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1. Introduction 
 

The use of High-Strength Concrete (HSC) in Prestressed 

Concrete (PC) structures is becoming somehow frequent in 

the last years. Such structures are expected to be more 

flexible than Normal-Strength Concrete (NSC) structures 

because HSC reduces self-weight and inertia of the 

structural members and the increase in the Modulus of 

Elasticity is not sufficient to counterbalance the reduction of 

mass. This high flexibility could be problematic and can be 

solved by using prestress technique to increase the stiffness. 

For this purpose, the application of longitudinal prestress in 

members under high torsion forces is a normal situation 

(Navarro Gregori et al. 2007). 

The first studies on torsion of Reinforced Concrete (RC) 

beams were published in the beginning of the past century. 

One of the developed theoretical models is the Space Truss 

Analogy (STA) which has an important historical value and 

constitutes the base of the American code (since 1995) and 

the European model code (since 1978). Based on the STA, 

several theories were developed. One of the theories widely 

used to compute the torsional strength is the Variable Angle 

Truss-Model (VATM) which gives a good physical 

understanding of the torsion problem in RC and PC beams. 

Several authors have contributed to establish the latest 

versions of the VATM and many studies can be found in the 

literature. Hsu and Mo (1985) developed a consistent model 
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for PC beams (with longitudinal prestress) which account 

the influence of the softening effect. The VATM usually 

provides good results for high levels of loading. However, 

for low levels of loading, the VATM does not provide good 

predictions since the model assumes a fully cracked state 

from the beginning of the loading and it does not account 

for the concrete core influence. More complex theoretical 

models have been recently proposed by several authors 

(Bairan Garcia and Mari Bernat 2006a, b, Jeng and Hsu 

2009, Mostofinejad and Behzad 2011). However, VATM is 

recognized as a simple model to predict with good accuracy 

the ultimate behavior of RC beams under torsion, even with 

compressive axial force interaction (Bernardo et al. 2015a, 

b). 

Several proposals of stress ()-strain () relationships 

for the materials can be found in the literature. Some of 

these proposals account for the softening effect (for the 

concrete in compression on struts) and the stiffening effect 

(for the reinforcement in tension). Lopes et al. (2015a, b) 

showed that the variability between these several proposals 

is very high, which justifies the need for evaluating these -

 relationships in order to establish solid conclusions. Jeng 

et al. (2011) showed the influence of the strain gradient 

effect in RC beams under torsion, which strongly depends 

on the - relationships chosen for the materials. This is 

also true for VATM because its theoretical results will 

strongly depend on the chosen - relationships for 

concrete and reinforcement. 

This article presents a computational procedure, based 

on an extension of the VATM, to predict the ultimate 

behavior of PC beams under torsion. Both longitudinal and 

transversal PC beams are covered. The ultimate behavior of 

the beams is studied through the T (torque)- (twist) curves. 
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The theoretical results obtained from several combinations 

of - relationships proposed by several authors are 

compared with some experimental results available in the 

literature and also with the predictions computed by using 

some codes of practice. 

 

 

2. Previous studies and research significance 
 

In previous studies, some authors predicted the behavior 

of NSC beams with longitudinal prestress under torsion by 

using the VATM (Hsu and Mo 1985) or more simplified 

truss-models (Rahal and Collins 1996). For instance, Rahal 

and Collins (1996) observed that the maximum torque, both 

experimental and theoretical, are very similar. Hsu and Mo 

(1985) observed that the ultimate values of the T- curves, 

both experimental and theoretical, are also quite similar. 

Recently, these observations were also confirmed by 

Andrade et al. (2011), Bernardo and Lopes (2008) with 

other beams and by using also the VATM. However, for 

HSC beams Bernardo and Lopes (2011) observed that the 

original VATM no longer could be considered adequate 

since resistances are highly overestimated for HSC beams 

with high torsional reinforcement ratio. In fact, for HSC in 

compression the shape of the - curve is quite different 

when compared with NSC (Bernardo and Lopes 2004), 

leading to noticeable differences in the response of the 

beams under torsion even for low loading levels (Jeng et al. 

2013). Thus, theoretical models that strongly depend of - 
relationships cannot be directly extrapolated from NSC to 

HSC, including for beams under torsion. For this reason, the 

original calculus procedure from VATM was reviewed by 

Bernardo and Lopes (2011) in order to incorporate specific 

- relationships for HSC. Despite having achieved better 

results, the authors proposed additional reduction factors for 

the - relationships in order to approximate even more the 

experimental and theoretical results for HSC beams under 

torsion. 

In the previously referred studies the authors only tested 

few - relationships to characterize the behavior of the 

materials. In general, in previous studies different authors 

use different - relationships, as well as different 

combinations of these relationships, to model the behavior 

of the materials to compute theoretically the maximum 

torque of beams under torsion. Moreover, the majority of 

the older studies don’t incorporate beams with HSC. In past 

years, new refinements have been proposed for the - 
relationships, mainly for concrete. For this material, new 

expressions to compute the reduction factors for stress and 

strain have been also proposed. From this perspective, the 

number of choices for the - relationships that can be 

used, which are also dictated by the possible available 

combinations, is very high. 

For this reason, Bernardo et al. (2012a, b) tested several 

- relationships for the materials found in the literature, 

and different combinations of these relationships, to 

compute the ultimate behavior of RC beams under torsion 

by using VATM formulation. Among the tested models and 

based on several comparative analyses with experimental 

results, the authors found one theoretical model which  

 
(a) 

 
(b) 

Fig. 1 - curves: (a) concrete in compression; (b) 

reinforcement in tension 

 

 

provides the best predictions of the torsional strength and 

corresponding twist. This theoretical model is the one that 

incorporates the - relationship for compressed concrete in 

struts proposed by Belarbi and Hsu (1991) with softening 

coefficients proposed by Zhang and Hsu (1998) and the - 
relationship for ordinary reinforcement in tension proposed 

by Belarbi and Hsu (1994). With this theoretical model, the 

additional reduction factors proposed by Bernardo and 

Lopes (2011) were no longer need for HSC beams. 

The behavior observed for RC beams cannot be directly 

extrapolated for PC beams. For these beams, an additional 

- relationship for prestress reinforcement in tension needs 

to be introduced in the theoretical model. This modification 

should modify the response of the VATM and the - 
relationships for the materials, including their combinations, 

need to be rechecked for PC beams under torsion. 

The aim of this article is to help researchers to choose 

the best relationships for the materials, and their 

combinations, to compute the ultimate behavior of PC 

beams under torsion. This is done by testing several 

possible combinations with the relationships found in 

literature, to compute both the ultimate torque and twist 

from the VATM. Furthermore, equilibrium equations of the 

VATM are modified in order to introduce the additional 

force in the prestress reinforcement. 

 

 

3. Stress-strain relationships 
 

Usually, theoretical models for the behavior of cracked 

RC elements under shear consider the independent behavior 

of concrete and reinforcement through their average -  
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relationships. For concrete in compression in the struts (Fig. 

1(a)), the average nonlinear - relationships usually 

account for the softening effect (influence of the transversal 

tension strains) by incorporating reduction factors. For 

reinforcement in tension (Fig. 1(b)), some average 

nonlinear - relationships account for the stiffening effect 

(interaction between reinforcement and concrete in tension 

between cracks). Other simplified - relationships 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(bilinear) for reinforcement don’t incorporate this 

interaction and are simply defined from uniaxial tensile 

tests (Fig. 1(b)). 

