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Prestressed concrete beams under torsion-extension of the VATM
and evaluation of constitutive relationships
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Abstract. A computing procedure is presented to predict the ultimate behavior of prestressed beams under torsion. This
computing procedure is based on an extension of the Variable Angle Truss-Model (VATM) to cover both longitudinal and
transversal prestressed beams. Several constitutive relationships are tested to model the behavior of the concrete in compression
in the struts and the behavior of the reinforcement in tension (both ordinary and prestress). The theoretical predictions of the
maximum torque and corresponding twist are compared with some results from reported tests and with the predictions obtained
from some codes of practice. One of the tested combinations of the relationships for the materials was found to give
simultaneously the best predictions for the resistance torque and the corresponding twist of prestressed beams under torsion.
When compared with the predictions from some codes of practice, the theoretical model which incorporates the referred
combination of the relationships provides best values for the torsional strength and leads to more optimized designs.
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1. Introduction

The use of High-Strength Concrete (HSC) in Prestressed
Concrete (PC) structures is becoming somehow frequent in
the last years. Such structures are expected to be more
flexible than Normal-Strength Concrete (NSC) structures
because HSC reduces self-weight and inertia of the
structural members and the increase in the Modulus of
Elasticity is not sufficient to counterbalance the reduction of
mass. This high flexibility could be problematic and can be
solved by using prestress technique to increase the stiffness.
For this purpose, the application of longitudinal prestress in
members under high torsion forces is a normal situation
(Navarro Gregori et al. 2007).

The first studies on torsion of Reinforced Concrete (RC)
beams were published in the beginning of the past century.
One of the developed theoretical models is the Space Truss
Analogy (STA) which has an important historical value and
constitutes the base of the American code (since 1995) and
the European model code (since 1978). Based on the STA,
several theories were developed. One of the theories widely
used to compute the torsional strength is the Variable Angle
Truss-Model (VATM) which gives a good physical
understanding of the torsion problem in RC and PC beams.
Several authors have contributed to establish the latest
versions of the VATM and many studies can be found in the
literature. Hsu and Mo (1985) developed a consistent model
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for PC beams (with longitudinal prestress) which account
the influence of the softening effect. The VATM usually
provides good results for high levels of loading. However,
for low levels of loading, the VATM does not provide good
predictions since the model assumes a fully cracked state
from the beginning of the loading and it does not account
for the concrete core influence. More complex theoretical
models have been recently proposed by several authors
(Bairan Garcia and Mari Bernat 2006a, b, Jeng and Hsu
2009, Mostofinejad and Behzad 2011). However, VATM is
recognized as a simple model to predict with good accuracy
the ultimate behavior of RC beams under torsion, even with
compressive axial force interaction (Bernardo et al. 20153,
b).

Several proposals of stress (o)-strain (&) relationships
for the materials can be found in the literature. Some of
these proposals account for the softening effect (for the
concrete in compression on struts) and the stiffening effect
(for the reinforcement in tension). Lopes et al. (2015a, b)
showed that the variability between these several proposals
is very high, which justifies the need for evaluating these o~
¢ relationships in order to establish solid conclusions. Jeng
et al. (2011) showed the influence of the strain gradient
effect in RC beams under torsion, which strongly depends
on the o-¢ relationships chosen for the materials. This is
also true for VATM because its theoretical results will
strongly depend on the chosen o-& relationships for
concrete and reinforcement.

This article presents a computational procedure, based
on an extension of the VATM, to predict the ultimate
behavior of PC beams under torsion. Both longitudinal and
transversal PC beams are covered. The ultimate behavior of
the beams is studied through the T (torque)-& (twist) curves.

ISSN: 1225-4568 (Print), 1598-6217 (Online)



578 Lus FA. Bernardo and Jorge M.A. Andrade

The theoretical results obtained from several combinations
of o-¢ relationships proposed by several authors are
compared with some experimental results available in the
literature and also with the predictions computed by using
some codes of practice.

2. Previous studies and research significance

In previous studies, some authors predicted the behavior
of NSC beams with longitudinal prestress under torsion by
using the VATM (Hsu and Mo 1985) or more simplified
truss-models (Rahal and Collins 1996). For instance, Rahal
and Collins (1996) observed that the maximum torque, both
experimental and theoretical, are very similar. Hsu and Mo
(1985) observed that the ultimate values of the T-8 curves,
both experimental and theoretical, are also quite similar.
Recently, these observations were also confirmed by
Andrade et al. (2011), Bernardo and Lopes (2008) with
other beams and by using also the VATM. However, for
HSC beams Bernardo and Lopes (2011) observed that the
original VATM no longer could be considered adequate
since resistances are highly overestimated for HSC beams
with high torsional reinforcement ratio. In fact, for HSC in
compression the shape of the o-& curve is quite different
when compared with NSC (Bernardo and Lopes 2004),
leading to noticeable differences in the response of the
beams under torsion even for low loading levels (Jeng et al.
2013). Thus, theoretical models that strongly depend of o-¢
relationships cannot be directly extrapolated from NSC to
HSC, including for beams under torsion. For this reason, the
original calculus procedure from VATM was reviewed by
Bernardo and Lopes (2011) in order to incorporate specific
o-¢ relationships for HSC. Despite having achieved better
results, the authors proposed additional reduction factors for
the o-¢ relationships in order to approximate even more the
experimental and theoretical results for HSC beams under
torsion.

