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1. Introduction 
 

In the literature, many models can be found to determine 

the behavior model and damage of confined and unconfined 

concretes. Each model has its own limitation, application 

condition, advantage and disadvantage. Since the aim of 

some models is the determination of the ultimate strength of 

RC elements, the models covering both the confined and 

unconfined concretes under continuous monotonic and 

cyclic loading, serving as input for continuous behavior 

modeling and damage quantification of RC elements, are 

attractive. 

Over the past years, many researchers, such as Soh and 

Bhalla (2005), Amziane and Dubé (2008), Malecot et al. 

(2010), Yu et al. (2010), Poinard et al. (2010), Markovich 

et al. (2011), Chen et al. (2011) and Cao and Ronagh 

(2013) have proposed different formulations for damage 

index (DI) for concrete.  

Stress, strain, stiffness and modulus are the main 

parameters employed in these damage indices.  

Yu et al. (2010) proposed a DI for concrete subjected to 

uniaxial compression that is defined as one minus the ratio 

of decaying stress on the descending branch to the peak 

stress. With the same pattern, Soh and Bhalla (2005) 

defined a DI for concrete in term of stiffness instead of 

stress. They defined DI as one minus the ratio of damaged 

stiffness to the initial stiffness. Chen et al. (2011) defined a 
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DI for concrete as the ratio of losing modulus to the initial 

modulus. They defined DI as one minus the ratio of 

damaged modulus to the initial modulus. Amziane and 

Dubé (2008) defined a DI for concrete, using the modulus 

of concrete. They defined DI as one minus the ratio of the 

initial reloading modulus of concrete at any stage of 

reloading to the secant Young modulus defined at the stress 

of 40% of the ultimate strength of concrete. Cao and 

Ronagh (2013) investigated the damage of concrete 

subjected to monotonic compressive loading using four 

different damage models and proposed a simple model to 

evaluate the damage of concrete. 

The concrete damage model that is implemented in the 

LS-DYNA code (2007) is capable to simulate the behavior 

of unconfined concretes subjected to complex static and 

dynamic loads. 

Nevertheless, the values for the numerous parameters, 

that are required as an input, are not provided by the code. 

Markovich et al. (2011) have calibrated the LS-DYNA code 

damage model for a wide range of concretes, using triaxial-

compression-test data obtained from the literature. 

Although, not enough validation has been carried out in the 

tests, but their calibrated model demonstrates better 

agreement with published test results than the model 

available in LS-DYNA. 

An energy based DI for confined and unconfined 

concretes is proposed in this paper. To determine the 

proposed DI, the stress-strain data for concrete elements is 

required.  

Several models have been proposed to determine the 

behavior law of compressive unconfined concrete and 

concrete confined within rectangular or spiral stirrup ties. 

The significant lateral passive compression and strain on 
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concrete due to the confinement generated by the transverse 

reinforcements, indicates that the concrete is in the state of 

tri-axial compression. In this condition, the concrete 

element is very ductile. 

Researchers such as Mander et al. (1984), Park et al. 

(1982) performed several tests on real full-scale structures.  

The primary researches on the behavior law of confined 

concrete were performed generally on a small scale on 

samples under the concentrated point loading by applying a 

quasi-static strain velocity.  

Meyer (1988), CEB (1988) and others proposed 

equations for the stress-strain model of concrete confined 

by spiral or circular transverse reinforcements. Chore and 

Shelke (2013) proposed a method to establish a predictive 

relationship between properties and proportions of 

ingredients of concrete, compaction factor, weight of 

concrete cubes and strength of concrete whereby the 

strength of concrete can be predicted at an early age.  

Markovic et al. (2006) have introduced a coupled elasto-

plastic and damage constitutive model with the stress field 

as the independent variable. The damage part is described in 

an analogous way to the classical plasticity models, which 

enables an efficient use of the complementary variational 

formulation. They worked out the complete numerical 

implementation and showed its efficiency with respect to 

the more classical displacement based formulation. They 

demonstrated the particular advantage of using their 

proposed approach within the framework of structured 

representation of a heterogeneous material. They showed 

the advantages of the stress based finite element 

formulation when applied to nonlinear inelastic material 

behavior like plasticity or damage. 

In the following, a model for confined and unconfined 

concretes under monotonic and cyclic compression loading 

is proposed. 

The goal of this paper is to present nonlinear stress-

strain laws along with an energy-based DI for confined and 

unconfined concretes, applied to simulate the concrete finite 

elements within the sections of RC components subjected to 

monotonic and cyclic loading.  