Table 1 presents the equations for several - 

relationships for concrete in compression in the struts found 

in the literature. They will be checked in this study. Table 2 

presents the equations for the reduction factors for stress 

() and strain () also proposed by several authors. The  

Table 1 - relationships for concrete in compression in the struts 
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Collins and Poraz Model A (1989), 

i) if 
2c   : 

p cf f    and 
p    ; 

ii) if 
2c      : 

2c p cf f f    ; 

iii) if 
2c    : 

2 2,c c basef f  , 
p cf f   and 

p     

Collins and Poraz Model B (1989), 

i) if 
2c    : 

p cf f    and 
p    ; 

ii) if 
2c    : 

2 2,c c basef f  , 
p cf f   and 

p     

(1)
 Calibrated for HSC 

Table 2 Reduction factors for stress and strain 
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Vecchio and Collins (1982), 
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Collins and Poraz-v1 (1989), 
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Mikame et al. (1991), 
     0.27A  0.96B   C    0D   0.167E   1F   

Ueda et al. (1991)(1), 
     0.8A  0.6B   1C   0.2D  0.39E   310F    

Belarbi and Hsu (1991), 

10.9 / 1 400 c       

11/ 1 160 c     
10.9 / 1 cA       

Hsu (1993), 600A  

Belarbi e Hsu (1995), 400A  

Zhang and Hsu (1998)(1), 

 

11 400 /

c

c

R f
 


   

  

  









/1  1

  1  

   5.8 /  MPa 0.9c cR f f     

Miyahara et al. (1988), 

1

1 1

1

1.0                        0.0012

1.15 125          0.0012 0.0044

0.6                        0.0044

c

c c

c







   

      
   

 

(1)
Calibrated for HSC 

579



 

Luís F.A. Bernardo and Jorge M.A. Andrade 

 

Table 3 Tested - relationships for concrete in 

compression in the struts 

Model - relationship 
Reduction factores  

and  

c01 Hognestad (1952) - 

c02 Vecchio and Collins (1982) 
Vecchio and Collins 

(1982) 

c03 Vecchio and Collins (1986) 
Vecchio and Collins 

(1986) 

c04 
Collins and Poraz 

-Model A (1989) 
Collins and Poraz (1989) 

c05 
Collins and Poraz 

-Mod. B (1989) 
Collins and Poraz (1989) 

c06 
Collins and Poraz 

-Model A (1989) 
Vecchio et al. (1994) 

c07 
Collins and Poraz 

-Model A (1989) 
Vecchio -v1 (2000) 

c08 
Collins and Poraz 

-Mod. B (1989) 
Vecchio -v2 (2000) 

c09 Vecchio and Collins (1982) Vecchio -v1 (2000) 

c10 Vecchio and Collins (1986) Vecchio -v2 (2000) 

c11 Belarbi and Hsu (1991) Belarbi and Hsu (1991) 

c12 Belarbi and Hsu (1991) Belarbi and Hsu (1995) 

c13 Belarbi and Hsu (1991) Hsu (1993) 

c14 Belarbi and Hsu (1991) Zhang and Hsu (1998) 

c15 Zhu et al. (2001) Zhang and Hsu (1998) 

c16 Vecchio and Collins (1982) Mikame et al. (1991) 

c17 Vecchio and Collins (1986) Mikame et al. (1991) 

c18 Vecchio and Collins (1982) Ueda et al. (1991) 

c19 Vecchio and Collins (1986) Ueda et al. (1991) 

c20 Vecchio and Collins (1982) Miyahara et al. (1988) 

c21 Vecchio and Collins (1986) Miyahara et al. (1988) 

 

 

meanings of some of the principal parameters are: εo is the 

strain corresponding to the peak stress ( cf  ), c1 is the 

principal tension strain (c1=l+t+d, Hsu, 1984), l, t and 

d will be defined later, c = c2 is the principal compression 

strain in the principal direction of the compression stress (fc 

=fc2). Table 3 presents all the used combinations (ci) 

between - relationships and reduction factors, accounting 

for the original correspondence between each other. 

Table 4 presents the equations for the - relationships 

for ordinary (orj) and prestress (prj) reinforcement in 

tension to be checked in this study. The meaning of some of 

the main parameters are: fs and fp are the tensile stress, fsy is 

the yielding stress, fp0.1% is the stress corresponding to the 

conventional strain p0.1%=0.1%, fst and fpt are the tensile 

strength, s and p are the tension strain, sy is the yielding 

strain at the end of the elastic behavior, su and pu are the 

ultimate strain, Es and Ep are the Young’s Modulus. 

Each model c01 to c21 (Table 3) will be used separately 

with models or1+pr1, or2+pr2 and or3+pr3 (Table 4). For 

models c14 and c15 the reduction factors = depend on 

the parameter , which represents the ratio between the 

resisting forces in the longitudinal and transversal 

reinforcement. For prestressed beams, parameter  should 

also account for the resistance force in the prestressed 

reinforcement. For beams with longitudinal and transversal 

prestress, parameter  is calculated as follows: 

0.1% 0.1%

0.1%
0.1%

l sly pl pl l sly pl pl

pttt sty pt pt
sty p pt

p

f f A f A f

AAf f
u f u f

s s

  
  

 


 
(1) 

Where: 

l, t  = 
longitudinal and transversal ordinary 

reinforcement ratio; 

pl, pt = 
longitudinal and transversal prestress 

reinforcement ratio; 

Al, Apl = 
total area of the longitudinal ordinary and 

prestress reinforcement; 

At, Apt = 
area of one leg of the transversal ordinary and 

prestress reinforcement; 

st, sp = 
transversal reinforcement spacing (ordinary and 

prestress); 

ut, up = 

perimeter of the transversal ordinary and prestress 

reinforcement (u=2x1+2y1,with x1 and y1 the 

minor and major dimension of the hoop); 

fsly, fsty = 
yielding stress of the longitudinal and transversal 

ordinary reinforcement; 

fpl0.1%, 

fpt0.1% 
= 

conventional stress of the longitudinal and 

transversal prestress reinforcement. 

From the above it can be stated that, along the past 

years, authors have proposed different - relationships to 

model the behavior of the materials. Several refinements 

have been proposed for the - relationships, mainly for the 

concrete. For this material, different expressions to compute 

the reduction factors for stress and strain have been also 

proposed. From this perspective, the number of choices for 

the relationships that can be used, which are also dictated 

by the possible available combinations between them (for 

different reduction factors and different materials), is high. 

Moreover, some of these proposals (the older ones) don’t 

cover HSC and then are not valid for HSC beams. For this 

reasons, to compute the ultimate behavior of PC beams 

under torsion, researchers can show some difficulty to 

choose the best - relationships and their combinations, to 

characterize the behavior of the materials. 

 

 

4. Theoretical model based on VATM 
 

After the decompression of concrete, a PC beam under 

torsion behaves like a common RC beam. Thus, prestress 

only influence equilibrium equations in the prestress 

direction (longitudinal and/or transversal). The unique 

modification to the equilibrium equations of VATM, as 

stated by Hsu and Mo (1985), is to add the force in the 

prestress reinforcement. This was made by the referred 

authors for beams with longitudinal prestress. In this study, 

the equations of VATM will be rewritten for the general 

case of beams with longitudinal and/or transversal prestress. 

To compute the theoretical T- curve of PC beams from 

the VATM (Fig. 2) the three following equilibrium 

equations are required to compute the torque, T, the 

effective thickness of the walls (struts), td, for the equivalent 

tubular section and the angle of the concrete struts, , from  
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the longitudinal axis of the beam (Hsu and Mo 1985) 

  cosd dT A t sin   2  (2) 

2 l l pl pl

d d

A A
cos

p t

  
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s t
 


 (4) 

l l pl pl t t
d

d d

A A A
t

p s

   
 

 
 (5) 

Where: 

Ao = 

area limited by the center line of the flow of shear 

stresses which coincides with the center line of 

the walls thickness, td; 

po = perimeter of area Ao; 

d = stress in the diagonal concrete strut; 

l = stress in the longitudinal reinforcement; 

t = stress in the transversal reinforcement; 

pl = stress in the longitudinal prestress reinforcement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

It should be noted that for longitudinal prestress, the 

longitudinal force should include both the ordinary and 

prestress longitudinal reinforcement (Alσl+Aplσpl). 

