetrant dye, chain drag, Half-cell potential, acoustic emission, 

ultrasonic pulse velocity, ground penetrating radar, impact echo, and IR thermography (Yehia et al. 

2007). Ground penetrating radar, impact echo, and IR thermography are found to be promising 

techniques for detection of internal defects in concrete bridge decks, while others could be suitable 

for detecting surface defects. Ahlborn et al. (2010) compared several remote sensing technologies 

for condition assessment of concrete bridge decks such as three dimensional optical bridge 

evaluation techniques, bridge viewer remote camera system, GigaPan, LIDAR, Thermal IR, 

Digital Image Correlation, Ground Penetrating radar, Remote Acoustics, and high resolution Street 

View-style digital photography. The study concluded that digital image based technologies are 

most suitable for quantification of defects because high resolution images of defects are possible to 

acquire using modern digital cameras. In a similar study, Hinzen (2013) demonstrated that a 

systematic comparison of building damage evaluation is possible with Google street view data. 

The study showed that the Google street view resolution was enough to detect structural 

components damage, as well as defects like a crack as reported by the author. 

Although the 3D as-built/as-is bridge information is useful, the retrieval of such information is 

quite challenging (Remondino and El-Hakim 2006). McRobbie et al. (2010) discussed the 

importance of 3D visualization model for automated process of condition assessment of bridge 

structures which can mimic the on-site visual inspection of civil infrastructure. They investigated 

several off-the-shelf 3D software tools, such as MeshLab, Rhino, True Space, and Phtosynth, and 

found that the existing tools could not fully support the automatic retrieval of 3D as-built/as-is 

bridge information. In the process of developing a 3D model, a lot of manual editing and 

correction works are required, which makes the overall information retrieval process 

labour-intensive and time-consuming (Zhu 2012). So far, the methods for the retrieval of 3D 

bridge information are broadly classified into two groups. The methods in the first group were 

built upon the 3D point clouds captured directly by terrestrial laser scanners. The laser Scanners 

could collect millions of 3D points with one scan in minutes, but they are typically heavy and not 

portable (Foltz 2000). In addition, the 3D points collected by the laser scanner only record the 

spatial information of the bridges. As a contrast, the methods in the second group relied on the 

digital images or videos taken by digital cameras or camcorders. The digital cameras or 

camcorders are easy to use and portable, but the 3D information has to be obtained indirectly from 

multiple images or video frame shots taken from different directions. Both groups of methods have 

pros and cons in sensing accuracy, resolution, cost, etc. (Zhu et al. 2010). For such reasons, 
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researchers have been investigating the possibility of integrating the point clouds and digital 

images to enhance the current information retrieval process (El-Omari and Moselhi 2008, Zhu 

2012). The importance of a 3D model also has been demonstrated by Hinzen et al. (2013) for 

comparing old excavation photographs with the currently obtained photographs in an 

archaeo-seismological study. For automatic integration of 3D point clouds and digital images, a 

preliminary study of 3D visualization model has been proposed for automatic condition 

assessment of civil structures (Adhikari et al. 2013). 

 

2.1 Current trends in 3D visualization and their limitations  
 

The Google Street view provides a continuous 360
o
 viewing environment for civil 

infrastructure. Recently, Hinzen (2013) has demonstrated the feasibility of damage detection and 

quantification based on Google Street View images. However, since the technology uses the 

instrumentation mounted on a vehicle which moves along a bridge, this approach may not be 

suitable for condition assessment for elements lying underside of the bridge. 

Since the imaging model is based on remote sensing technology, there is less disruption of 

traffic. By developing a technology which can be fixed with traffic moving at the same highway 

speed will maximize the benefit of such techniques. Digital image-based analysis of condition 

assessment of infrastructure provides low capital cost, rapid deployment, and useful metrics for the 

condition states (e.g., to compare condition at different instances of time, percentage area, volume, 

crack density, roughness index etc.). However, when the speed of data collection is low, there may 

be traffic disruption, and in that case, the requirement of high resolution images, field of view, and 

data processing time are the challenges that need to be improved further (Ahlborn et al. 2010, 

Hinzen 2013).  

It is unlikely that fine cracks can be detected with the available resolution in the Google Street 

View. However, the detection accuracy of cracks can be increased using high resolution digital 

cameras. Currently, there is not enough literature available on detection of fine cracks using such 

technology. The resolution available in Google Street view images is useful for condition 

evaluation of bridge deck surface considering spalling and scaling, map visible cracks, joint 

damage, and delaminations (Ahlborn et al. 2010). 