 

 

2. Experimental data and reference column 
 

The results of the experimental test, performed on the 

full-scale columns by Garcia Gonzalez (Garcia Gonzalez 

1990, Sieffert et al. 1990), Park and Kent (1972) are mainly 

used for the global validation of the proposed models. Over 

20 tests were performed at the University of Nantes on 

columns under biaxial alternating cyclic with axial loading. 

The dimensions and characteristics of the columns tested by 

Garcia Gonzalez are as follows: rectangular section 18 

cm×25 cm, height of 1.75 m, four longitudinal 

reinforcements with a diameter of 12 mm (ϕ12), concrete of 

strength of 42 MPa, stirrup ties of diameter 6 mm with a 

longitudinal spacing of 9 cm, yielding stress of steel bars: 

470 MPa. These columns were fixed at the bottom, free at 

the top and were under an axial force of 500 kN and the 

cyclic oriented lateral force and axial loading or the 

oriented pushover force and axial loading in any direction at 

the top. In this paper, Garcia Gonzalez’s Column is called 

“reference column” and its section is called “reference 

section”. 

The experimental test results on the confined and 

unconfined concrete samples performed by Sadeghi (2002), 

Al Sulayfani (1986), CEB (1988), Park and Kent (1972), 

Buyukozturk (1985), Meyer (1988), Karsan and Jirsa 

(1964), Mander et al. (1984) are also used for local 

validation. Over 55 cylindrical samples of confined and 

unconfined concretes were also tested by Sadeghi (2002). 

Since unconfined concrete under cyclic loading and also 

confined concrete under monotonic loading are special 

cases of confined concrete under cyclic loading, the models 

of Al Sulayfani (1988) (for unconfined concrete under 

cyclic loading case) and CEB (1988) (for confined concrete 

under monotonic loading case) are modified and used for 

validation of particular cases of the proposed models.   

The simulated results obtained by using the proposed 

models are also compared with the results reported in 

literature. 

 

 

3. Developed finite element computer program  
 

A computer program entitled Column Analysis and 

Damage Evaluation Program (CADEP) has been developed 

by Sadeghi (2015) to simulate numerically the behavior of 

RC columns under cyclic loading and DI for rectangular or 

nonrectangular sections, considering the nonlinear behavior 

of materials. 

CADEP has some sub-programs such as BBCS (biaxial 

bending column simulation) which is used as Base Model, 

CCS (confined concrete simulation), UCS (unconfined 

concrete simulation), SBS (steel bars simulation), EC 

(energy calculation) and DIC (damage index calculation). 

In the CADEP computer program, the column is 

decomposed into two Macro-Elements (MEs) positioned 

between the inflection point (zero moment) and the critical 

sections (maxim moments). Then the nonlinear behavior of 

MEs are analyzed. In fact, a Macro-Element acts as fixed 

bottom-free top half-column under biaxial cyclic bending 

moment (i.e., lateral force in any direction) with axial load. 

Finally, the two connected MEs are assembled to determine 

the global behavior of the column. To find the status of the 

entire column, the applied loads and also the secondary 

moments, due to P-∆ effect, are considered in the 

simulation of the column. Each section of the column is 

discretized into fixed rectangular finite elements.  For each 

concrete and reinforcement element a uniaxial behavior is 

considered and their strain distributions are assumed to 

form a plane, which remains a plane during deformation 

(Kinematics Navier’s hypothesis). The stresses of concrete 

and steel are expressed as nonlinear functions of strains in 

each concrete and steel element. For compressive confined 

and unconfined concrete elements, the monotonic and 

cyclic stress-strain models proposed by the authors in this 

paper and for reinforcements, the expression proposed by 

Park and Kent (1972) based on the Ramberg-Osgood 

monotonic and cyclic models have been used in the 

CADEP. The concrete tensile stress is assumed to be linear 

626



 

Behavior modeling and damage quantification of confined concrete under cyclic loading 

up to the concrete tensile strength. It is assumed that there is 

a prefect bonding between concrete and steel bars. The 

CEB-FIP Code (1993) specification is used for the 

maximum compressive strain value for unconfined 

concrete. This is particularly applicable where there is a loss 

of concrete cover outside the stirrups. To determine the 

failure of confined concrete in the simulation, the equation 

proposed by Sheikh (1982) has been used.  

The basic equilibrium is justified over a critical 

hypothetical cross-section assuming the Navier law with an 

average curvature. The method used qualifies as a “strain 

plane control process” that requires the resolution of a 

quasi-static simultaneous equation system using a triple 

iteration process over the strains (Sadeghi 2015). The 

calculations are based on the monotonic and cyclic 

nonlinear stress-strain relationships for concrete and 

reinforcement FE. In order to reach equilibrium, three main 

strain parameters; the strains at the extreme compressive 

point, the strains at the extreme tensile point and the strain 

at a point located at another corner of the section are used as 

three main variables. For non-rectangular sections these 

points may be outside the actual cross-sections and be 

located on the discretizing mesh frontiers. 