No studies were found in the literature related with the 

study of beams with transversal prestress by using VATM. 

For such beams, Eq. (4) must be rewritten in order to 

replace the transversal force (per unit length) in the ordinary 

reinforcement (Alσl/s) by the total transversal force (also per 

unit length) including both the ordinary and prestress 

reinforcement (Alσl/s +Aplσpl/sp) 

pt ptt t

d d p d d

AA
sin

s t s t


  

 

2
 (6) 

Where pt is the stress in the transversal prestress 

reinforcement. 

For beams with longitudinal and transversal prestress, 

Eq. (3) and Eq. (6) should be used in order to incorporate 

both longitudinal and transversal force in the prestress 

reinforcement. In order to use one simple equation to 

calculate  for such beams and to generalize this equation 

for RC beams or PC beams with longitudinal and/or 

transversal prestress, an alternative and general equation is 

Table 4 - relationships for reinforcement in tension 

Ordinary reinforcement Prestress reinforcement 

Model or1: EC2 (2010) - Bilinear 

sss Ef 
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Model pr1: EC2 (2010) - Bilinear 
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Model or2: EC2 (2010) - Bilinear 
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Model pr2: EC2 (2010) - Bilinear 
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Model or3: Belarbi and Hsu (1994) - Nonlinear 
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Model pr2: Hsu and Mo (1985) - Nonlinear 
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Fig. 2 VATM and strain/stress state in the concrete struts 
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derived here by dividing Eq. (6) by Eq. (3). This new 

equation substitutes Eqs. (3)-(4) and Eq. (6). 

pt ptt t

p

pl pll l

AA

s ssin
tg

AAcos

p p 





  




2
2

2
 (7) 

Similarly, since longitudinal equilibrium equation is 

also used to compute the effective depth of the concrete 

struts (td), Eq. (5) should also incorporate both the total 

longitudinal and transversal force (general case) 

dp

ptpt

d

plpl

d

tt

d

ll
d

s

A

p

A

s

A

p

A
t























 (8) 

For RC beams the three following compatibility 

equations are also need to compute the strain of the 

longitudinal reinforcement,l, the strain of the transversal 

reinforcement, t, and the twist,  (Hsu and Mo 1985) 

d
l ds

A

p T  cotg 





 
    

 

2 1

2
 (9) 

d
t ds

A

p T  tg 





 
    

 

2 1

2
 (10) 

ds

dt sin cos


 

 2
 (11) 

The strain at the surface of the diagonal concrete strut, 

ds, and at the center line of the flow of shear stresses, d, 

can be computed from (Fig. 2) (Hsu and Mo 1985) 

 d
ds t d

p t
 tg  sin  cos

A





       
2

 (12) 

2/dsd    (13) 

For beams with longitudinal prestress, the procedure to 

compute the strain and stress in the longitudinal prestress 

reinforcement, pl and pl, is the following one (Hsu and Mo 

1985) 

lldecpl  ,  (14) 

lilpildec  ,,
 (15) 

pl

lpi

lpi
E

f ,

,   (16) 

    cplhccsl

lpipl

li
EAAAEEA

fA




,
 (17) 

Where 

dec,l  = 
strain in the longitudinal prestress reinforcement 

at decompression; 

li = 
initial strain in the longitudinal ordinary 

reinforcement due to prestress; 

pi,l = 
initial strain in the longitudinal prestress 

reinforcement due to prestress; 

fpi,l = 
initial stress in the longitudinal prestress 

reinforcement; 

Epl = 
Young’s modulus of the longitudinal prestress 

reinforcement; 

Ec = Young’s modulus of the concrete; 

Ac = 
area limited by the external perimeter of the cross 

section; 

Ah = 
Area of the hollow part of the cross section (for 

plain cross sections: Ah=0). 

In Eq. (14) the strain in the longitudinal ordinary 

reinforcement, l, is computed from Eq. (9). 

For beams with transversal prestress, the earlier 

procedure should be rewritten to compute the strain in the 

transversal prestress reinforcement, pt, to compute 

subsequently the stress pt 

ttdecpt  ,
 (18) 

titpitdec  ,,
 (19) 

pt

tpi

tpi
E

f ,

,   (20) 
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s
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f
s
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











22

2 ,

 
(21) 

Where: 

dec,t = 
strain in the transversal prestress reinforcement at 

decompression; 

ti = 
initial strain in the transversal ordinary 

reinforcement due to prestress; 

pi,t = 
initial strain in the transversal prestress 

reinforcement due to prestress; 

fpi,t = 
initial stress in the transversal prestress 

reinforcement; 

Ept = 
Young’s modulus of the transversal prestress 

reinforcement. 

In Eq. (18) the strain in the transversal ordinary 

reinforcement, t, is computed from Eq. (10). 

Eq. (21) can be derived assuming a beam (with unitary 

length) with transversal prestress in the vertical walls (Fig. 

2). The total area, per unit length, of transversal ordinary 

and prestress reinforcement (2 vertical units per transversal 

section) is 2At/s and 2Apt/sp, respectively. The horizontal 

area of homogenized concrete is 

s

A

s

A
AA

E

E

s

A
A t

p

pt

hc

c

st
c 222hom,   (22) 

Where 1 xAc
 and 1)2(  txAh

 (see Fig. 2). 

The initial transversal prestress force is calculated from 
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tpi

p

pt

tpi f
s

A
F ,, 2  (23) 

The initial strain in the transversal ordinary 

reinforcement due to transversal prestress is 

hom,

,

cc

tpi

ti
AE

F
  (24) 

Introducing Eq. (23) and Eq. (22) into Eq. (24) leads to 

Eq. (21). 

For transversal prestress in the horizontal walls, Eq. (21) 

remains valid if the average stress in the concrete due to 

prestress is the same as for the vertical walls. 

For beams with longitudinal and transversal prestress, 

Eq. (14) and Eq. (18) should be used together. 

The stress of the inclined concrete struts, d, is defined 

as the medium stress of a non-uniform diagram (Fig. 2) 

cd fk  1
 (25) 

Where k1 is the ratio between the medium stress (B, see 

Fig. 2) and the maximum stress (A, see Fig. 2). Parameter 

k1 will be calculated by numerical integration from the - 

relationships for the concrete struts (Table 1). 

Based on a strain state analysis, it can be demonstrated 

that the principal strain in tension (c1) in the concrete strut 

(tension strain perpendicular to the concrete strut), to be 

introduced in equations for  and  on Table 2, can be 

approximately calculated from (Hsu 1984) 

dtlc  1
 (26) 

The previous equations and the equations incorporated 

in Tables 1-3 lead to the iterative calculus procedure 

presented in Fig. 3 (for the general case with ) in order 

to calculate the theoretical T- curve of a beam with 

longitudinal and transversal prestress (general case). In this 

calculus procedure the variable td, ,  and  (if ) 
are unknown and interdependent. 

Parameter o was calculated from EC2 (2010). The 

theoretical failure of the sections was defined from the 

maximum strains of the materials (concrete and steel). 

Either the strain of the concrete struts, ds (Fig. 2), reaches 

its maximum value (cu) or the steel strain, s, reaches the 

usual maximum value of s=10
0
/00. Parameter cu was 

calculated from EC2 (2010). 