In the previously referred studies the authors only tested
few o-¢ relationships to characterize the behavior of the
materials. In general, in previous studies different authors
use different o-¢ relationships, as well as different
combinations of these relationships, to model the behavior
of the materials to compute theoretically the maximum
torque of beams under torsion. Moreover, the majority of
the older studies don’t incorporate beams with HSC. In past
years, new refinements have been proposed for the o¢
relationships, mainly for concrete. For this material, new
expressions to compute the reduction factors for stress and
strain have been also proposed. From this perspective, the
number of choices for the o-¢ relationships that can be
used, which are also dictated by the possible available
combinations, is very high.

For this reason, Bernardo et al. (2012a, b) tested several
c-¢ relationships for the materials found in the literature,
and different combinations of these relationships, to
compute the ultimate behavior of RC beams under torsion
by using VATM formulation. Among the tested models and
based on several comparative analyses with experimental
results, the authors found one theoretical model which
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Fig. 1 o-¢ curves: (a) concrete in compression; (b)
reinforcement in tension

provides the best predictions of the torsional strength and
corresponding twist. This theoretical model is the one that
incorporates the o-¢ relationship for compressed concrete in
struts proposed by Belarbi and Hsu (1991) with softening
coefficients proposed by Zhang and Hsu (1998) and the o-¢
relationship for ordinary reinforcement in tension proposed
by Belarbi and Hsu (1994). With this theoretical model, the
additional reduction factors proposed by Bernardo and
Lopes (2011) were no longer need for HSC beams.

The behavior observed for RC beams cannot be directly
extrapolated for PC beams. For these beams, an additional
o-¢ relationship for prestress reinforcement in tension needs
to be introduced in the theoretical model. This modification
should modify the response of the VATM and the o-¢
relationships for the materials, including their combinations,
need to be rechecked for PC beams under torsion.

The aim of this article is to help researchers to choose
the best relationships for the materials, and their
combinations, to compute the ultimate behavior of PC
beams under torsion. This is done by testing several
possible combinations with the relationships found in
literature, to compute both the ultimate torque and twist
from the VATM. Furthermore, equilibrium equations of the
VATM are modified in order to introduce the additional
force in the prestress reinforcement.

3. Stress-strain relationships
Usually, theoretical models for the behavior of cracked

RC elements under shear consider the independent behavior
of concrete and reinforcement through their average o-¢
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Table 1 o-¢relationships for concrete in compression in the struts
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Table 2 Reduction factors for stress and strain
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relationships. For concrete in compression in the struts (Fig.
1(a)), the average nonlinear o-¢ relationships usually
account for the softening effect (influence of the transversal
tension strains) by incorporating reduction factors. For
reinforcement in tension (Fig. 1(b)), some average
nonlinear o-¢ relationships account for the stiffening effect
(interaction between reinforcement and concrete in tension
between cracks). Other simplified o-& relationships

(bilinear) for reinforcement don’t incorporate this
interaction and are simply defined from uniaxial tensile
tests (Fig. 1(b)).

Table 1 presents the equations for several o-¢
relationships for concrete in compression in the struts found
in the literature. They will be checked in this study. Table 2
presents the equations for the reduction factors for stress
(B.) and strain (f,) also proposed by several authors. The
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Table 3 Tested o-¢ relationships for concrete in
compression in the struts

Reduction factores S,
and g,

c01 Hognestad (1952) -

c02 Vecchio and Collins (1982) Vecchléalgrég)cmlms

Vecchio and Collins

(1986)
Collins and Poraz .
c04 “Model A (1989) Collins and Poraz (1989)

Collins and Poraz .
c05 “Mod. B (1989) Collins and Poraz (1989)

Collins and Poraz .
c06 “Model A (1989) Vecchio et al. (1994)

Collins and Poraz .
c07 “Model A (1989) Vecchio -v1 (2000)

c08 Collins and Poraz Vecchio -v2 (2000)

-Mod. B (1989)
c09 Vecchio and Collins (1982) Vecchio -v1 (2000)
Vecchio -v2 (2000)

cl0 Vecchio and Collins (1986)

Model o-¢relationship

c03 Vecchio and Collins (1986)

cll Belarbi and Hsu (1991) Belarbi and Hsu (1991)
cl2 Belarbi and Hsu (1991) Belarbi and Hsu (1995)
cl3 Belarbi and Hsu (1991) Hsu (1993)

cla Belarbi and Hsu (1991) Zhang and Hsu (1998)
cl5 Zhu et al. (2001) Zhang and Hsu (1998)

clé Vecchio and Collins (1982)
cl7 Vecchio and Collins (1986)
c18 Vecchio and Collins (1982)
cl9 Vecchio and Collins (1986)
c20 Vecchio and Collins (1982)
c21 Vecchio and Collins (1986)

Mikame et al. (1991)
Mikame et al. (1991)
Ueda et al. (1991)
Ueda et al. (1991)
Miyahara et al. (1988)
Miyahara et al. (1988)

meanings of some of the principal parameters are: ¢, is the
strain corresponding to the peak stress ( f.), & is the
principal tension strain (g1=g+&+&, Hsu, 1984), g, & and
gq Will be defined later, g, = ¢, is the principal compression
strain in the principal direction of the compression stress (f;
=f.,). Table 3 presents all the used combinations (c;)
between o-¢ relationships and reduction factors, accounting
for the original correspondence between each other.