The nonlinear responses of a Macro-Element and the 

column are based mainly on the fixed finite elements on the 

critical sections and on the location of the inflection point. 

For the entire column, deflection is evaluated using an 

elastic-plastic analytic formulation (Priestley and Park 

1987). The program takes into account the confining effect 

of the transverse reinforcement and simulates the loss of the 

concrete cover. The CADEP allows the determination of the 

failure, the internal local behavior of critical sections (i.e. 

strains, stresses, neutral axis position, crack positions, loss 

of material, microscopic DI, etc.) and the external global 

behavior of the column (curvature, deflection, stiffness, 

damping ratio, different types of energies for negative and 

positive displacements, global and local damage indices 

proposed by Sadeghi and Nouban (2016), etc.).  

The simulated results obtained using CADEP are in the 

main confirmed by the full-scale experimental results 

obtained by other researchers (Garcia Gonzalez 1990, 

Sieffert 1990, Park and Kent 1972). 

In the CADEP program, a behavior law for confined and 

unconfined concretes is considered and the behavior laws of 

the columns are specified. After an iterative process the 

simulated and experimental results are compared, and then, 

the confined and unconfined concrete laws are adjusted 

accordingly. The selected laws, presented here are simple 

but sufficiently accurate to be used in the monotonic and 

cyclic numerical simulations. 

 

 

4. Proposed stress-strain law for confined and 
unconfined concretes 
 

4.1 Verification methodology 
 

In order to eliminate the problem of scale effect, in 

addition to using the results of experimental tests on 

concrete samples, by applying the CADEP computer 

program, the simulated and experimental test results on the 

full-scale columns were compared. In this way the proposed 

nonlinear stress-strain models for confined and unconfined 

concretes under monotonic and cyclic loading was modified 

and validated.  

The stress-strain curve of unconfined concrete under 

monotonic loading is used as the envelope curve for the 

cyclic loading case as confirmed by the Sadeghi (1995, 

2002), Karsan and Jirsa (1969), Al Sulayfani (1986). A 

similar relationship also holds for confined concrete 

(Mander et al. 1984). This, confirmed the relationship 

between the monotonic and cyclic loading curves used in 

the proposed models. 

 

4.2 Examples of evaluation and modification of the 
parameters 

 

Utilization of an unconfined model similar to that of Al 

Sulayfani (1986) for the simulation of RC element’s 

behavior results in more closely spaced hysteresis loops 

than are obtained by the experimental tests on the columns 

of Garcia Gonzalez (1990). To further investigate the 

problem, the models of Park and Kent (1972), Buyukozturk 

(1985), Meyer (1988), Karsan and Jirsa (1969) were 

studied.  

Comparative studies on the parameters relating to the 

point of unloading (slope at the point of unloading and the 

coordinates of plastic residual stress) were performed. By 

performing numerical simulation on the reference columns 

using CADEP and comparing these results with the 

experimental test of Garcia Gonzalez (1990), it was 

observed that, the values of unloading tangent modulus     

and plastic residual strain    (the plastic residual strain is 

defined as the residual axial strain of concrete when it is 

unloaded to zero stress (Abbasnia and Holakoo 2012) (see 

Fig. 3)),  which are used for generating the stress-strain 

(   ) curve, play a very significant role in the form of the 

moment-curvature response of the section of an RC member 

in the unloading phase. As shown in Fig. 3, the variation of 

   is less important, because its effect is situated in the 

zone of lesser stresses. The plastic residual strain    has a 

non-negligible role in the failure phenomenon in the case of 

cyclic loading. If this strain is considered greater than the 

actual case, the failure appears sooner in the response curve. 

Conversely, if a value of    smaller than the actual one is 

adapted, the number of cycles at failure and the values of 

the displacement and the curvature will reduce. In Table 1,  

 

 

Table 1 Values of εr/ε0 obtained by using different models 

εA/ε0 0.3 0.5 0.7 1.0 1.2 1.5 1.7 2.0 

Model of 

Al Sulayfani 
0.019 0042 0.081 0.182 0.289 0.528 0.751 1.199 

Model of 

Meyer 
0.024 0.068 0.132 0.340 0.442 0.615 0.744 0.960 

Model of 

Karsan 
0.052 .101 0.162 0.275 0.365 0.521 0.640 0.840 

Model of 

Buyukozturk 
0.079 0.165 0.277 0.496 0.675 0.995 1.240 1.660 
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Fig. 1 Moment-curvature response of a rectangular section 

column for two pairs of EU0 and εr 

 

 

Fig. 3 Unloading from the envelope curve 

 

 

the variations of the values of     ⁄  as a function of 

    ⁄ , obtained by using the models proposed by different 

researchers, are presented (for the definitions of the 

parameters see Figs. 2 and 3).  