 

 

5. Test beams 
 

In this study, a comparative analysis focused on the 

ultimate behavior is carried out with the help of some 

experimental results of PC beams under torsion, which are 

available in the literature. Only beams with uniform 

longitudinal prestress were analyzed since no experimental 

tests of beams with transversal prestress were found in the 

literature. 

The same beams used by Bernardo and Lopes (2011) 

and Jeng et al. (2010) in their comparative analysis are used 

in this section: Beams P2 and P3 from Mitchell and Collins  

 

Fig. 3 Flowchart for the calculation of T- curve 

 

 

(1974), Beam P8 from Hsu and Mo (1985), Beams D1 and 

D2 from Bernardo and Lopes (2011), Beams PA1R, PA2, 

PA3, PA4, PB1, PB2, PB3, PB4, PC1, PC2, PC3 and PC4 

from McMullen and El-Degwy (1985). Only 3 beams were 

hollow (P2, D1 and D2). 

It should be noted that, as justified by Bernardo and 

Lopes (2008, 2011), not all the experimental results 

available in the literature can be used for comparative 

analysis with theoretical results from VATM due to various 

reasons. For instance, some older studies have not sufficient  
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data or do not meet basic design recommendations 

incorporated in current codes of practice. In this earlier 

situation, such beams show atypical behaviors under 

torsion. In other experimental studies, including recent 

studies, the authors present an average twist for all the beam 

length, and not the twist in the failure region (which is 

localized along a small length of the beam). This aspect is 

particularly important in slender beams. This invalidate 

direct comparisons between experimental twists and 

theoretical twists. In fact, these last are based on a 

theoretical section analysis (of the critical section), and not 

an overall analysis of the test beams. For this last reason, 

test beams from Wafa et al. (1995) (Beams H3AR, H2A, 

H1AR, H3B, H2B, H1B, M3A, M2A, M1A, M3B, M2B 

and M1B) were not be considered for some of the 

comparative analysis performed in this study. In many 

previous studies, authors only studied the resistance torque, 

for which this last issue is not limiting. So they could 

include more experimental beams in their comparative 

analysis. In this study, since both resistance torque and 

corresponding twist is studied, a much more limited number 

of experimental results can be used. 

Table 5 summarizes some of the geometrical and 

mechanical properties of the test PC beams (longitudinal 

prestress) necessary to compute the T- curve, including the 

external width (x) and height (y) of the cross-section, the 

thickness of the walls of hollow sections (t), the distances 

between centerlines of legs of the closed stirrups (x1 and y1), 

the total area of longitudinal reinforcement (Asl), the 

distributed area of the transversal reinforcement (Ast/s, 

where s is the spacing of transversal reinforcement), the 

ordinary longitudinal reinforcement ratio (ρl=Asl/Ac), with 

Ac=xy) and the ordinary transversal reinforcement ratio 

(ρt=Astu/(Acs), with u=2(x1+y1), the average concrete 

compressive strength (fcm), the average yielding stress of 

longitudinal and transversal ordinary reinforcement (flym and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

ftym). 

Table 5 also incorporate information about longitudinal 

prestress, namely: the total area of longitudinal prestress 

reinforcement (Ap), the proportional conventional limit 

stress to 0.1% (fp0.1%), the initial stress in the prestress 

reinforcement (fpi), the average stress in the concrete due to 

prestress (fcp) and the Young’s modulus for the prestress 

reinforcement (Ep). Despite plain and hollow beams generally 

behaves differently (Valipour and Foster 2010, Alnuaimi et al. 

2008), for torsion and for the resistance torque there is no 

noticeable diferences since the concrete core is not efective (Hsu 

1984). For this reason, plain and hollow beams are grouped in 

the same table. 

 

 

6. Comparative analysis with experimental results 
 

Based on the computing procedure presented in Fig. 3, a 

computer tool was developed with the computer program 

language Delphi to compute the T- curve for PC beams 

under torsion (Andrade et al. 2011). The ultimate part of the 

computed theoretical curve is compared with the 

experimental ones from the test beams. Each one of the - 
relationships for concrete strut (models c01 to c21, see 

Table 3) and for tension steel (models or1 to or3 and pr1 to 

pr3, see Table 4) was used. Each model ci (i=1 to 21) was 

combined with each model orj+prj (j=1 to 3) to calculate 

the theoretical T- curves. Then, 213=66 simulations were 

performed for each beam. 

From the theoretical curves, the theoretical values for 

the maximum (resistance) torque (Tn,th) and the 

corresponding theoretical twist (n,th) were highlighted. This 

would help comparative analyses to be done on the 

behavior of the corresponding experimental values (Tn,exp 

and n,exp). In order to facilitate the comparative analysis, 

Table 5 Properties of reference beams 

Beam 
Section 

type 

x 

cm 

y 

cm 

t 

cm 

x1 

cm 

y1 

cm 

Asl 

cm2 

Ast / s 

cm2/m 

Ap 

cm2 
l 

% 

t 

% 

fcm 

MPa 

flym 

MPa 

ftym 

MPa 

fp0,1% 

MPa 

fpi 

MPa 

fcp 

MPa 

Ep 

GPa 

P3 Plain 35.6 43.1 - 29.2 36.8 4.3 7.4 4.3 0.3 0.6 34.0 328 328 1476 1145 0.86 195 

P8 Plain 25.4 38.1 - 21.6 34.3 5.2 22.6 5.2 0.5 2.6 31.0 334 336 959 690 6.83 205 

PA1R Plain 25.4 25.4 - 22.2 22.2 2.9 4.9 0.9 0.4 0.7 43.6 435 310 1638 1207 1.74 189 

PA2 Plain 25.4 25.4 - 21.6 21.6 5.1 9.1 1.5 0.8 1.2 45.6 483 310 1663 1207 2.81 195 

PA3 Plain 25.4 25.4 - 21.9 21.9 7.9 8.9 2.2 1.2 1.2 41.8 389 435 1744 1303 4.42 199 

PA4 Plain 25.4 25.4 - 21.9 21.9 11.4 13.0 3.0 1.8 1.8 42.2 419 435 1709 1303 6.00 192 

PB1 Plain 17.8 35.6 - 14.6 32.4 2.9 4.9 0.9 0.5 0.7 45.8 435 310 1638 1207 1.77 189 

PB2 Plain 17.8 35.6 - 14.0 31.8 5.1 9.1 1.5 0.8 1.3 45.8 483 310 1663 1207 2.86 195 

PB3 Plain 17.8 35.6 - 14.3 32.1 7.9 8.4 2.2 1.3 1.2 43.5 389 435 1744 1303 4.50 199 

PB4 Plain 17.8 35.6 - 14.3 32.1 11.4 11.9 3.0 1.8 1.7 45.5 419 435 1709 1303 6.11 192 

PC1 Plain 14.6 43.8 - 11.4 40.6 2.9 4.2 0.9 0.5 0.7 42.2 435 310 1638 1207 1.76 189 

PC2 Plain 14.6 43.8 - 10.8 40.0 5.1 7.9 1.5 0.8 1.3 45.1 483 310 1663 1207 2.83 195 

PC3 Plain 14.6 43.8 - 11.1 40.3 7.9 7.5 2.2 1.2 1.2 41.3 389 435 1744 1303 4.46 199 

PC4 Plain 14.6 43.8 - 11.1 40.3 11.4 11.0 3.0 1.8 1.8 42.1 419 435 1709 1303 6.05 192 

P2 Hollow 35.6 43.1 8.9 31.2 38.9 5.7 7.4 5.7 0.4 0.7 32.9 407 407 1476 1145 4.89 195 

D1 Hollow 60.0 60.0 11.4 54.3 54.2 23.8 11.2 4.2 0.7 0.7 80.8 724 715 1670 640 1.79 195 

D2 Hollow 60.0 60.0 11.5 55.5 55.5 23.8 11.2 5.6 0.7 0.7 58.8 724 715 1670 1100 3.08 195 
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the ratios of experimental to theoretical values of the 

referred parameters were calculated (Tn,exp/Tn,th and n,exp 

/n,th). 