Table 4 presents the equations for the o-& relationships
for ordinary (orj) and prestress (prj) reinforcement in
tension to be checked in this study. The meaning of some of
the main parameters are: f; and f;, are the tensile stress, fy, is
the yielding stress, fo 10 is the stress corresponding to the
conventional strain €41%=0.1%, fy and f are the tensile
strength, & and g, are the tension strain, &, is the yielding
strain at the end of the elastic behavior, &, and &, are the
ultimate strain, E; and E, are the Young’s Modulus.

Each model c01 to c21 (Table 3) will be used separately
with models orl+prl, or2+pr2 and or3+pr3 (Table 4). For

models c14 and c15 the reduction factors S,=4, depend on
the parameter 7, which represents the ratio between the
resisting forces in the longitudinal and transversal

reinforcement. For prestressed beams, parameter n should
also account for the resistance force in the prestressed

reinforcement. For beams with longitudinal and transversal
prestress, parameter 7 is calculated as follows:

_ P fsly + Py prO.l% _ A fsly +A, prO.l%

[oN fsly +Pp fptO.l% uﬁ f o+u h f 1)
sty p pt0.1%
S S
P
Where:
_ longitudinal and transversal ordinary
Py reinforcement ratio;
_ longitudinal and transversal prestress
Peh Pt~ reinforcement ratio;
_total area of the longitudinal ordinary and
AL Ay = : ;
prestress reinforcement;
_ area of one leg of the transversal ordinary and
At! Apt - H .
prestress reinforcement;
s s = transversal reinforcement spacing (ordinary and
ty Op

 prestress);

perimeter of the transversal ordinary and prestress
U, U, = reinforcement (u=2x;+2y,,with x; and y,; the

minor and major dimension of the hoop);
_ yielding stress of the longitudinal and transversal
iy sy = ordinary reinf ;

y reinforcement;

foo.1 _ conventional stress of the longitudinal and
foo10s  transversal prestress reinforcement.

From the above it can be stated that, along the past
years, authors have proposed different o-¢ relationships to
model the behavior of the materials. Several refinements
have been proposed for the o-¢ relationships, mainly for the
concrete. For this material, different expressions to compute
the reduction factors for stress and strain have been also
proposed. From this perspective, the number of choices for
the relationships that can be used, which are also dictated
by the possible available combinations between them (for
different reduction factors and different materials), is high.
Moreover, some of these proposals (the older ones) don’t
cover HSC and then are not valid for HSC beams. For this
reasons, to compute the ultimate behavior of PC beams
under torsion, researchers can show some difficulty to
choose the best o-¢ relationships and their combinations, to
characterize the behavior of the materials.

4. Theoretical model based on VATM

After the decompression of concrete, a PC beam under
torsion behaves like a common RC beam. Thus, prestress
only influence equilibrium equations in the prestress
direction (longitudinal and/or transversal). The unique
modification to the equilibrium equations of VATM, as
stated by Hsu and Mo (1985), is to add the force in the
prestress reinforcement. This was made by the referred
authors for beams with longitudinal prestress. In this study,
the equations of VATM will be rewritten for the general
case of beams with longitudinal and/or transversal prestress.

To compute the theoretical T-& curve of PC beams from
the VATM (Fig. 2) the three following equilibrium
equations are required to compute the torque, T, the
effective thickness of the walls (struts), tq, for the equivalent
tubular section and the angle of the concrete struts, ¢, from
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Table 4 o-¢relationships for reinforcement in tension
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T
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Fig. 2 VATM and strain/stress state in the concrete struts

the longitudinal axis of the beam (Hsu and Mo 1985)

T =2At,0, sin acosa (2)
+A
COSZG, = M , or (3)
POty
sin‘o = ATt 4)
so,ty

t = AG, +Ap|6p| N AGt

d ()
P.Oyq SOy
Where:
area limited by the center line of the flow of shear
A, = stresses which coincides with the center line of
the walls thickness, tg;
Po = perimeter of area A,;
oy = stress in the diagonal concrete strut;
Oi = stress in the longitudinal reinforcement;
o = stress in the transversal reinforcement;

Ol stress in the longitudinal prestress reinforcement.

It should be noted that for longitudinal prestress, the
longitudinal force should include both the ordinary and
prestress longitudinal reinforcement (Ajo1+Agop).

No studies were found in the literature related with the
study of beams with transversal prestress by using VATM.
For such beams, Eq. (4) must be rewritten in order to
replace the transversal force (per unit length) in the ordinary
reinforcement (Ag/s) by the total transversal force (also per
unit length) including both the ordinary and prestress
reinforcement (Aigi/s +ApoplSp)

Ao, +Apt6pt
So4ty  S,04ty

sin‘a = (6)

Where o is the stress in the transversal prestress
reinforcement.

For beams with longitudinal and transversal prestress,
Eg. (3) and Eqg. (6) should be used in order to incorporate
both longitudinal and transversal force in the prestress
reinforcement. In order to use one simple equation to
calculate « for such beams and to generalize this equation
for RC beams or PC beams with longitudinal and/or
transversal prestress, an alternative and general equation is
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derived here by dividing Eqg. (6) by Eq. (3). This new
equation substitutes Egs. (3)-(4) and Eq. (6).