In order to improve the reliability of visual inspection, the developed methodology based on 

digital images needs to be integrated with existing bridge management system which is another 

challenge to be considered in developing an effective imaging model. In terms of cost, LiDAR 

scanners are the most expensive system for data acquisition and processing because they require 

digital camera, scanners, positioning system, computers, and software. Similarly, the data 

collection by digital cameras is much cheaper than GPR system (Ahlborn et al. 2010). Since each 

of the image based technologies has its own advantages and disadvantages, a proper combination 

of such technologies is required to provide better results.  

Often, the size of defect measured from its digital image is expressed in pixels, which needs to 

be converted to conventional units such as feet or millimeter. Several authors have used either 

artificial or natural scales in the image frame for obtaining the physical size of damage from a 

digital image (Ahlborn et al. 2010, Adhikari et al. 2014). While working with digital images, the 

following criteria need to be considered: a) color; b) the distance between camera and object which 

is called field of view shall be such that the minimum resolution in 1 pixel per mm;and c) lighting 

should be uniform to maintain images are consistent, and images shall be overlapped to ensure full 

coverage (McRobbie et al. 2008). Apart from the general conditions, they suggested that for 
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improve accuracy and avoidance of parallax and projection errors, an image of a defect should be 

acquired from an orthogonal line of view to the plane on which the defect lies (McRobbie et al. 

2008). 

 

2.2 Neural networks for mapping of condition rating 
 

Artificial neural networks (ANNs) are used for several purposes for developing data fitting 

regression models, as well as to solve classification problems where direct relations among input 

parameters do not exist. ANNs mimic the thought process of human brain by assigning weights to 

individual inputs attributes and output is mapped through a simple transfer functions (Liu 2001). 

Neural networks were used for automatic defects classification in sewer pipelines where digital 

images of sewer defects were used for extraction of geometric parameters (Moselhi and 

Shehab-Eldeen 2000), and the accuracy of their algorithm was reported to be 98.2%. In 

construction sites, neural networks were used to classify different objects segmented from video 

images for automated object identification (Chi and Caldas 2011). Khan et al. (2010) also used 

neural networks to analyze structural behavior of sewer pipes in terms of variation of condition 

ratings. The reported success rate of the developed model was 92.3%.The content based 

methodology was suggested for automatic identification of shapes, objects and materials assisting 

in construction and maintenance of projects (Brilakis et al. 2006, Ye et al. 2013). Also, decision 

processes regarding future conditions of an infrastructure depend on many variables. Such 

uncertainties in defects classification in sewer pipes were discussed using neuro-fuzzy networks 

(Sinha et al. 2003).  

One of the most relevant applications of neural networks was developed for predicting the 

fatigue life and failure of reinforcing bars in concrete elements. Abdalla and Hawileh (2013) tested 

15 specimens to measure fatigue failure of reinforcing bars and then neural networks were trained 

to predict failure patterns for the chosen samples. Also, researchers have used genetic algorithms 

for optimizing the solutions for structural design of bridge components (Krishnamoorthy 1999). 

The temporal change in the condition state of a bridge element is affected by the uncertainties 

in many key parameters, which presents a significant challenge in effective decision making 

process. Liu (2010) studied 69 collapsed bridges in the U.S. built after 1967 and the found that 

more than 50% bridges collapsed due to collisions and natural disasters. Such phenomenons are 

difficult to capture and incorporate into BMS to enhance the decision making process. Additionally, 

BMS do not consider environmental and geographical factors, material prices, and other design 

parameters which may lead to faulty prediction of bridge condition states (Liu and Frangopol 

2006). Such problems to some extent can be addressed by revising the inspection frequency based 

on a risk-based management strategy. However, bridge inspections are time consuming and costly. 

Thus increasing the inspection frequency would increase the operation costs leading to 

unacceptable methodology for assigning condition rating. Therefore, the development of an 

automated bridge inspection system using computer vision approach is of interest as such methods 

can potentially track the damage propagation due to unknown events with less cost and time, 

allowing the feasibility of revising the inspection frequency. The preliminary work regarding to the 

automated prediction of condition rating based on digital image processing has been briefly 

demonstrated in Adhikari et al. (2012). 
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3. Methodology  
 
The methodology encompasses data acquisition, 3D visualization model, image pre-processing, 

feature extraction, and development of neural networks for automated prediction of condition 

rating for structural elements as shown in Fig. 1. The 3D visualization model has been developed 

here based on digital images collected from a set of flexural tests on reinforced concrete beams in 

the structural engineering laboratory at Concordia University at Montreal. The 3D model is 

developed by projecting current digital images so that the current condition assessment is possible 

just by visualizing the model on a computer screen. Likewise, an automated procedure for 

prediction of condition rating requires feature extraction based on digital image processing. The 

procedure considers scaling defect as one of the surface defects in reinforced concrete structures 

and the mapping of condition rating based on OSIM (2008) guidelines is achieved through neural 

networks models. The condition rating according to the above guidelines are based on the severity 

of a scaling defect which depends on the depth of the defect. Therefore, before developing the 

neural networks models and training them, the depth of scaling defects must be identified. In the 

present work, the variation in RGB color profile is measured to quantify the depth perception and 

other geometric parameters are retrieved from the analysis of the digital images. The following 

paragraphs explain these aspects in details. 