Table 6 summarizes the results and the comparative 

analyses for the parameters previously mentioned. For each 

parameter, three statistical parameters were quantified: the 

average value (x̅), the sample standard deviation (s) and the 

coefficient of variation (cv). 

A global analysis of Table 6 shows that the variability 

between the results for each tested model is higher for the 

twists when compared with the maximum torques. Table 6 

shows that the range of values for the average Tn,exp/Tn,th 

ratio (x̅) is 0.75 to 1.10. The distance between extremes 

values is somewhat high. Model c1 shows the lower values 

for x̅. This model does not incorporate reduction factors to 

account for the softening effect. As a consequence, the 

resistances are overestimated (softening effect reduces the 

compressive strength of concrete struts). From Table 6, it 

can be stated that the concrete models c03, c05, c06, c11, 

c12, c13, c14, c15, c18, c19, c20 and c21 are those for 

which x̅ values are the closest to 1.00 (between 0.90 and 

1.10). Among the referred models, models c11, c12, c13, 

c18 and c19 show x̅ values greater than 0.95 and smaller 

than 1.05. The results obtained with the use of model or3+ 

pr3 show a slight increase of x̅ values when compared with 

models or1+pr1 or or2+pr2. This seems to show that the 

stiffening effect has small influence. However, models or3 

and pr3 should be considered theoretically more 

satisfactory, since they are nonlinear models. From the 

variation coefficient (cv) in Table 6, it can be observed that 

for the concrete models c11, c12, c13, c18 and c19, the cv 

values are smaller, generally below10%. The dispersion is 

not negligible but still acceptable. The results of Table 6 

also seem to indicate that the hardening of ordinary and 

prestress reinforcement after the linear-elastic limit point 

does not have an important influence, since the results for 

or1+pr1 and or2+pr2 are very similar. 

The previous analysis confirms that the use of the 

VATM, with appropriate - relationships for the materials, 

is appropriate for the prediction of the torsional strength of 

PC beams. This conclusion is logical since the beam is 

extensively cracked for high levels of loading (in this stage 

prestress reinforcement behaves like passive 

reinforcement). 

The analysis of the results of Table 6, with respect to 

n,exp/n,th ratios, shows a large range of values when 

compared with those for Tn,exp/Tn,th ratios, as well as high 

values for cv (much over 10%). The dispersion of the 

results are larger than those observed for the Tn,exp/Tn,th ratio. 

Generally, Table 6 shows that all the theoretical models 

appear to have some difficulty to predict adequately the 

deformation of the model beams for high loading levels. 

This was somehow expected because VATM assumes a 

fully cracked state of the beam from the beginning of 

loading. Among the concrete models, the results show that, 

for model c13+or3+pr3, the average value is optimal 

(x̅=1.00), despite the high dispersion of the results (cv= 

21.6%). 

Table 6 Tn,exp/Tn,th and n,exp/n,th ratios 

ci ri 
Tn,exp /Tn,th n,exp /n,th 

or1+pr1 or2+pr2 or3+pr3 or1+pr1 or2+pr2 or3+pr3 

c01 

x̅ 0.754 0.762 0.749 0.449 0.451 0.442 

s 0.103 0.109 0.082 0.169 0.168 0.155 

cv 13.72% 14.29% 10.97% 37.66% 37.13% 35.12% 

c02 

x̅ 0.844 0.847 0.864 0.668 0.685 0.623 

s 0.110 0.112 0.105 0.145 0.147 0.140 

cv 13.05% 13.18% 12.12% 21.74% 21.52% 22.49% 

c03 

x̅ 0.939 0.941 0.968 0.854 0.861 0.817 

s 0.102 0.103 0.108 0.200 0.214 0.173 

cv 10.89% 10.96% 11.14% 23.36% 24.80% 21.17% 

c04 

x̅ 0.883 0.886 0.901 0.712 0.726 0.671 

s 0.096 0.097 0.094 0.137 0.145 0.152 

cv 10.88% 10.98% 10.49% 19.27% 19.97% 22.70% 

c05 

x̅ 0.918 0.920 0.944 0.846 0.851 0.806 

s 0.095 0.096 0.100 0.171 0.177 0.168 

cv 10.34% 10.39% 10.55% 20.21% 20.85% 20.85% 

c06 

x̅ 0.930 0.931 0.957 0.862 0.857 0.824 

s 0.095 0.096 0.100 0.176 0.172 0.168 

cv 10.20% 10.26% 10.44% 20.38% 20.12% 20.43% 

c07 

x̅ 0.824 0.827 0.837 0.617 0.628 0.590 

s 0.102 0.104 0.091 0.149 0.148 0.160 

cv 12.35% 12.55% 10.91% 24.09% 23.64% 27.11% 

c08 

x̅ 0.865 0.867 0.884 0.742 0.747 0.702 

s 0.099 0.100 0.098 0.154 0.156 0.157 

cv 11.41% 11.51% 11.05% 20.75% 20.88% 22.29% 

c09 

x̅ 0.870 0.872 0.889 0.697 0.713 0.656 

s 0.101 0.102 0.097 0.149 0.152 0.155 

cv 11.64% 11.74% 10.96% 21.40% 21.37% 23.61% 

c10 

x̅ 0.883 0.886 0.902 0.667 0.670 0.651 

s 0.100 0.101 0.095 0.144 0.144 0.139 

cv 11.29% 11.43% 10.58% 21.61% 21.41% 21.39% 

c11 

x̅ 0.981 0.982 1.004 0.895 0.898 0.868 

s 0.098 0.098 0.097 0.198 0.202 0.183 

cv 9.97% 9.98% 9.61% 22.07% 22.45% 21.07% 

c12 

x̅ 0.959 0.960 0.983 0.951 0.956 0.915 

s 0.095 0.096 0.095 0.226 0.229 0.199 

cv 9.94% 9.96% 9.68% 23.79% 23.95% 21.74% 

c13 

x̅ 1.019 1.020 1.042 1.054 1.056 1.001 

s 0.104 0.104 0.101 0.274 0.272 0.216 

cv 10.23% 10.25% 9.70% 25.98% 25.77% 21.60% 

c14 

x̅ 1.072 1.072 1.095 1.137 1.142 1.073 

s 0.109 0.109 0.106 0.248 0.256 0.199 

cv 10.19% 10.19% 9.73% 21.81% 22.42% 18.56% 

c15 

x̅ 1.049 1.050 1.071 0.981 0.992 0.908 

s 0.105 0.105 0.104 0.234 0.253 0.163 

cv 10.01% 10.02% 9.72% 23.86% 25.54% 17.98% 

c16 

x̅ 0.855 0.859 0.867 0.633 0.637 0.614 

s 0.095 0.097 0.086 0.167 0.167 0.170 

cv 11.12% 11.28% 9.94% 26.36% 26.22% 27.73% 

c17 

x̅ 0.855 0.859 0.867 0.633 0.637 0.614 

s 0.095 0.097 0.086 0.167 0.167 0.170 

cv 11.12% 11.28% 9.94% 26.36% 26.22% 27.73% 

c18 

x̅ 1.011 1.012 1.030 0.814 0.817 0.787 

s 0.104 0.104 0.100 0.163 0.166 0.176 

cv 10.12% 10.30% 9.67% 20.05% 20.33% 22.33% 

c19 

x̅ 1.011 1.012 1.030 0.814 0.817 0.787 

s 0.104 0.104 0.100 0.163 0.166 0.176 

cv 10.32% 10.30% 9.67% 20.05% 20.33% 22.33% 

c20 

x̅ 0.903 0.906 0.913 0.689 0.690 0.672 

s 0.094 0.095 0.089 0.212 0.211 0.207 

cv 10.40% 10.45% 9.77% 30.80% 30.63% 30.78% 
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Table 7 Results from comparative analyses for model 