Based on the values given in this table, it can be 

observed that the smaller values of     ⁄  are obtained by 

using Al Sulayfani’s model (for     ⁄ <1.49) and the 

biggest values are related to the Buyukozturk model. 

Comparison of the simulated results using CADEP and the 

experimental of Meyer, indicates a close agreement 

between the proposed     ⁄  values and the experimental 

of Meyer values. 

As another example, if the value of EU0 is assumed to be 

smaller than the actual case, the hysteresis loops in the 

response curve (moment-curvature or force-displacement 

curves) are more closed as shown in Fig. 1. This figure 

illustrates the moment-curvature response of the reference 

RC rectangular section of the reference column for two 

pairs of EU0 and εr. As shown in this figure, in the loading 

case (in the first and second positive and negative half 

cycles), the two curves are very close to each other. 

Conversely, in the unloading phase, it can be observed that 

the effects of EU0 and εr result in a different trajectory for 

the unloading curve. 

These calculations and verifications are performed by 

applying CADEP program. This kind of verification and 

comparison with the experimental test results is used to  
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Fig. 2 Parameters employed in the proposed stress-strain 

curves, monotonic loading cases (Envelope curves for 

cyclic loading cases) 

 

 

determine all the parameters and coefficients of the 

proposed formulations.  

 
4.3 Proposed stress-strain law for confined concrete 
 

The following stress-strain formulations are proposed to 

simulate numerically the uniaxial behavior of confined and 

unconfined concrete elements discreted within the sections 

of RC members. 

 

4.3.1 Stress-strain law for confined concrete under 
monotonic loading  

The proposed analytic equation for the stress-strain law 

of confined concrete under monotonic compression loading 

is described below.  

Fig. 2 presents schematically the parameters employed 

in the proposed stress-strain curves for the confined and 

unconfined concretes under monotonic loading. These 

curves are also used as the envelope curves in the cyclic 

loading cases.  

The proposed law, presented in Eq. (1), is a simple 

mathematical model that is valid for confined concretes 

with the conventional strengths within the range of 20 

MPa<  
 <50 MPa. 

   
   

 

    
 

   
      (

 

   
)         

 

   
   

 (1) 

The relationship between the coordinates of the peaks of 

confined and unconfined concretes (CEB 1988, Sadeghi 

1995) are given as:  

For    
 ⁄       or          

   
     

                  (2) 

For    
  ⁄      or          

   
     

                   (3) 

        (
   

 

  
 
)

 

 (4) 

With 

     (
  

          

)  
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EU0
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



),( 0 rB
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          (6) 

      
 

  
 (7) 

For circular sections,     .  

For rectangular and circular sections  

        
  

    

   (8) 

For circular sections with spiral transverse 

reinforcements  

        
  

    

  (9) 

Where,   represents the stress,   represents the strain, 

  
  and    

  represent compressive strengths of unconfined 

and confined concretes at 28 days, respectively,    and 

    represent the strains related to   
  and    

 ,  

respectively,    represents the cross sectional area of a 

transverse reinforcement,     represents the yield stress of 

transverse reinforcement,      represents the larger 

dimension of the section,    represents the longitudinal 

spacing between transverse reinforcements,   represents 

the confinement efficiency factor defined as the ratio of the 

confined area over the total area,    represents the 

transverse reinforcements form factor,     represents the 

transverse reinforcements spacing factor, and    represents 

the distance between external longitudinal reinforcements in 

the column section. The factors   and η used in Eqs. (5) 

and (7) for some forms of transverse reinforcements (CEB 

1988, Sadeghi 1995) are given in Table 2. 

By inserting the relevant values of stress and strain in 

Eq. (1) at points L, P and Y and also recognizing that the 

slope of the curve is equal to zero at the peak of the curve 

(see Fig. 2), the four unknown coefficients AL, BL, CL and 

DL are determined. These four conditions (coordinates of 

the points L, P and Y and also the slope at point P) are 

determined as follows: 

• Point L (      , 0.45   
 ) on the confined concrete 

    curve: 

with 

                
          (10) 

and secant modulus 

                
       (11) 

   
  and        are expressed in MPa.         

• Point P at maximum stress of confined concrete     

curve at coordinates (   ,    
 ) 

                
        (12) 

 
 
   

  is expressed in MPa. 