 

 

 

 

Fig. 1 Research methodology 
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3.1 Data acquisition 
 

A commercially available digital camera (SONY) has been used here for acquiring the digital 

images of reinforced concrete surface defects. For the identification and quantification a defect, 

digital images are required to taken at a close-range focusing on the details of the defect. Each 

photographic frame includes either natural or artificial targets for scaling purpose. Natural targets 

may include some structural details of the beams, columns, parapet walls and railings, patches on 

concrete and steel surfaces, and nuts or bolts on girders. When there are insufficient natural targets, 

artificial targets would be required to be placed in the vicinity of the area of interest (Jáuregui et al. 

2006).  

 

3.2 3D Visualization model 
 

3D visualization model provides a good understanding of an object, and various features of the 

object can be derived from such models. This paper utilizes a direct method of image projection to 

generate 3D models with the help of the Google Sketch up software (2008). For a good better 3D, 

4 images are required to be taken from each four corners of an object. However, a 3D model can 

also be developed just from a single image or two taken at 45
o
 so that at least three corners are 

visible from a single position. Fig. 2 illustrates the four images considered for model development 

here, and Figs. 3 and 4 show theoutput of the model developed after projecting the actual image 

textures on the 3D model. 

 

 

  

  

Fig. 2 (a) – (d) 2D images of Reinforced Concrete beams (for 3D model development) 
 

907



 

 

 

 

 

 

Ram S. Adhikari, Ashutosh Bagchi and Osama Moselhi 

 

 

 

 

 

 

Fig. 3(a) – (b) 3D Visualization Model of a beam developed using digital images 

 
 
3.3 Image pre-processing 
 

Image pre-processing is one of the fundamental steps in image analysis which can be 

performed using spatial and frequency domain operations as summarized in Fig. 4 (Biswas 2008). 

Spatial domain operation refers to direct manipulation of pixels in an image at local level or at 

global level (Xu et al. 2012 and Adhikari et al. 2012). On the other hand, frequency domain 

operation requires transforming digital images in frequency domain by Fourier Transform where 

the majority of information is contained at lower frequencies, while sharp information related to 

edges are retained with higher frequencies. Depending on situations, one can use high-pass or 

low-pass filter to enhance the image. In this paper, both spatial and frequency domains operations 

of image pre-processing have been used for image enhancement. 

 

3.4 Imaging criteria’s for data acquisition 
 

A digital image is 2D projection of 3D real world objects. The effectiveness of digital image 

analysis highly depends upon the process how 3D to 2D projections occurs. The image projections 

can be broadly classified in two parts: perspective and orthographic projections (Solomon and 

Breckon 2011). Similarly, McRobbie (2008) showed that a single pixel in an image taken 

perpendicularly to a surface would represent a smaller area than the same pixel taken at an angle. 

Various imaging criteria were also listed in the above report; for example, the minimum pixel 

resolution should be 1 pixel/mm; camera position, elevation and bearing should be recorded while 

taking images; and successive imagesshould be overlapped for image stitching problems. The 

orthography projection is defined mathematically by x = m * X and y = m * Y, where m is a 

scaling factor which relates 3D read world coordinates given by (X, Y, Z) tothe camera coordinates 

given by (x, y). The projection is an affine transformation in which relative geometric relationship 

of objects are maintained. In practice, if we acquire images very close to the scene, it can be 

referred as orthographic projection, which is suitable for digital image analysis (Solomon and 

Breckon 2011). 
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Fig. 4 Image Enhancement Techniques for Image Pre-processing 

 
 
 
3.5 Artificial neural networks (ANN) 
 

The neural networks are the ideal choice of algorithms when the solution cannot be represented 

by a flowchart (Heaton Research 2013). These algorithms do not have any restriction on their 

input data. The only underlying assumption in back propagation algorithm is that the input 

parameters shall not be changed during the forward and backward passes. In general, the solution 

of the problem is difficult to predict when it depends on various parameters and the final solution 

is highly dependent on the selected factors. The neural networks are ideal choice for prediction of 

condition rating for bridge condition assessment because bridge condition rating depends upon a 

number of parameters. Learning rate and momentum are the two important parameters which need 

to be selected carefully to develop an efficient and well trained neural network models. 