c13+or3+pr3 

Beam 
Tn,exp 

kNm/m 

Tn,th 

kNm/m 

Tn,exp / 

Tn,th 
n,exp 

º/m 

n,th 

º/m 

n,exp / 

n,th 

P3 55.8 60.8 0.92 3.14 2.67 1.18 

P8 61.8 59.8 1.03 1.89 1.68 1.12 

PA1R 21.9 20.0 1.09 2.97 4.63 0.64 

PA2 28.7 29.9 0.96 2.88 3.41 0.85 

PA3 34.2 34.8 0.98 2.68 2.84 0.94 

PA4 37.0 39.2 0.94 2.94 2.53 1.16 

PB1 21.9 19.2 1.14 4.50 5.02 0.90 

PB2 27.4 28.2 0.97 2.77 3.61 0.77 

PB3 32.7 32.4 1.01 3.09 3.19 0.97 

PB4 37.7 37.2 1.01 2.66 2.94 0.91 

PC1 19.7 16.8 1.18 5.22 5.23 1.00 

PC2 28.7 25.2 1.14 3.37 3.97 0.85 

PC3 32.9 28.5 1.16 4.71 3.46 1.36 

PC4 38.7 32.1 1.21 3.83 3.12 1.23 

P2 87.1 79.3 1.10 2.80 1.98 1.42 

D1 396.0 466.4 0.85 1.73 2.35 0.74 

D2 447.7 436.2 1.03 1.93 1.92 1.00 

  x̅ = 1.042  x̅ = 1.001 

  s = 0.101  s = 0.216 

  cv = 9.70%  cv = 21.60% 

 
 

Table 7 presents the results for Tn,exp /Tn,th and n,exp /n,th 

ratios obtained for model c13+or3+pr3. Fig. 4 presents bar 

graphs which allow a visual analysis of the dispersion of the 

results (from Table 7) comparatively to the optimal unit 

value. Table 7 and Fig. 4 confirm the good results observed 

in Table 6 for Tn,exp /Tn,th ratio and the acceptable results for 

n,exp /n,th ratio, by using model c13+or3+pr3. 

In conclusion, among the best models for the torsional 

strength (c11, c12, c13, c18 and c19 with or3+pr3), it can 

be stated that model c13+or3+pr3 gives simultaneously the 

best results for the resistance torque and the corresponding 

twist. This model will be used for the next objectives of this 

study. 

Fig. 5 presents both the experimental and all the 

theoretical T- curves for some test beams. Theoretical 

curve for model c13+or3+pr3 is highlighted. Fig. 4 clearly 

shows the high dispersion among the theoretical T- curves, 

mainly for high levels of loading. This high dispersion was 

also observed by Bernardo et al. (2012) for RC beams. Fig. 

5 also shows that several models lead to torsional strength 

values that are not safe. 

 

 

7. Comparative analysis with codes provisions 
 

This section presents a comparative analysis with the 

predictions for the resistance torque computed through 

some codes of practice. The following codes of practice 

were considered: ACI 318R-05 (2005), European Codes 

MC 90 (1990) and EC 2 (2010). The objective is to analyze 

the degree of optimization of the theoretical model 

predictions in comparison with normative predictions that 

are expected to be more conservative. To compute the codes 

 

 

Fig. 4 Bar graphs with the results from Table 7 

 

 

predictions, no safety factors were used and the strengths of 

the materials (steel and concrete) were characterized with 

their corresponding average values. 

If a code of practice predicts brittle failure due to 

crushing of the concrete struts for a beam under torsion, 

then the corresponding torsional strength is computed by 

adopting the maximum values from the code for the 

compression stress in the concrete struts. 

For this section, in addition to the reference beams 

analyzed in the previous section, other reference beams 

found in the literature are also added. As previously referred 

in Section 5, those beams just allow the study of their 

resistance torque (torsional strength), which is the purpose 

of this section. Then, twelve slender HSC beams with plain 

section and uniform longitudinal prestress tested by Wafa et 

al. (1995) were added in this section. The relevant 

characteristics of such beams to calculate the normative 

torsional strength are summarized in Table 8. 

Table 9 summarizes the equations of the codes of 

practice used to compute the torsional strength of the PC 

test beams. For beams with longitudinal prestress, the 

longitudinal force in the ordinary reinforcement (Alfly) is 

replaced by the total longitudinal force including the portion 

absorbed by the longitudinal prestress reinforcement: 

A l f l y+A p( fp 0 . 1 %− fp)  for  ACI 318R-05 (2005)  and 

Asifyd+Apifpyd,net for MC90 (1990) and EC2 (2010). The 

meaning of the parameters can be found in the codes. Table 

9 also presents the normative (Tn,calc), the experimental  
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(Tn,exp) and the theoretical (Tn,th) torsional strength. This 

latter was computed in the previous section with model 

c13+or3+pr3 (Table 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9 shows that ACI 318R-05 (2005) generally 

underestimates the torsional strength of PC beams, mainly 

for beams with high reinforcement ratios. It should be noted  

 

Fig. 5 Examples of T- curves 

 

Table 8 Properties of the new test beams (Wafa et al. 1995) 

Beam 
Section 

type 

x 

(cm) 

y 

(cm) 

x1 

(cm) 

y1 

(cm) 

Asl 

(cm2) 

Ast / s 

(cm2/m) 

Ap 

(cm2) 

fcm 

(MPa) 

flym 

(MPa) 

ftym 

(MPa) 

fp0,1% 

(MPa) 

fcp 

(MPa) 

H3AR Plain 14.0 42.0 9.8 37.8 8.04 10.28 3.97 92.2 487 390 1816 8.3 

H2A Plain 17.0 34.0 12.8 29.8 8.04 12.57 3.97 91.9 487 390 1816 8.7 

H1AR Plain 24.0 24.0 19.8 19.8 8.04 12.57 3.97 94.7 487 390 1816 6.4 

H3B Plain 14.0 42.0 10.0 38.0 6.16 5.61 2.06 91.5 374 387 1841 4.0 

H2B Plain 24.0 24.0 13.0 30.0 6.16 6.04 2.06 95.6 374 387 1841 4.3 

H1B Plain 24.0 24.0 20.0 20.0 6.16 6.54 2.06 89.8 374 387 1841 4.3 

M3A Plain 14.0 42.0 9.8 37.8 8.04 10.28 3.97 69.9 487 390 1816 6.5 

M2A Plain 17.0 34.0 12.8 29.8 8.04 11.31 3.97 70.1 487 390 1816 6.2 

M1A Plain 24.0 24.0 19.8 19.8 8.04 12.57 3.97 72.5 487 390 1816 6.4 

M3B Plain 14.0 42.0 10.0 38.0 6.16 5.61 2.06 69.3 374 387 1841 3.2 

M2B Plain 17.0 34.0 13.0 30.0 6.16 6.04 2.06 69.7 374 387 1841 3.3 

M1B Plain 24.0 24.0 20.0 20.0 6.16 6.54 2.06 72.0 374 387 1841 3.2 
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that, according to Bernardo and Lopes (2009, 2013), the 

range of torsional reinforcement ratio compatible with some 

torsional ductility is very narrow. This shows that brittle 

failure is a common situation in the current cases of beams 

under high torsional moments. For such beams, ACI 318R-

05 (2005) seems to be very conservative. Except for Beams 

D1 and D2 (large hollow beams), ACI 318R-05 (2005) 

generally provides safe values for the torsional strength 

(x̅=1.78 for Tn,exp /Tn,calc ratio) and with high deviations 

(cv=19.8%). 