        
  (13) 

The supplementary condition of zero slope (tangent) at 

point P gives 

  

  
   (14) 

• Point Y (εc0.85, 0.85   
 ) on the confined concrete     

curve: 

                    (15) 

              
  (16) 

where 

                     
     (17) 

   
  is expressed in MPa  

 

4.3.2 Stress-strain law for confined concrete under 
cyclic loading 

Unloading curve 
As shown in Figs. 3 to 5, unloading may occur either 

from the envelope curve or from a phase of reloading. In 

both cases, Eq. (18) is proposed to give the stress-strain 

relationship for unloading. 

  [  (
 

   
)
3

    (
 

   
)
 

   (
 

   
)]   

  

                                            (18) 

The four unknown factors AU, BU, CU and DU can be 

found by applying the coordinates and slopes of two 

extreme points on the unloading curve (i.e., the starting and 

finishing points on the unloading curve). 

 

Case a): Unloading from the envelope curve: 

In the case of unloading from the envelope curve (see 

Fig. 3), to find the unknown factors AU, BU, CU and DU, the 

coordinates and slopes at the points A(εA, σA) and B(εp, 0) 

are employed.  

The tangent modulus at point A is given as follows 

         [        ] (19) 

The plastic residual strain    at point B, depending on 

the unloading starting point coordinates (point A) can be 

found from Eq. (20) or (21): 

For 
  

   
   

   [    (
  
   

)
 

]    (20) 

 

Table 2 Values of k and η for some forms of transverse reinforcements 

Form 

of 

trans. 

reinf. 

 

 

         

k* 4 6 6.83 7.22 8 9,33 12.83 10 10.8 

η 4 8 8 12 12 12 16 16 16 

*k=4 in case of circular transverse reinforcement 
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Fig. 4 Unloading from a point C on reloading curve when 

εC<εA 

 

 

For 
  

   
   

   [    (
  
   

)
 

    
  
   

]    (21) 

The tangent modulus at point B can be found from Eq. 

(22) or (23): 

For 
  

   
   

   [
    

        
  

   

]       (22) 

For     
  

   
   

   [ 

  

   
      

    
 ]       (23) 

 

Case b): Unloading from a phase of reloading: 

In the case of unloading from a phase of reloading, 

depending on the coordinates of unloading point (C or D) 

comparing with the coordinates of point A(  ,   ), different 

moduli are used as given below and as shown in Figs. 4 and 

5. 

 

b1) Unloading from a point C where  𝐶     

• Point C( 𝐶,  𝐶):  

The coordinates of point A have been determined in the 

previous step. 

The value of unloading tangent modulus (  𝐶) at point 

C is obtained by linear interpolation between the modulus 

    at point A and    at point B which is given in Eq. (24) 

  𝐶       
        

       
 (24) 

• Point B(  , 0):  

The coordinates of point B have been determined in the 

previous step by applying Eq. (20) or (21). The value of the 

tangent modulus EU at point B has also been calculated by 

using Eq. (22) or (23). 

 

b2) Unloading from a point D where        

For the trajectory shown in Fig. 5, the two points D and 

E that the curve DE passes through them are determined as  

 

Fig. 5 Unloading from a point D on the reloading curve 

when εD>εA 

 

 

follows: 

• Point D(     ):  

The coordinates of point D have been determined in the 

previous step. 

The value of the unloading tangent modulus (   ) at 

point D is obtained by linear interpolation between the 

modulus     at point F and    at point E. The point F is 

defined as the intersection of the line of slope           

passing from point D with the envelope curve. By applying 

the coordinates of point F instead of the coordinates of 

point A, Eq. (19) allows the determination of the unloading 

modulus at point F.     can then be found by using Eq. 

(25): 

         
        

       
 (25) 

  • Point E (  , 0):  

The coordinates of point E are determined by applying 

   instead of    in Eq. (20) or (21). 

The value of tangent modulus    at point E is 

calculated by applying    of point E in Eq. (22) or (23). 

 

Reloading curve 
Eq. (26) is proposed for the reloading curve: 

  [ 𝑅 (
 

   
)
3

   𝑅 (
 

   
)
 

  𝑅 (
 

   
)    𝑅]   

  (26) 

The four unknown factors AR, BR, CR and DR are found 

by applying the coordinates and slopes of the two extreme 

points of the reloading curve (i.e., the starting point of 

reloading phase and the extreme point on the envelope 

curve). 

As shown in Figs. 6 and 7, reloading from zero stress 

and reloading from an unloading trajectory are considered 

in two different cases as follows: 

 

Case a): Reloading from a zero stress status (plastic 

residual strain) 

For the trajectory BG shown in Fig. 6, the two points B 

and G that the curve BG passes through them are 

determined as follows 

• Point B (  , 0): 

The coordinates of point B have been determined in the  

 r

),(  AAA

EUC
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),(  CCC

)0,( rB





 r
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
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Fig. 6 Reloading from a point of zero stress 

 

 

previous steps.  