While choosing multi-layer perceptron architectures, the number of neurons assigned to a layer 

is important. They are decided based on trial and error method. For the initial guess, one can use 

the number of neurons based on a thumb rule. For example, the number of neurons in a hidden 

layer may be taken as two third the size of input layers plus the size of output layers (Heaton 

Research 2013).Sometimes multi-layer perceptron and back propagation terms are used 

interchangeably. But, they have their own significance. Back propagation means propagation of 

errors in backward direction as shown in Fig. 5. Multi-layer perceptron has two types of signals. 

One is the functional signal which flows in the forward direction and the other is the error signal 

which flows in the backward direction.  
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Fig. 5 Forward and backward pass for Back Propagation Algorithms 

 

 

Back Propagation Algorithm: 

 

At the n
th
 iteration (i.e. the presentation of n

th
 pattern in an epoch, where a complete set of 

patternsis called epoch), the error signal corresponding to a neuron j at the output layer is given by 

Eq. (1) 

)()()( nyndne jjj         (1) 

where, 𝑑𝑗 is the desired output of neuron j, and 𝑦𝑗 = is the actual output of neuron j. The change 

in synaptic weight 𝛥𝑤𝑗𝑖(n) can be estimated by Eq. (2) 

)()()( nynnw ijji            (2) 

where, η is the learning rate, 𝑦i is the actual output in the previous layer, and 𝛿𝑗(n) is the local 

gradient given by Eq. (3) 

)(

)(
)(

nv

nE
nj

j


         (3) 

where, )(nE is the partial derivative of instantaneous error energy function,


j j nenE )(2/1)(

2
; )(nv j is the partial derivative of induced local field


m

i ijij njnwnv )()()( , representing mas the number of neurons in the previous layers; and 
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𝑤𝑗𝑖(𝑛) is the synaptic weight. The only underlying problem in the Eq. (2) above is to calculate the 

local gradient. The problem can be divided into the following two cases. 

 

Case 1: Neuron j belongs to output layer, in which case, δ𝑗(𝑛) can be calculated from Eq. (3) 

because this is supervised learning and the output is known in advance. 

 

Case 2: Neuron j belongs to a hidden layer. In this case, since the error in hidden layer is not 

known yet, it is difficult to determineδ𝑗(𝑛). But, with the similar formulation as shown above, the 

local gradient in hidden layers can be estimated by using the Eq. (2) for weight adjustment.  

 

 

4. Experiments and results 
 

The proposed methodology for automated prediction of condition rating was implemented in 

MATLAB (Math works 2013), Google Sketch up (2008), and Neuroshell (Ward Systems 2013) in 

Windows Vista Enterprise 32 bit operating System. The desktop consists of Intel ® Core ™ 2 Duo 

CPU, E6550 @ 2.33 GHz. A commercially available SONY-DSC T5 digital camera of 5.1 mega 

pixels with optical zoom 3Xwas used for image acquisition. Also, Image J, commercially available 

software (NIH, 2013) was used for extracting the digital information of an image and 3D 

visualizations.  

 

4.1 Feature extraction 
 

The proposed methodology requires high-resolution images to capture the concrete surface 

defects. To achieve high-resolution images, two cameras were used to collect images. The first 

camera photographs orthogonal images which are perpendicular to defect surfaces, while the 

second camera captures the whole concrete surface upon which defects lay. The use of hybrid 

camera for image acquisition was discussed in details by Nishimura et al. (2012). Various 

attributes considered for mapping of scaling depth and prediction of condition rating based on the 

severity of defects are listed in Fig. 6. In this paper, the attributes of a scaling defectare estimated 

by selecting a region of interest (ROI) as shown in Fig. 7(a).  

The paper demonstrates the automated predication of element condition rating for scaling 

defect only. Similar algorithms need to be developed for all types of concrete defects (e.g., spalling, 

cracking, exposed reinforcement, corrosion etc.) to fully automate the process of assigning 

condition rating based on digital images, which is not within the scope of this paper. 3D 

visualization model, which mimics the on-site visual inspection, is suitable for comparing 

structural conditions developed at different time periods. However, for defect quantification, the 

proposed research does not directly use the developed 3D visualization model, but it uses the same 

digital images used for developing a 3D model. The reason is that 2D images are already 

simplified and projected image of real 3D objects. 3D model development requires the projection 

of 2D images on 3D model to get current textures appearance. In such cases, many image 

processing algorithms yield poor results. For such reasons, the proposed methodology utilizes the 

original digital images for defect quantification purpose using digital image processing techniques. 