Ao, n Aptcpt

sin’ S S
tgPo = = d (7)
cos’a Aoy A,C
po po

Similarly, since longitudinal equilibrium equation is
also used to compute the effective depth of the concrete
struts (tg), Eg. (5) should also incorporate both the total
longitudinal and transversal force (general case)

t, = AG, + AG, + ApiC + ApO ot (®)

P04 SOy POy S0y

For RC beams the three following compatibility
equations are also need to compute the strain of the
longitudinal reinforcement, &, the strain of the transversal
reinforcement, &, and the twist, 8 (Hsu and Mo 1985)

2
Sl - &_1 Sds (9)
p,T cotga 2
2
£ = (ﬁ —Eleds (10)
pTtga 2
s (ll)

2t, sino.cos o

The strain at the surface of the diagonal concrete strut,
&, and at the center line of the flow of shear stresses, &,
can be computed from (Fig. 2) (Hsu and Mo 1985)

— 2 potd (

€4 g +€&¢) tgasina cosa (12)

S

Eqg =&y 12 (13)

For beams with longitudinal prestress, the procedure to
compute the strain and stress in the longitudinal prestress
reinforcement, &, and oy, is the following one (Hsu and Mo
1985)

€pl = Eqect TE (14)
€hec) = €piy T & (15)
f.
pi,l
o= 16
€ pi,l Ep| ( )
& = Ao T (17)
A|(ES - Ec)+(Ac _Ah _ApI)Ec

Where
_ strain in the longitudinal prestress reinforcement
Edec, at decompression;

_initial strain in the longitudinal ordinary
Ei ~ reinforcement due to prestress;
_initial strain in the longitudinal prestress
il reinforcement due to prestress;
£ _initial stress in the longitudinal prestress
il 7 reinforcement;
E _Young’s modulus of the longitudinal prestress
Pl 7 reinforcement;
E. = Young’s modulus of the concrete;
A _ area limited by the external perimeter of the cross
¢ section;
A, _ Area of the hollow part of the cross section (for

" plain cross sections: A,=0).
In Eq. (14) the strain in the longitudinal ordinary
reinforcement, g, is computed from Eq. (9).

For beams with transversal prestress, the earlier
procedure should be rewritten to compute the strain in the

transversal prestress reinforcement, gy, to compute
subsequently the stress oy,
gpt = 8dec,t +8t (18)
‘c’dec,t = Spi,t +8ti (19)
f
_pit
8pi,'( - E (20)
pt
A
27‘3‘ fpit
S,
g, = 21
‘ A( ’ ’ Apt ( )
27(Es - Ec)+ Av: _A‘n -2— Ec
S Sy
Where:
_ strain in the transversal prestress reinforcement at
Edect decompression;
_ _initial strain in the transversal ordinary
& reinforcement due to prestress;
_ _initial strain in the transversal prestress
Epit reinforcement due to prestress;
£ _ initial stress in the transversal prestress
Pt 7 reinforcement;
E _Young’s modulus of the transversal prestress
Pt 7 reinforcement.

In Eg. (18) the strain in the transversal ordinary
reinforcement, &, is computed from Eq. (10).

Eq. (21) can be derived assuming a beam (with unitary
length) with transversal prestress in the vertical walls (Fig.
2). The total area, per unit length, of transversal ordinary
and prestress reinforcement (2 vertical units per transversal
section) is 2Ads and 2Ay/s,, respectively. The horizontal
area of homogenized concrete is

A
S

Ac,hom

PYal
2 @

E A
=+ AN -A - o_ P
E. Sy
Where A =xx1 and A =(x—2t)x1 (seeFig.2).
The initial transversal prestress force is calculated from
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Apt
I:pi,t —4é fpi,t (23)
S
p
The initial strain in the transversal ordinary
reinforcement due to transversal prestress is
F..
pit
=T — (24)
Ec Ac,hom
Introducing Eqg. (23) and Eq. (22) into Eq. (24) leads to

Eg. (21).

For transversal prestress in the horizontal walls, Eq. (21)
remains valid if the average stress in the concrete due to
prestress is the same as for the vertical walls.

For beams with longitudinal and transversal prestress,
Eq. (14) and Eq. (18) should be used together.

The stress of the inclined concrete struts, g, is defined
as the medium stress of a non-uniform diagram (Fig. 2)

oy =k, T, (25)

Where k; is the ratio between the medium stress (B, see
Fig. 2) and the maximum stress (A, see Fig. 2). Parameter
ki will be calculated by numerical integration from the o-¢
relationships for the concrete struts (Table 1).

Based on a strain state analysis, it can be demonstrated
that the principal strain in tension (&) in the concrete strut
(tension strain perpendicular to the concrete strut), to be
introduced in equations for S, and g, on Table 2, can be
approximately calculated from (Hsu 1984)

€4 =€ +¢& tg, (26)

The previous equations and the equations incorporated
in Tables 1-3 lead to the iterative calculus procedure
presented in Fig. 3 (for the general case with S,=3,) in order
to calculate the theoretical T-6 curve of a beam with
longitudinal and transversal prestress (general case). In this
calculus procedure the variable ty, «, S, and B, (if =5,
are unknown and interdependent.

Parameter ¢, was calculated from EC2 (2010). The
theoretical failure of the sections was defined from the
maximum strains of the materials (concrete and steel).
Either the strain of the concrete struts, &y (Fig. 2), reaches
its maximum value (&) or the steel strain, &, reaches the
usual maximum value of &=10%. Parameter &, was
calculated from EC2 (2010).