Table 9 shows that MC 90 (1990) and EC 2 (2010) 

generally also underestimate the torsional strength of PC 

beams (x̅=1.33 to 1.34), although not as much as ACI code. 

However, all the test beams would lead to a ductile failure 

according to MC 90 (1990) and EC 2 (2010) (failure due to 

the yielding of the reinforcement). The experimental results 

of the test beams show that the majority of them had a 

brittle failure. Table 9 also shows that the deviation of Tn,exp 

/Tn,calc ratio is large (cv23 to 24%). 

Table 9 also shows that model c13+or3+pr3 provides 

much more accurate values for the torsional strength and 

with a coefficient of variation lesser than 10%. 

Fig. 6 presents graphs of the ratios Tn,exp /Tn,calc and Tn,exp 

 

 

/Tn,th (Tn,th computed with model c13+or3+pr3) as a 

function of the compressive strength of concrete (fcm) for 

each code. Generally, Fig. 6 confirms graphically the same 

conclusions previously stated based on the analysis of Table 

9. All the codes are conservative for the majority of the test 

beams, especially for beams with high torsional 

reinforcement ratio. However, ACI 318R-05 (2005) is more 

conservative than MC 90 (1990) and EC 2 (2010). 

Fig. 6 shows that the deviations of the results are high 

between the test beams studied. Fig. 6 also confirms that 

VATM with model c13+or3+pr3 provides closer 

predictions for torsional design when compared to those of 

the studied codes. 

 
 
8. Conclusions 
 

In the first part of this article, a general computing 

procedure based on the VATM to compute the ultimate 

behavior of PC beams under torsion is presented. In order to 

extend the application of the VATM, the original equations 

were rewritten to cover both longitudinal and/or transversal 

PC beams under torsion. Despite no experimental data for  

Table 9 Torsional strength of test beams 

model c13+or3+pr3 ACI 318R-05 MC 90 EC 2 
ACI 318R-05 (2005), 

2 tg
yvt

l h

yl

fA
A p co

s f


 →   




 tg 
2

co
s

fAA
T

yvt

n
 

Brittle failure: 

h

hc

n
p

Af
T

2
7,18 


  

Beam 
Tn,exp 

(kNm) 

Tn,th 

(kNm) thn

n

T

T

,

exp,  Tn,calc 

(kNm) calcn

n

T

T

,

exp,  Tn,calc 

(kNm) calcn

n

T

T

,

exp,  Tn,calc 

(kNm) calcn

n

T

T

,

exp,  

P3 55.8 61.3 0.91 33.0(1) 1.69 31.9(1) 1.75 31.2(1) 1.79 

P8 61.8 61.5 1.01 30.9 2.00 50.9(1) 1.22 55.9(1) 1.11 

PA1R 21.8 20.0 1.09 14.0(1) 1.55 12.5(1) 1.74 12.7(1) 1.71 

PA2 29.3 29.9 0.98 19.2 1.53 23.8(1) 1.23 24.2(1) 1.21 

PA3 34.0 34.8 0.98 19.2 1.77 31.3(1) 1.09 31.8(1) 1.07 

PA4 37.4 39.2 0.96 19.2 1.95 46.1(1) 0.81 34.3 1.09 

PB1 22.2 19.2 1.16 13.1(1) 1.70 11.6(1) 1.90 11.5(1) 1.92 

PB2 27.5 28.2 0.98 16.5 1.67 22.1(1) 1.25 22.0(1) 1.25 
MC 90 (1990), 

ydsi

iywdswi

i
fA

szfA
tg

/
 

 →   

2 /n Rtwi Rtwi ef iT T F A z   

s

z
cofAF i

iydSwiRtwi   tg  

Brittle failure: 

2 sin /Rcwi Rcwi i ef iT F A z  

iiicdRcwi ztfF  cos2
 

PB3 32.6 32.4 1.01 16.9 1.93 27.9(1) 1.17 27.7(1) 1.18 

PB4 37.6 37.2 1.01 17.3 2.17 39.4(1) 0.96 39.3(1) 0.96 

PC1 19.7 16.8 1.18 11.3(1) 1.74 10.1(1) 1.96 9.8(1) 2.01 

PC2 28.6 25.2 1.14 13.9 2.05 18.7(1) 1.53 18.3(1) 1.56 

PC3 32.8 28.5 1.15 14.1 2.32 23.2(1) 1.41 22.6(1) 1.45 

PC4 38.5 32.1 1.20 14.3 2.70 32.9(1) 1.17 32.3(1) 1.19 

H3AR 33.5 33.3 1.01 15.6 2.14 24.0(1) 1.39 23.9(1) 1.40 

H2A 35.8 38.2 0.94 18.5 1.94 29.8(1) 1.20 30.7(1) 1.17 

H1AR 38.4 38.1 1.01 21.3 1.80 37.0(1) 1.04 38.6 0.99 

H3B 26.4 23.7 1.12 16.3 1.63 15.2(1) 1.74 15.0(1) 1.76 

H2B 29.5 25.8 1.14 21.4(1) 1.79 23.8(1) 1.24 22.7(1) 1.30 

H1B 31.3 27.4 1.14 21.4 1.46 20.2(1) 1.55 20.2(1) 1.56 

EC2 (2010), 




ydsl

kywdist

fAs

ufA
tg

,
 

→   

    tg /22 cosAfATT swywdkRdn
 

Brittle failure: 

 cossin21 kcdRd tAfT  

M3A 30.0 29.8 1.01 13.6 2.20 26.4(1) 1.13 26.3(1) 1.14 

M2A 31.9 32.1 1.00 16.2 1.98 30.5(1) 1.05 33.1(1) 0.97 

M1A 35.4 35.6 1.00 18.7 1.90 37.0(1) 0.96 38.6(1) 0.92 

M3B 24.5 21.9 1.12 14.2 1.73 16.2(1) 1.51 16.1(1) 1.53 

M2B 26.2 23.4 1.12 16.7 1.57 17.9(1) 1.46 19.1(1) 1.37 

M1B 28.9 25.3 1.14 19.2 1.51 21.3(1) 1.36 22.1(1) 1.31 

P2 87.1 78.2 1.12 59.2(1) 1.47 50.2(1) 1.74 51.0(1) 1.71 

D1 396.0 419.1 0.95 404.8 0.98 371.6(1) 1.07 438.0(1) 0.90 

D2 447.7 401.5 1.12 370.1 1.21 360.6(1) 1.24 421.7(1) 1.06 
(1)Ductile x̅ = 1.056 x̅ = 1.782 x̅ = 1.340 x̅ = 1.330 

 
failure s = 0.085 s = 0.352 s = 0.302 s = 0.081 

  cv = 8.03% cv = 19.75% cv = 22.50% cv = 23.63%  
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Fig. 6 Tn,exp /Tn,calc and Tn,exp/Tn,th ratios 

 

 

transversally PC beams were found for this study, such 

extension of the VATM can be useful for future researches 

involving RC beams under torsion with transversal 

prestress. 

In the second part of this article, several - 

relationships for the materials (concrete and reinforcements) 

were checked with the help of numerical simulations in 

order to compute the ultimate behavior of tested PC beams 

(with longitudinal prestress) under torsion. The theoretical 

procedure was based on the VATM formulation. Based on 

the obtained results and from comparative analysis, the 

authors found that some theoretical models lead to good 

predictions for the torsional strength of PC beams under 

torsion. In particular, model c13+or3+pr3 provides 

simultaneously acceptable predictions for the twist 

corresponding to the torsional strength. 