The value of reloading tangent modulus ER at point B 

can be obtained from Eq. (27) 

 𝑅  [
 

         
  

   

]       (27) 

• Point G ( 𝐺,𝐺) 

 𝐺         (28) 

The modulus ER0 is the tangent modulus on the 

envelope curve at point G. 

 

Case b): Reloading from an unloading trajectory  

For the trajectory HI shown in Fig. 7, the coordinates 

and slopes of the two points H and I at the starting and 

finishing points of the curve HI are determined as follows: 

• Point H ( 𝐻,𝐻):  

The coordinates of point H have been determined in the 

previous step.  

The tangent modulus ERH at point H is considered to be 

equal to ER and can be calculated by using Eq. (27).  

• Point I ( 𝐼,𝐼):  

The strain at point I is calculated by using Eq. (29) 

 𝐼  [ 𝐾          𝐾  𝐻]
  

     
 (29) 

where: 𝐾       

The strain at point I, found from Eq. (29), gives  𝐼     

when  𝐻     and gives  𝐼   𝐺  𝐾   (see Eq. (28)) 

when  𝐻      (i.e. the point H is positioned on the point 

B). 

The stress  𝐼  and modulus EI at point I can be found by 

using its strain and the envelope curve. 

 
Failure point: 
To determine the maximum compression strain value 

( 𝐶𝐶 ) of confined concrete, Eq. (30), proposed by Sheikh 

(1982) was examined and adapted in the formulation 

 𝐶𝐶                        (30) 

    is expressed in MPa.  

where  𝐶𝐶  presents the maximum compression strain 

value of confined concrete,    represents the ratio of  

 

Fig. 7 Reloading from a point on the unloading trajectory 

 

 

transversal reinforcement volume per concrete volume 

situated inside the stirrups and     represents the yielding 

stress of the stirrups. 

 

4.4 Proposed stress-strain law for unconfined 
concrete 

 

By replacing the suffixes cc, c0, c0.45, c0.85 with c, 0, 

0.45, 0.85, respectively in Eqs. (1), (10) to (14) and (16) to 

(29), the proposed stress-strain law for unconfined concrete 

is found.  

To determine the maximum compression strain value 

( 𝐶 ) of unconfined concrete, Eq. (31) given by CEB-EIP 

Code (1993) was examined and adapted in the formulation. 

This equation is particularly applicable where there is a loss 

of concrete cover outside the stirrups 

 𝐶           
        (31) 

  
  is expressed in MPa.  

where   
  represents the conventional 28-days compressive 

strength of unconfined concrete. 

 

4.5 Application of the proposed formulations  
 

Two examples of the application of the proposed stress-

strain laws for confined and unconfined concretes under 

monotonic and cyclic loading are shown in Figs. 8 and 9. 

Fig. 8 shows an example for the application of the 

proposed model for unconfined concrete and confined 

concrete with transverse reinforcements (having a 6 cm 

spacing, and diameters of 8 mm and 6 mm).  

It can be seen from Fig. 8 that the presence of the 

transverse reinforcements significantly increases the 

strength of the RC elements and this influence is very 

significant after achieving the ultimate strength (after peak 

point). 

Fig. 9 shows another example of the application of the 

proposed stress-strain formulation to confined concrete 

(concrete of 28-days strength of    
  = 42 MPa, confined 

within rectangular stirrup ties of diameter 8 mm and a 

longitudinal spacing of 6 cm) under monotonic and cyclic 

loading. 

 

4.6 Validation of the proposed stress-strain 
formulation 
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Fig. 8 Effect of the spacing of transverse reinforcements, 

  
 =42 MPa 

 

 

Fig. 10 Comparison of the proposed model with 

experimental tests and simulation of Mander 

 

 

Fig. 12 Comparison of numerical simulation using the 

proposed model and experimental test/simulation of Park 

and Kent (1972) 

 

 

Some examples of comparison of the simulated results 

using the proposed stress-strain model and the experimental 

test results on full-scale RC members are presented in this 

Section. 

The simulated stress values using the proposed 

formulation for confined concrete, compared with those 

proposed by Mander (simulation and experimental test 

results), are illustrated in Fig. 10. 