5. Test beams

In this study, a comparative analysis focused on the
ultimate behavior is carried out with the help of some
experimental results of PC beams under torsion, which are
available in the literature. Only beams with uniform
longitudinal prestress were analyzed since no experimental
tests of beams with transversal prestress were found in the
literature.

The same beams used by Bernardo and Lopes (2011)
and Jeng et al. (2010) in their comparative analysis are used
in this section: Beams P2 and P3 from Mitchell and Collins

Select g4

.

Estimate 1. a. o, Be

.

Calculate &y for model ci
(Tables 1-2) and &, (Eq. 25)

¥
Calculate T (Eq. 2). & (Eq. 9).
& (Eq. 10). gy (Eq. 14). &, (Eq. 18),
oy and o, for model orf (Table 4),
o, and o, for model pri (Table 4)

Calculate 1y (Eq. 8)

Yes

Calculate o (Eq.7)

Calculate B, B, for
model ¢i (Table 1-2)

Calculare 6 (Eq. 11)

Yes

Fig. 3 Flowchart for the calculation of T-&curve

(1974), Beam P8 from Hsu and Mo (1985), Beams D1 and
D2 from Bernardo and Lopes (2011), Beams PALR, PA2,
PA3, PA4, PB1, PB2, PB3, PB4, PC1, PC2, PC3 and PC4
from McMullen and El-Degwy (1985). Only 3 beams were
hollow (P2, D1 and D2).

It should be noted that, as justified by Bernardo and
Lopes (2008, 2011), not all the experimental results
available in the literature can be used for comparative
analysis with theoretical results from VATM due to various
reasons. For instance, some older studies have not sufficient
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Table 5 Properties of reference beams

Beam Section X y t X1 Y1 Asl2 Astzl S Ap2 Pi Pt fem 1:Iym 1:tym pr,l% fpi fcp E,

type cm cm cm cm cm cm” cm/m cm® % % MPa MPa MPa MPa MPa MPa GPa
P3 Plain 356 431 - 292 368 43 74 43 03 0.6 340 328 328 1476 1145 0.86 195
P8 Plain 254 381 - 216 343 52 226 52 05 26 310 334 336 959 690 6.83 205
PAIR Plain 254 254 - 222 222 29 49 09 04 0.7 436 435 310 1638 1207 1.74 189
PA2 Plain 254 254 - 216 216 51 91 15 08 12 456 483 310 1663 1207 2.81 195
PA3 Plain 254 254 - 219 219 79 89 22 12 12 418 389 435 1744 1303 4.42 199
PA4 Plain 254 254 - 219 219 114 130 30 18 18 422 419 435 1709 1303 6.00 192
PB1 Plain 178 356 - 146 324 29 49 09 05 07 458 435 310 1638 1207 1.77 189
PB2 Plain 178 356 - 140 318 51 91 15 08 13 458 483 310 1663 1207 2.86 195
PB3 Plain 178 356 - 143 321 79 84 22 13 12 435 389 435 1744 1303 450 199
PB4 Plain 178 356 - 143 321 114 119 3.0 18 1.7 455 419 435 1709 1303 6.11 192
PC1 Plain 146 438 - 114 406 29 42 09 05 07 422 435 310 1638 1207 1.76 189
PC2 Plain 146 438 - 108 400 51 79 15 08 13 451 483 310 1663 1207 2.83 195
PC3 Plain 146 438 - 111 403 79 75 22 12 12 413 389 435 1744 1303 446 199
PC4 Plain 146 438 - 111 403 114 110 3.0 18 18 421 419 435 1709 1303 6.05 192
P2 Hollow 356 431 89 312 389 57 74 57 04 0.7 329 407 407 1476 1145 4.89 195
D1 Hollow 60.0 60.0 114 543 542 238 112 42 0.7 0.7 808 724 715 1670 640 179 195
D2 Hollow 60.0 60.0 115 555 555 238 112 56 0.7 0.7 588 724 715 1670 1100 3.08 195

data or do not meet basic design recommendations fiym).

incorporated in current codes of practice. In this earlier
situation, such beams show atypical behaviors under
torsion. In other experimental studies, including recent
studies, the authors present an average twist for all the beam
length, and not the twist in the failure region (which is
localized along a small length of the beam). This aspect is
particularly important in slender beams. This invalidate
direct comparisons between experimental twists and
theoretical twists. In fact, these last are based on a
theoretical section analysis (of the critical section), and not
an overall analysis of the test beams. For this last reason,
test beams from Wafa et al. (1995) (Beams H3AR, H2A,
H1AR, H3B, H2B, H1B, M3A, M2A, M1A, M3B, M2B
and M1B) were not be considered for some of the
comparative analysis performed in this study. In many
previous studies, authors only studied the resistance torque,
for which this last issue is not limiting. So they could
include more experimental beams in their comparative
analysis. In this study, since both resistance torque and
corresponding twist is studied, a much more limited number
of experimental results can be used.