For such approach, a robust database management is necessary for handling the digital images. 
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Fig. 6 Image Based Feature Extraction for scaling concrete defects 

 

 

 

Also, it was realised that image acquisition methodology required for 3D model development 

and for defect quantification are different. For a better performance, oblique images (usually taken 

at 45
o
 from a corner of a structure) are most appropriate for developing 3D models, whereas, for 

the defect quantification, orthogonal images are required for accurate results (usually taken 

perpendicular to the defect surface). The error occurred due to camera orientations for the same 

scene has been discussed in detail in Adhikari et al. (2014). For scaling defects, the feature 

extraction adopted for this research has been explained here. 

The perception of distance based on light intensity was first discovered by Leonardo Da Vinci 

saying that “among bodies equal in size and distance, that which shines the more brightly seems to 

the eye nearer” (MacCurdy 1938). After that a number of studies were done to validate the 

hypothesis concerning the intensity of light and object distance relationship (Samonds et al. 2012, 

Coules 1955 and Ashley 1898). This paper adopts the clue of intensity variation of light with depth 

as shown in Figs. 7(a)-7(c). It is evident from the 3D visualization of color profile that brighter the 

intensity the lower depth perception. However, obtaining a numerical value of depth in accordance 

to the variation in the light intensity is not straightforward. In the present work, the sectional RGB 

color profile at the line of interest was used for quantifying the depth perception. The RGB profile 

obtained with line width of 1 unit is noisy. To filter such noise, the width of the line (selection 

region) has been increased to 30 units leading to smooth intensity variation with pixels distance in 

mm as shown in Fig. 8. 
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 (a)   (b)  

 

  (c) 

Fig. 7 (a) Region of Interests with scaling defects (b) 3D Visualization of Scaling Defects and (c) (1-2) 

Red, Green, and Blue Color Profile (Rough Intensity Variation along Section) 

 

 

 

 

Fig. 8 (a)- (b) Red, Green, and Blue Color Profile (Smooth Intensity Variation along Section) 
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Fig. 9 Scaling Depth Estimation from Red, Green, and Blue Color Profile 
 

The data are plotted in order to establish a relationship between light intensity (ΔI) based on 

RGB sectional color profile of an image. Now, the difference in intensity needs to be correlated to 

the real depth in engineering units. For this purpose, the depth of individual real scaling defect is 

measured using measuring scales and a straight line is fitted between the difference in intensity 

and depth as shown in Fig. 9. It was found that for the selected images, the difference in intensity 

showed a maximum of 20% error in depth estimation. 

 
4.2 Check for normal distribution 
 

Seven input parameters were retrieved from the selected digital images shown in Fig. 6. The 

simplest model for such mapping problem is to use the discriminant analysis. However, the 

discriminant analysis requires the data to be normally distributed. But, the plot of data set as 

shown in Fig. 10 clearly shows that data sets deviate from the red lines (i.e., normal distribution) 

indicating that they are not normally distributed. So, the discriminant analysis for such problems 

does not seem to be an appropriate choice; and hence, neural networks are chosen for mapping of 

the condition rating, which is explained in the next section. 

 

 

Fig. 10 Plot of Scaling Defects Feature Attributes to check for Normal Distribution of input parameters 
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4.3 Back Propagation Neural Networks (BPNN) Models 
 

The training of BPNN model is based on supervised learning. The relationship between the 

depth and condition rating of structural elements has been represented by a back propagation 

neural network. The following two models were constructed: Model „a‟ to predict the scaling 

depth, and Model „b‟ to predict the condition rating as shown in Fig. 11. Model „b‟ contains depth 

as an additional input variable in the data pattern to predict the condition state (CS) rating for 

bridge elements based on the severity of observed defects in comparison to Model „a‟.  

The guidelines provided in the Ontario Structure Inspection Manual (OSIM 2008) were used 

for determining the Condition Rating of a concrete bridge element. Table 1 summarizes the 

condition state rating grades as suggested in OSIM (2008). The condition state rating of 1 indicates 

a light level of scaling damage and 3 indicates a severe level of scaling damage. The input data 

used in the BPNN models were normalized (between 0 and 1) using the Eq. (4). 

)/()( minmaxmin XXXXX ini               (4) 

where, Xni is the normalized value of Xi; Xiis the i
th 

value of a data series with X representing the 

raw data; Xmin is the minimum value of X in the sample set; and Xmax is the maximum value of X in 

the sample set. 