As this figure shows, the location of the peak, i.e., the 

strain about 6‰ is overestimated by Mander, while this 

 
Fig. 9 An example of the application of the proposed stress-

strain formulation,   
 =42 MPa 

 

 

Fig. 11 Comparison of the simulation using the proposed 

formulation and experimental test, BMAL 

 

 

Fig. 13 Comparison of the average stiffness when using the 

proposed model and experimental tests, cyclic loading, 

Ω=30° 

 

 

strain and the rate of reduction of stress after the peak in the 

proposed model fits better with the results of other 

researchers (e.g.: Belmouden and Lestuzzi (2007) reported 

the value of the strain at peak of about 0.00267 for the 

confined concrete with the conventional ultimate strength of 

  
 =48 MPa). 

The simulated results obtained using CADEP (using the 

proposed model) were confirmed with the full-scale 

experimental results obtained by other researchers (Garcia  
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Fig. 14 Comparison of the equivalent viscous damping ratio 

when using the proposed model and experimental tests, 

cyclic loading, Ω=30° 

 

 

Gonzalez 1990, Sieffert et al. 1990, Park and Kent 1972). 

Comparison of numerically simulated results obtained 

for RC members using the proposed stress-strain model and 

experimental tests on the full-scale members are reflected in 

Figs. 11 to 15. The comparison indicates a good agreement 

between the proposed simulation and the experimental test 

results.  

In Fig. 11, the simulated results obtained using CADEP 

(using the proposed model) are compared with the 

experimental test results of Garcia Gonzalez (1990) on the 

columns tested under mono-axial bending moment and 

axial loading (BMAL).  

In Fig. 12, the results of the numerical simulation using 

the proposed model and the experimental test/simulation of 

Park and Kent (1972) for a cyclic mono-axial bending 

moment loading case are compared.  

As these figures show there is a good agreement 

between simulated and experimental results. 

Figs. 13 and 14 compare the simulated values when 

applying the proposed model, and the experimental test 

results (Garcia Gonzalez 1990) for the average stiffness and 

equivalent viscous damping ratio of the reference columns 

under cyclic oriented lateral force (the lateral force is 

applied with the orientation of  =30°) and axial loading. 

Fig. 15 shows the position of the neutral axis in the 

critical section of the reference column when the lateral 

force with the orientation of  =45° reaches its maximum 

value. As shown in this figure, by increasing the lateral 

force (or moment), the neutral axis moves from outside the 

section toward the center of the section. When the load is 

increased, the neutral axis moves with an approximately 

constant inclination up to the ultimate strength of the 

section. The results of measurements on the full-scale 

experimental tests (Garcia Gonzalez 1990), for the neutral 

axis position when peak load is applied to the critical 

section of the reference column is shown by the dashed 

lines in Fig. 15. Experimental test results showed an 

inclination of  =59° for the neutral axis when peak load 

was applied on the section for an orientation of lateral force 

of  =45°. As Fig. 15 shows, there is a good agreement 

between simulated values and experimental results.  

In general,  comparison of the simulated and 

 

Fig. 15 The neutral axis position of the reference section, 

maximum load, Ω=45° 

 

 

experimental test results indicates a close agreement 

between the simulations using the proposed models and the 

experimental tests on full-scale RC members. 

 

 

5. Proposition of a damage index for Concrete 
 

A damage index (DI), applicable to confined and 

unconfined concrete elements subjected to cyclic and 

monotonic loading, is proposed as follows.   

 

5.1 "Primary half-cycle" and "following half-cycle" 
concepts 

 

Following Otes (1985) a “primary half-cycle (PHC)” is 

considered when any half-cycle reaches a new maximum 

strain: it is followed by a certain number of “following half-

cycles (FHC)” with smaller strains.  Whenever a certain 

maximum strain, corresponding to the primary half-cycle 

(PHC)i is exceeded, a new primary half-cycle (PHC)i+1 is 

established.  Every PHC corresponds to a certain damage 

degree.  

 

5.2 Proposed damage index  
 

A damage index (DI) for confined and unconfined 

concretes under cyclic and monotonic loading is proposed, 

as given in Eq. (32). 

 𝐼   
∑ ∫  𝑝𝑖    𝑝𝑖

 𝑝𝑖

 𝑝 𝑖−1 

𝑖=𝑖
𝑖= 

∑ ∫  𝑝𝑘   𝑝𝑘
 𝑝𝑘

 𝑝 𝑘−1 

𝑘= 
𝑘= 

 (32) 

Where i and k are the cycle numbers, n is the cycle 

number at concrete failure,  𝑝𝑖 is the applied compressive 

stress during (PHC)i,   𝑝𝑖
 

is the differential strain during 

(PHC)i,      ∫  𝑝𝑖    𝑝𝑖
 𝑝𝑖

 𝑝 𝑖−1 
 is the area under the curve of  
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Fig. 16 Schematic illustration of DI calculation procedure 

for cyclic loading 

 

 

stress-strain during (PHC)i. 