Table 5 summarizes some of the geometrical and
mechanical properties of the test PC beams (longitudinal
prestress) necessary to compute the T-8 curve, including the
external width (x) and height (y) of the cross-section, the
thickness of the walls of hollow sections (t), the distances
between centerlines of legs of the closed stirrups (x; and y,),
the total area of longitudinal reinforcement (Ay), the
distributed area of the transversal reinforcement (Ag/s,
where s is the spacing of transversal reinforcement), the
ordinary longitudinal reinforcement ratio (p=Ag/A.), with
A.=xy) and the ordinary transversal reinforcement ratio
(p=Astu/(AcS), with u=2(x;+y,), the average concrete
compressive strength (f.,), the average yielding stress of
longitudinal and transversal ordinary reinforcement (fy,, and

Table 5 also incorporate information about longitudinal
prestress, namely: the total area of longitudinal prestress
reinforcement (A;), the proportional conventional limit
stress to 0.1% (fy.1%), the initial stress in the prestress
reinforcement (fy;), the average stress in the concrete due to
prestress (f,;) and the Young’s modulus for the prestress
reinforcement (E,). Despite plain and hollow beams generally
behaves differently (Valipour and Foster 2010, Alnuaimi et al.
2008), for torsion and for the resistance torque there is no
noticeable diferences since the concrete core is not efective (Hsu
1984). For this reason, plain and hollow beams are grouped in
the same table.

6. Comparative analysis with experimental results

Based on the computing procedure presented in Fig. 3, a
computer tool was developed with the computer program
language Delphi to compute the T-8 curve for PC beams
under torsion (Andrade et al. 2011). The ultimate part of the
computed theoretical curve is compared with the
experimental ones from the test beams. Each one of the o-¢
relationships for concrete strut (models c01 to c21, see
Table 3) and for tension steel (models orl to or3 and prl to
pr3, see Table 4) was used. Each model ci (i=1 to 21) was
combined with each model orj+prj (j=1 to 3) to calculate
the theoretical T-6 curves. Then, 21x3=66 simulations were
performed for each beam.

From the theoretical curves, the theoretical values for
the maximum (resistance) torque (T,us) and the
corresponding theoretical twist (&,) were highlighted. This
would help comparative analyses to be done on the
behavior of the corresponding experimental values (Tyexp
and 6, ). In order to facilitate the comparative analysis,
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the ratios of experimental to theoretical values of the
referred parameters were calculated (Tpexp/Tnim and 6hexp
/en,th)-

Table 6 summarizes the results and the comparative
analyses for the parameters previously mentioned. For each
parameter, three statistical parameters were quantified: the
average value (x), the sample standard deviation (s) and the
coefficient of variation (cv).

A global analysis of Table 6 shows that the variability
between the results for each tested model is higher for the
twists when compared with the maximum torques. Table 6
shows that the range of values for the average Tjex/Tnin
ratio (x) is 0.75 to 1.10. The distance between extremes
values is somewhat high. Model c1 shows the lower values
for x. This model does not incorporate reduction factors to
account for the softening effect. As a consequence, the
resistances are overestimated (softening effect reduces the
compressive strength of concrete struts). From Table 6, it
can be stated that the concrete models c03, c05, c06, cl1,
c12, c13, cl4, c15, c18, c19, c20 and c21 are those for
which x values are the closest to 1.00 (between 0.90 and
1.10). Among the referred models, models c11, c12, c13,
c18 and ¢19 show x values greater than 0.95 and smaller
than 1.05. The results obtained with the use of model or3+
pr3 show a slight increase of x values when compared with
models orl+prl or or2+pr2. This seems to show that the
stiffening effect has small influence. However, models or3
and pr3 should be considered theoretically more
satisfactory, since they are nonlinear models. From the
variation coefficient (cv) in Table 6, it can be observed that
for the concrete models c11, c¢12, ¢13, ¢18 and c19, the cv
values are smaller, generally below~10%. The dispersion is
not negligible but still acceptable. The results of Table 6
also seem to indicate that the hardening of ordinary and
prestress reinforcement after the linear-elastic limit point
does not have an important influence, since the results for
orl+prl and or2+pr2 are very similar.

The previous analysis confirms that the use of the
VATM, with appropriate o-¢ relationships for the materials,
is appropriate for the prediction of the torsional strength of
PC beams. This conclusion is logical since the beam is
extensively cracked for high levels of loading (in this stage
prestress reinforcement behaves like passive
reinforcement).

The analysis of the results of Table 6, with respect to
Ohexpl bhin Tatios, shows a large range of values when
compared with those for Tpe/Towm ratios, as well as high
values for cv (much over 10%). The dispersion of the
results are larger than those observed for the Ty e/ Tn 1 ratio.
Generally, Table 6 shows that all the theoretical models
appear to have some difficulty to predict adequately the
deformation of the model beams for high loading levels.
This was somehow expected because VATM assumes a
fully cracked state of the beam from the beginning of
loading. Among the concrete models, the results show that,
for model c13+or3+pr3, the average value is optimal
(x=1.00), despite the high dispersion of the results (cv=
21.6%).