 

 

 

Fig. 11 Back propagation Neural networks Models 
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Table1 Description of Condition Rating based on OSIM (2008) guidelines for Scaling Defects 

Defects 

Condition State Rating 

Light (1) Medium (2) Severe (3) 

Scaling 

 

Local Flaking/Loss of Surface Portion of Concrete or  

Mortar due to Freeze or Thaw 

Up to 5 mm Depth 6-10 mm Depth > 10 mm Depth 

 

 

4.4 Training of the BPNN 
 

The model architecture is shown in Table 2 and the training process of the neural networks is 

explained in Fig. 12. The detailed information on the layers, number of neurons, and the adopted 

activation functions are also listed in Table 2. The architecture of the network consisted of five 

layers of neurons with one input layer (the number of input neurons are equal to number of 

attributes in each pattern), 3 hidden layers, and one output layer (the number of output neuron is 

one). A total of 19 data patterns are extracted from the selected images from real bridges using the 

image analysis which consisted of 60% data for training sets, 20% data testing sets, and 20% data 

for validation sets. The validation data sets are also called the production set. The production set of 

data, which is not presented to the network during training, is later used to validate the model.  

The learning rate, momentum, and initial synaptic weight during the initial training process 

have been assigned 0.2, 0.2, and 0.3 respectively. The initial choices of this parameter have impact 

on performance of the designed model. Appropriate the initial values for these parameters are very 

important for constructing a successful and efficient model. The Stopping criteria of these 

networks are explained in next paragraphs.  

 

 

 

Fig. 12 Neural Network Models Work Flow Diagram 
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Table 2 Neural Networks Design and Stopping Criteria 

Slab 

Number 

Number of 

Neurons 

Activation 

Functions 

Learning Rate Momentum Initial Weight 

1 7 Linear (0,1) 0.1 0.1 0.3 

2 2 Gaussian 0.1 0.1 0.3 

3 2 Tanh 0.1 0.1 0.3 

4 3 Gaussian comp 0.1 0.1 0.3 

5 1 Logistic 0.1 0.1 0.3 

Training 

Stop training when one of these is true about the 

training set 

 

 

Stop training when one of these is true about the 

test set 

 

Average error<       0.0002 

Epochs since minimum average error>    1,000 

Calibration interval (events)               200 

Events since minimum average error>20,000 

 

 

 
Table 3 (a) Performance of Depth Prediction Model and (b) Performance of Condition Rating Prediction 

Model  

 

 

 

After the model is developed as discussed above, the input patterns can be presented to the 

network either in a rotational or a random order at every epoch. It is observed that the random 

training patterns work better and adopted for the training of entire network. Also, the network‟s 

weight is updated through momentum option which utilizes a portion of the previous weight 

change for the network. The adopted process stabilizes the direction of the training and produces 

acceptable results as presented in subsequent Tables. 

 

Patterns processed 19  Patterns processed 19 

R squared 0.7024  R squared 0.9807 

r squared .7990  r squared 0.9839 

Mean squared error 0.028  Mean squared error 0.003 

Mean absolute error 0.147  Mean absolute error 0.032 

Min. absolute error 0  Min. absolute error 0.000 

Max. Absolute error 0.278  Max. Absolute error 0.167 

Correlation coefficient r 0.8939  Correlation coefficient r 0.9919 

(a)  (b) 
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Table 4 (a) Contribution factors for Depth Prediction Model and (b) Contribution factors for Condition 

rating prediction  

Ranking Parameter CF  Ranking Parameter CF 

1 Length of Major Axis 27.6%  1 Depth 53% 

2 Area 23.8%  2 Length of Minor Axis 9.6% 

 

3 Length of Minor Axis 19.6%  3 Aspect Ratio 8.8% 

4 Aspect Ratio 12.2%  4 Roundness 7.6% 

5 Perimeter 9.9%  5 Length of Major Axis 7.2% 

6 Roundness 6.7%  6 Perimeter 6.8% 

    7 Area 6.7% 

(a)  (b) 

 

 

 

Fig. 13 Scaling Depth Prediction (Actual DepthVs Model Output) 
 

 

The accuracy of the developed models is evaluated by applying the validation sets of data to the 

models. The validation sets of data are not exposed to the models during the training and testing 

phases. After training the developed models, various statistical parameters are obtained to measure 

the accuracy of the output variable. The developed BPNN model for depth prediction shows the 

accuracy of 89%as shown in Table 3(a), whereas the BPNN model for the estimation of the 

condition rating shows the accuracy of 99% as shown in Table 3(b), in terms of the corresponding 

correlation coefficient (CF).  
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Fig. 14 Predicted Condition Ratings (Actual Condition Rating Vs Model Output) 
 