The concept and the form of the proposed energy-based 

DI for concrete is similar to the concept and the form of the 

global energy-based simplified DI proposed by the authors 

for the reinforced concrete structures (Sadeghi and Nouban 

2016). 

To apply the proposed DI for confined and unconfined 

concretes, the stress-strain data of the concrete element is 

required. 

 

5.3 Schematic example of applying PHC absorbed 
energy in DI 

 

The evaluation of the PHC and FHC absorbed energies 

and DI is illustrated by the following example shown 

schematically in Fig. 16 for cyclic loading.  

Fig. 16 shows typical stress-strain curve of a confined 

concrete under cyclic loading. The energy Ep1 of first PHC 

corresponds to the under curve area of OAA’’, whereas Ef1 

of first FHC is still zero. If point A corresponded to failure, 

Ep1 would be equal to ∑  𝑝𝑖   
𝑖=𝑖
𝑖=  and Eu

 
while i=imax=n= 

1 and DI=100%. This concept retains its validity for 

monotonic loading at failure. 

During unloading toward point B, the recovered energy, 

corresponding to the area under the curve AA’’B, is 

recovered, while the DI retains its value. Further loading up 

to point A’ (maximum strain to date) is equal to the first 

FHC “following half-cycle”, with absorbed energy Ef1, 

corresponding to the under curve area of BA’A’’. After 

point A’, a new PHC is formed. Ep2 is equal to the area 

under the curve A’CC’’A’’. 

During unloading toward point D, the recovered energy 

corresponding to the area under the curve CC’’D, is 

recovered, while the DI retains its value. 

Further loading up to point C’ (maximum strain to date) 

is equal to the second FHC “following half-cycle”, with 

absorbed energy Ef2, corresponding to the under curve area 

of DC’C’’. After point C’, a new PHC is formed. Ep3 is 

equal to the area under the curve C’EE’’C’’. Subsequent 

cycles are analyzed with the same procedure and DI is 

calculated. 

 

5.4 Different phases of damage and DI 

 

Fig. 17 Proposed DI, calculated for confined and 

unconfined concretes under cyclic loading 

 

 

Fig. 17 compares the proposed DI, calculated for: 

concrete confined within rectangular transverse 

reinforcements with a diameter of 9 mm and a spacing of 6 

cm, along with unconfined concrete of strength of   
 =35 

MPa under cyclic loading. 

As Fig. 17 indicates, in this case, the DI is about 55.63% 

at peak point (34 MPa, 2.05%) of unconfined concrete 

stress-strain curve and is about 20.92% at peak point (38.62 

MPa, 2.50%) of confined concrete stress-strain. 

In general, the proposed DI reaches between 50% and 

60% at the peak point of the unconfined concrete’s stress-

strain curve and is between 20% and 25% at the peak point 

of confined concrete stress-strain curve. It reaches 100% at 

failure. 

It is to be noted that, in monotonic loading case, 

practically for the strains greater than peak strain, without 

increasing the load, strain increases up to the failure of 

concrete, while in cyclic loading case, due to loading, 

unloading and reloading action, concrete resists for the 

strains greater than strain at peak. Since the monotonic 

stress-strain curve acts as envelop of the stress-strain curve 

in the cyclic loading case, it can be used in DI calculations 

for cyclic loading case as well. 

In order to calculate DI, the stress-strain data for the 

concrete element is required. This data can be found from 

the proposed formulations to simulate the concrete 

behavior. In deciding after an earthquake, whether to repair 

or demolish a structure, the calculated DI is compared with 

an allowable damage index ( DI ) which could be 

determined by technical rules and practice building codes 

for different types of structures according to the economy 

and safety criteria.  

 

 

6. Conclusions  
 

The proposed uniaxial stress-strain models for confined 

and unconfined concretes under the compression monotonic 

and cyclic loading is simple and applicable to simulate 

numerically the RC structures’ behaviors under monotonic 

and cyclic loading. 

The proposed models are validated mainly by 

comparison with the results of the experimental tests carried 
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out on both concrete cylindrical samples and on the RC full-

scale columns subjected to cyclic loading performed by 

different researchers. 

Since the proposed formulations have strong 

mathematical structures, they can readily be adapted to 

achieve a higher degree of precision by improving the 

relevant coefficients on more precise tests. 

The damage index proposed in this paper is applicable 

to confined and unconfined concrete elements subjected to 

cyclic and monotonic loading. It is a practical means for 

determining whether to repair or demolish structures after 

an earthquake. It can also be employed in the design of new 

structures as a design parameter to define the acceptable 

limit of damage as set by building codes.   
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