Table 6 Ty exp/Tntn aNd G, expl Gn 1n ratios
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Ci Tn,exp /Tn,th en,exu /en,th
orl+prl or2+pr2 or3+pr3 orl+prl or2+pr2 or3+pr3
x 0754 0762 0.749 0449 0451 0.442
c0l1 s 0103 0.109 0.082 0.169 0.168 0.155
cv 13.72% 14.29% 10.97% 37.66% 37.13% 35.12%
x 0844 0847 0864 0.668 0.685 0.623
c02 s 0.110 0.112 0.105 0.145 0.147 0.140
cv 13.05% 13.18% 12.12% 21.74% 21.52% 22.49%
x 0939 0941 0968 0.854 0.861 0.817
c03 s 0102 0.103 0.108 0.200 0.214 0.173
cv 10.89% 10.96% 11.14% 23.36% 24.80% 21.17%
x 0883 0.88 0901 0.712 0.726 0.671
c04 s 0.096 0.097 0.094 0.137 0.145 0.152
cv 10.88% 10.98% 10.49% 19.27% 19.97% 22.70%
x 0918 0920 0944 0.846 0.851 0.806
c05 s 0.095 0.096 0.100 0.171 0.177 0.168
cv 10.34% 10.39% 10.55% 20.21% 20.85% 20.85%
x 0930 0931 0957 0.862 0.857 0.824
c06 s 0.095 0.096 0.100 0.176 0.172 0.168
cv 10.20% 10.26% 10.44% 20.38% 20.12% 20.43%
x 0824 0827 0837 0.617 0.628 0.590
c07 s 0102 0.104 0.091 0.149 0.148 0.160
cv 12.35% 12.55% 10.91% 24.09% 23.64% 27.11%
x 0865 0.867 0.884 0.742 0.747 0.702
c08 s 0.099 0.100 0.098 0.154 0.156 0.157
cv 11.41% 11.51% 11.05% 20.75% 20.88% 22.29%
x 0870 0872 0.889 0.697 0.713 0.656
c09 s 0101 0.102 0.097 0.149 0.152 0.155
cv 11.64% 11.74% 10.96% 21.40% 21.37% 23.61%
x 0883 0.886 0902 0.667 0.670 0.651
cl0 s 0100 0.101 0.095 0.144 0.144 0.139
cv 11.29% 11.43% 10.58% 21.61% 21.41% 21.39%
x 0981 0982 1004 0.895 0.898 0.868
cll s 0.098 0.098 0.097 0.198 0.202 0.183
cv 9.97% 9.98% 9.61% 22.07% 22.45% 21.07%
x 0959 0960 0983 0.951 0956 0.915
cl2 s 0.095 0.096 0.095 0.226 0.229 0.199
cv 9.94% 9.96% 9.68% 23.79% 23.95% 21.74%
x 1.019 1020 1042 1.054 1.056 1.001
cl3 s 0104 0.104 0.101 0.274 0272 0.216
cv 10.23% 10.25% 9.70% 25.98% 25.77% 21.60%
x 1.072 1072 1095 1.137 1142 1.073
cl4 s 0109 0.109 0.106 0.248 0.256 0.199
cv 10.19% 10.19% 9.73% 21.81% 22.42% 18.56%
x 1049 1050 1071 0.981 0.992 0.908
cl5 s 0105 0.105 0.104 0.234 0.253 0.163
cv 10.01% 10.02% 9.72% 23.86% 25.54% 17.98%
x 0855 0.859 0.867 0.633 0.637 0.614
cl6 s 0.095 0.097 0.086 0.167 0.167 0.170
cv 11.12% 11.28% 9.94% 26.36% 26.22% 27.73%
x 0855 0859 0867 0.633 0.637 0.614
cl7 s 0.09 0.097 0.086 0.167 0.167 0.170
cv 11.12% 11.28% 9.94% 26.36% 26.22% 27.73%
x 1011 1012 1030 0.814 0.817 0.787
cl8 s 0104 0.104 0.100 0.163 0.166 0.176
cv 10.12% 10.30% 9.67% 20.05% 20.33% 22.33%
x 1.011 1.012 1030 0.814 0.817 0.787
cl9 s 0104 0.104 0.100 0.163 0.166 0.176
cv 10.32% 10.30% 9.67% 20.05% 20.33% 22.33%
x 0903 0906 0913 0.689 0.690 0.672
c20 s 0.094 0.095 0.089 0.212 0.211 0.207
cv 10.40% 10.45% 9.77% 30.80% 30.63% 30.78%
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Table 7 Results from comparative analyses for model
c13+or3+pr3

Tn,exp Tn,th Tn,exp / gn,exp gn,th Hn,exp /

Beam \Nmim  KNmm  Tee  9m 9m Gy

P3 55.8 60.8 0.92 3.14 267 1.18

P8 61.8 59.8 1.03 189 168 1.12
PA1R 21.9 20.0 1.09 297 463 0.64
PA2 28.7 29.9 0.96 288 341 085
PA3 34.2 34.8 0.98 268 284 094
PA4 37.0 39.2 0.94 294 253 1.16
PB1 21.9 19.2 1.14 450 502 0.90
PB2 27.4 28.2 0.97 277 361 0.77
PB3 32.7 324 1.01 309 319 097
PB4 37.7 37.2 1.01 266 294 091
PC1 19.7 16.8 1.18 522 5.23 1.00
PC2 28.7 25.2 1.14 337 397 085
PC3 329 28.5 1.16 471  3.46 1.36
PC4 38.7 321 1.21 383 312 1.23
P2 87.1 79.3 1.10 280 1.98 1.42
D1 396.0 466.4 0.85 173 235 074
D2 447.7 436.2 1.03 193 192 1.00

x= 1.042 x= 1.001
s= 0.101 = 0.216
cv = 9.70% cv=21.60%

Table 7 presents the results for Tp e /Tnh aNd Gy exp /Ghn
ratios obtained for model c13+or3+pr3. Fig. 4 presents bar
graphs which allow a visual analysis of the dispersion of the
results (from Table 7) comparatively to the optimal unit
value. Table 7 and Fig. 4 confirm the good results observed
in Table 6 for Ty e /Thm ratio and the acceptable results for
Ohexp 1 6h1n 1atio, by using model c13+or3+pr3.