 

Likewise, Table 4 shows how each of the input variables contributes to the decision making 

process of a network using back propagation algorithm. A low contribution from a variable does 

not mean that it is unimportant and can be removed from the inputs. Since the training of the 

network is based on overall patterns instead of individual variables, a variable with small 

contribution may be critical in some cases. From Table 4, it is observed that depth has the largest 

contribution, in predicting condition rating, which is 53%; whereas, surface area has the lowest 

contribution of 6.7%. The results are also expressed in graphical way by plotting the model output 

against the actual output as shown in Figs. 13 and 14 for scaling depth and condition rating, 

respectively. The graphs show the predicted values by the developed models and the actual values 

matched well indicating that the models can be used to solve for future problems reliably.  

 

 

4.5 Comparison with other classifiers 
 

4.5.1 Naïve bayes classifier 
Bayes’ rule is given by Eq. (5),  

)(

)()/(
)/(

EP

HxPHEP
EHP        (5) 

The basic idea of Bayes‟s theorem is that the probability of an event (H) can be predicted based 

on some evidences (E). A prior probability of H or P (H) is the probability of an event before the 

evidence is observed. A posterior probability of H or P (H|E) is the probability of an event after the 

evidence is observed. It classifies data in two steps: 
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 Training Steps: The method determines the probability distribution based on the training 

sample assuming that the feature is conditionally independent for the given class. 

 

 Prediction Steps: The method calculates the posterior probability of the data set which is 

unseen to the model; and then classifies the test sample based on the largest posterior 

probability. 

 

The independence of the data sets is an underlined assumption for Naïve Bayes Classifier. To 

check the accuracy of the Naïve Bayes Model, Bayes Error is calculated using statistical tools and 

was found as 66%. The Bayes error shows that only 34% of the test data sets are correctly 

classified and 66% of test set data are wrongly classified. The analysis is tested for the importance 

of each parameter and the process indicated that only two input parameters “Major Axis Length” 

and “Depth” are important for this problem. This shows that the model with many input 

parameters may not always produce better results because this kind of model might have problem 

of data over-fitting.  

 

4.5.2 Bagged decision tree model 
Bagged Decision Tree is another type of machine learning algorithm which can improve the 

classification accuracy and stability of the training process. It reduces variance and avoids data 

over fitting problems. This method has better capability than Naïve Bayes Classifier and it can also 

measure the feature importance of input parameters. The bagged decision tree algorithm is 

performed on the previous data set and out of bag error was found as 37% which showed better 

accuracy than Naïve Bayes Classifier which has 66% error. Also, the importance factors for the 

input parameter were calculated as shown in Fig. 15. It showed that feature number 5 (Aspect ratio) 

and 6 (Roundness) did not contribute significantly to classification problem. The highest 

contributing factor for this classification is depth, which has a contribution of more than 65%. 

 

 

 

Fig. 15 Defects Feature Importance factors (Out of Bag algorithms) 
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Table 5 Comparison of results from different classifies 

Classifiers Naïve Bayes Classifier Bagged Decision Tree Artificial ural networks 
Accurately Predicted 34% 63% 99% 

 

 

Table 5 summarizes the results of different classifiers. The results show that the prediction 

capability of neural networks was better than other classifiers showing 99% of predicting accuracy. 

The Naïve Bayes Classifier showed only 34% of data was classified correctly, whereas Bagged 

Decision tree was able to correctly classify 63% of input data. The neural networks did not have 

any underlying assumptions on the requirements in input data during training process except that 

during a complete cycle of back propagation (forward pass and backward pass), the input data 

patterns should not be changed. For other classifiers, there are fundamental assumptions associated 

with specific requirements in input data which might be the reasons of the inaccuracies. The 

accuracy of the developed NN models was evaluated by applying the validation data sets which 

were set aside before starting the training procedures. After applying these sets of data, various 

statistical parameters were obtained to measure the accuracy of prediction of condition state 

ratings. The statistical features of the trained BPNN models are shown in Tables 3 and 4. 