Model c13 for concrete struts incorporates the softened 

- relationship proposed by Belarbi and Hsu (1991) and 

the reduction factors proposed by Hsu (1993) (see Tables 1 

and 2). Model or3+pr3 incorporates the stiffened - 
relationships from Belarbi and Hsu (1994) for the ordinary 

reinforcement and from Ramberg-Osgood, proposed by Hsu 

and Mo (1985), for the prestress reinforcement (see Table 

4). 

As referred in Section 2, in a previous study Bernardo et 

al. (2012) tested several - relationships for concrete in 

compression and ordinary reinforcement in tension to study 

the behaviour of RC beams under torsion. Their analysis 

was performed with a much great number of test beams 

than the one used in the present study with PC beams. In the 

referred study, the authors found that the model which 

provides the best predictions for the maximum torque and 

corresponding twist is the one that incorporates the - 
relationships for compressed concrete in struts proposed by 

Belarbi and Hsu (1991) with softening coefficients 

proposed by Zang and Hsu (1998) and the - relationship 

for ordinary reinforcement in tension proposed by Belarbi 

and Hsu (1994). In the present study, the previous model 

corresponds to model c14+or3 (see Table 3, without 

prestress reinforcement). When compared with model c13+ 

or3+pr3, found in the present study to be the best model, 

the unique difference is related with the softening 

coefficient. However, in the present study, model c14+or3 

+pr3 is not one of the best models for PC beams (Section 

6). Despite the limited number of PC test beams used in this 

study, the combined results from this study and from the 

previously referred study for RC beams seems to show that 

the expected differences between RC and PC beams under 

torsion, as referred in Section 2, exist and are reflected in 

the - relationships of the materials incorporated in the 

VATM. 

In the last part of this article, the predictions for the 

torsional strength of the test beams, computed with model 

c13+or3+pr3, were compared with those computed from 

some codes of practice (ACI 318R-05 2005, MC 90 1990,d 

EC 2 2010). 

The results show that ACI 318R-05 (2005) generally 

underestimates the torsional resistance of PC beams, mainly 

for beams with high reinforcement ratio. For such beams, 

ACI 318R-05 (2005) provides values highly below the 

experimental strengths and with large deviations. Both MC 

90 (1990) and EC 2 (2010) generally also underestimate the 

torsional strength of PC beams, although not as much as 

ACI 318R-05 (2005). Nevertheless, the dispersion of the 

results is also high. 

When compared with the predictions from codes, the 

theoretical model c13+or3+pr3 provides good values for 

the torsional strength, which would lead to better optimized 

designs. 

In this study it was not possible to compare the 

predictions from the computing procedure for transversally 

PC beams since no experimental results were found in the 

literature. Therefore, experimental tests of this type of 

beams are need. 
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PL 

 

 
Nomenclature 
 

Ac  
area limited by the external perimeter of the cross 

section 

Ac,hom  area of homogenized concrete 

Ah area of the hollow part of the cross section 

Al total area of the longitudinal ordinary reinforcement 

A  area limited by the center line of the flow of shear 

stresses 

Ap, 

Apl 
total area of the longitudinal prestress reinforcement 

Apt 
area of one leg of the transversal prestress 

reinforcement 

Asl, 

Al 
total area of longitudinal ordinary reinforcement 

Ast area of one leg of transversal ordinary reinforcement 

At 
area of one leg of transversal ordinary and prestress 

reinforcement 

ci combination i 

cv coefficient of variation 

Ec Young’s modulus of concrete 

Ep Young’s modulus of prestress reinforcement 

Epl 
Young’s modulus of longitudinal prestress 

reinforcement 

Ept 
Young’s modulus of transversal prestress 

reinforcement 

Es Young’s modulus of ordinary reinforcement 

Fpi,t initial transversal prestress force 

cf   cylinder compressive strength of concrete 

fc, fc2  principal compression stress of concrete 

fcm  average concrete compressive strength 

fcp  average stress in the concrete due to prestress 

fl  tensile stress of longitudinal ordinary reinforcement 

flym  average yielding stress of longitudinal reinforcement 

fp  tensile stress of prestress reinforcement 

fpi initial stress in the prestress reinforcement 

fpi,l  
initial stress in the longitudinal prestress 

reinforcement 

fpi,t  initial stress in the transversal prestress reinforcement 

fp0.1%  
stress of prestress reinforcement corresponding to 

p0.1% 

fpl0.1% 
conventional stress of longitudinal prestress 

reinforcement 

fpt0.1% 
conventional stress of transversal prestress 

reinforcement 

fpt  tensile strength of prestress reinforcement 

fs  tensile stress of ordinary reinforcement 

fsly, fly  yielding stress of longitudinal ordinary reinforcement 

fsty  yielding stress of transversal ordinary reinforcement 

fst  tensile strength of ordinary reinforcement 

fsy  yielding stress of ordinary reinforcement 

ft  tensile stress of transversal ordinary reinforcement 

ftym  average yielding stress of transversal reinforcement 

k1  
ratio between the medium stress and the maximum 

stress in the concrete strut 

orj - relationship j for ordinary reinforcement 

prj - relationship j for prestress reinforcement 

po perimeter of area Ao 

s standard deviation 

sp spacing of the transversal prestress reinforcement 

st, s spacing of the transversal ordinary reinforcement 

T torque; torsional moment 

Tn,calc normative value for the torsional strength 

Tn,exp experimental value for the torsional strength 

Tn,th theoretical value for the torsional strength 

t thickness of the walls of the cross hollow section 

td effective thickness of the walls (struts) 

up perimeter of the transversal prestress reinforcement 

ut perimeter of the transversal ordinary reinforcement 

x width of the cross section 
x  average value 

x1 
distance between centerlines of vertical legs of the 

closed stirrup 

x2 
distance between centerlines of horizontal legs of the 

closed stirrup 

y height of the cross section 

 angle of the concrete struts 

 reduction factor 

 reduction factor for stress 

 reduction factor for strain 

 strain 

c1 principal tension strain of concrete 

c, c2 principal compression strain of concrete 

cu ultimate compression strain of concrete 

d strain at the center line of the flow of shear stresses 

dec,l 
strain in the longitudinal prestress reinforcement at 

decompression 

dec,t 
strain in the transversal prestress reinforcement at 

decompression 

ds strain at the surface of the diagonal concrete strut 

l strain of the longitudinal ordinary reinforcement 

li 
initial strain in the longitudinal ordinary 

reinforcement due to prestress 

o strain corresponding to the peak stress 
cf   
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p0.1% conventional strain (0.1%) of prestress reinforcement 

p tensile strain of prestress reinforcement 

pi,l 
initial strain in the longitudinal prestress 

reinforcement due to prestress 

pi,t 
initial strain in the transversal prestress 

reinforcement due to prestress 

pl strain in the longitudinal prestress reinforcement 

pt strain in the transversal prestress reinforcement 

pu ultimate strain of prestress reinforcement 

s tensile strain of ordinary reinforcement 

su ultimate strain of ordinary reinforcement 

t strain of the transversal ordinary reinforcement 

ti 
initial strain in the transversal ordinary reinforcement 

due to prestress 

 normal stress 

d stress in the diagonal concrete strut 

l stress in the longitudinal ordinary reinforcement 

pl stress in the longitudinal prestress reinforcement 

pt stress in the transversal prestress reinforcement 

t stress in the transversal ordinary reinforcement 

l longitudinal ordinary reinforcement ratio 

 pl longitudinal prestress reinforcement ratio 

 pt transversal prestress reinforcement ratio 

t transversal ordinary reinforcement ratio 

 angle of twist per unit length 

n,exp experimental value of twist corresponding to Tn,exp 

n,th theoretical value of twist corresponding to Tn,th 
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