 
 

5. Discussion and limitation of the developed models 
 

Four different types of classification algorithms (i.e., linear discriminant analysis, artificial 

neural networks, Naïve Bayes Classifier, and Bagged Decision Tree Model) are presented here to 

determine the condition of concrete bridge elements with scaling defect, and the results of these 

methods have been compared to verify their effectiveness. The choice of an algorithm involves a 

tradeoff between the complexity of the algorithm and the assumptions made to simplify the 

problems in data manipulation. For example, the linear discriminant analysis is the simplest 

algorithm for classification; but it utilizes a restrictive assumption on the data. On the other hand, a 

complex algorithm like artificial neural networks operates over a wide variety of data sets, but the 

algorithms are more computationally intensive and difficult to work with. The current work 

considered only scaling defects for prediction of element condition ratings. However, an element 

might consist of several types of defects and each individual defect (extent and severity) 

contributes to the element‟s condition rating. Thus, for the proper condition assessment of 

elements, several expert functions need to be developed which can be integrated together to obtain 

a single condition rating for the element. 

The depth perception of defects is highly influenced by lighting conditions. The mapping of 

difference in lighting intensity (ΔI) and defect depths work well when digital images are taken in 

similar lighting conditions. However, in actual practice it is difficult to maintain the same lighting 

conditions during image acquisition. So, this is one of the limitations of digital image processing, 

however, the error can be minimized through applying image pre-processing algorithms. The 3D 

visualization model for a concrete beam member is developed manually which needs to be 

automated using 3D point clouds. This is an important research topic in itself and the details are 

not discussed in this work. Further work is necessary to develop algorithms for processing 3D 

point cloud data to obtain the surface defect attributes, which is out of the scope of the present 

work. This paper demonstrates the methodology for estimating of condition rating for bridges 
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based on 19 data patterns obtained from analyzing digital images. However, the output of the 

models can be updated with additional information if available.  

The defects quantification is performed based on original digital images instead of using the 3D 

visualization model for better accuracy. In absence of original images, the visualization model can 

also be used for defect quantification. 

 

 

6. Conclusions  
 

A condition state of a structural element represents the nature and extent of damages, whereas a 

condition rating of an element is derived by comparing the condition state of the bridge element 

with the as-built condition. However, the method of determining condition rating based on visual 

inspection has been reported to have several limitations; for example, the process is time 

consuming, subjective in nature, and often produces incomplete information. To overcome such 

limitations and improve the efficiency of BMSs, this paper presents a process to determine the 

condition ratings models based on digital image processing and neural networks, which can be 

potentially automated. The developed method is expected to augment the information provided in 

a visual inspection and contribute to improved decision making. 

The proposed methodology considers scaling defects to demonstrate the proposed work in 

which condition ratings are mapped using digital image processing. The guidelines of the Ontario 

Structure Inspection Manual have been used for such mapping. The method requires the 

development of a quantification model for scaling defects (e.g., scaling depth estimation), image 

pre-processing, design of 3D visualization model for visual comparison of element condition states 

over different period of time, and condition rating model using computer vision approach. A 3D 

visualization is developed and presented for condition assessment of concrete bridges based on 

digital images acquired during flexural testing of reinforced concrete beams in the lab environment. 

Two BPNN models are developed here: the depth prediction model, and mapping of condition 

rating of concrete elements with scaling defects. A total of 19 data patterns have been prepared 

using the image analysis process which consisted of 60% data in the training sets, 20% data in the 

testing sets, and 20% data in the validation sets. The model contains 5 layers of neurons; one input 

layer, three hidden layers, and one output layer with several types of activation functions in each 

layer. The production data set, which has not been presented to the network during its training, is 

later used to validate the model. The statistical features of the trained BPNN models are measured 

in terms of prediction accuracy and contribution factors of input variables. Also, a comparison of 

the estimated depth output by the BPNN model and the actual one for all data points are plotted, 

and the acceptable accuracy has been observed showing a correlation coefficient of 89%. Similarly, 

the predicted condition ratings after training of the neural networks are plotted with the actual 

condition rating obtained according to the OSIM (2008) manual, and the accuracy of the prediction 

of condition rating has been observed 99% as a correlation coefficient.  

The trained NN models work in a similar way as experts classify and predict the attributes of 

defects based on their experience. The procedure can potentially reduce the inspection time as 

inspectors need only to take engineering photographs, and analyze them using the proposed 

methods. Since the proposed method is fast and less expensive, it can be potentially used for rapid 

screening of deteriorating concrete bridges. In addition, the frequency of inspection can perhaps be 

altered to provide additional safety to bridges by recognizing the effect of extreme loadings and 

defect propagation. The research showed that 3D visualization bridge model can be used for 
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assigning element condition rating utilizing the digital images for assessing defects inflicted on 

bridge components. The developed models can also be merged with available automated trading 

systems or they can be integrated to excel for ranking of projects if inspection engineers do not 

have access to any BMS.  
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