In conclusion, among the best models for the torsional
strength (c11, c12, ¢13, ¢18 and c19 with or3+pr3), it can
be stated that model c13+or3+pr3 gives simultaneously the
best results for the resistance torque and the corresponding
twist. This model will be used for the next objectives of this
study.

Fig. 5 presents both the experimental and all the
theoretical T-0 curves for some test beams. Theoretical
curve for model c13+or3+pr3 is highlighted. Fig. 4 clearly
shows the high dispersion among the theoretical T-& curves,
mainly for high levels of loading. This high dispersion was
also observed by Bernardo et al. (2012) for RC beams. Fig.
5 also shows that several models lead to torsional strength
values that are not safe.

7. Comparative analysis with codes provisions

This section presents a comparative analysis with the
predictions for the resistance torque computed through
some codes of practice. The following codes of practice
were considered: ACI 318R-05 (2005), European Codes
MC 90 (1990) and EC 2 (2010). The objective is to analyze
the degree of optimization of the theoretical model
predictions in comparison with normative predictions that
are expected to be more conservative. To compute the codes
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Fig. 4 Bar graphs with the results from Table 7

predictions, no safety factors were used and the strengths of
the materials (steel and concrete) were characterized with
their corresponding average values.

If a code of practice predicts brittle failure due to
crushing of the concrete struts for a beam under torsion,
then the corresponding torsional strength is computed by
adopting the maximum values from the code for the
compression stress in the concrete struts.

For this section, in addition to the reference beams
analyzed in the previous section, other reference beams
found in the literature are also added. As previously referred
in Section 5, those beams just allow the study of their
resistance torque (torsional strength), which is the purpose
of this section. Then, twelve slender HSC beams with plain
section and uniform longitudinal prestress tested by Wafa et
al. (1995) were added in this section. The relevant
characteristics of such beams to calculate the normative
torsional strength are summarized in Table 8.

Table 9 summarizes the equations of the codes of
practice used to compute the torsional strength of the PC
test beams. For beams with longitudinal prestress, the
longitudinal force in the ordinary reinforcement (Af,) is
replaced by the total longitudinal force including the portion
absorbed by the longitudinal prestress reinforcement:
Aifiy+Ap(foo.10—f,) for ACI 318R-05 (2005) and
AsifygtApifoya e Tor MC90 (1990) and EC2 (2010). The
meaning of the parameters can be found in the codes. Table
9 also presents the normative (T,cac), the experimental
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Table 8 Properties of the new test beams (Wafa et al. 1995)
Beam Section X y X1 A Ay Agls A fom fiym foym fh0.1% fep
type (cm) (cm) (cm) (cm) (cm®) (cm®m) (cm®) (MPa) (MPa) (MPa) (MPa) (MPa)
H3AR Plain 140 420 98 378 8.04 1028 397 922 487 390 1816 8.3
H2A  Plain 170 340 128 298 804 1257 3.97 919 487 390 1816 8.7
HIAR Plain 240 240 198 198 8.04 1257 397 947 487 390 1816 6.4
H3B  Plain 140 420 100 380 6.16 561 206 915 374 387 1841 4.0
H2B  Plain 240 240 130 300 6.16 6.04 206 956 374 387 1841 43
H1B  Plain 240 240 200 200 6.16 654 206 898 374 387 1841 43
M3A Plain 140 420 98 378 804 1028 397 699 487 390 1816 6.5
M2A  Plain 170 340 128 298 804 1131 397 701 487 390 1816 6.2
M1A  Plain 240 240 198 19.8 804 1257 3.97 725 487 390 1816 6.4
M3B  Plain 140 420 100 380 6.16 561 206 693 374 387 1841 3.2
M2B  Plain 170 340 130 300 6.16 6.04 206 69.7 374 387 1841 33
M1B  Plain 240 240 200 200 616 654 206 720 374 387 1841 3.2

(Tnexp) and the theoretical (T,) torsional strength. This
latter was computed in the previous section with model

c13+or3+pr3 (Table 7).

—cl3+Or3+pr3

15

15

 [Beam D2

cl3+ ord+ pr3

5
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Table 9 shows that ACI 318R-05 (2005) generally
underestimates the torsional strength of PC beams, mainly

for beams with high reinforcement ratios. It should be noted
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Table 9 Torsional strength of test beams

model c13+or3+pr3 ACI 318R-05 MC 90 EC2 ACI 318R-05 (2005),
Beam Tn,exp Tn,th T“‘ﬂ Tn‘calc T“ﬂ Tn,calc T“vﬂ Tn,calc T”'ﬂ A f N 9
(kNm) (kNm) T, (kNm) T, (Nm) T, (Nm) T, .. =2 p, X cotg®
P3 558 613 091 33.00 169 3199 175 3120 179 s v
P8 618 615 101 309 200 5099 122 5599 111 1 2 2AAT e
PAIR 218 200 109 1409 155 1250 174 1279 171 s
PA2 293 299 098 192 153 2389 123 2420 121 Brittle failure:
PA3 340 348 098 192 177 313" 1090 3189 107 8/f/17A,’
PA4 374 392 096 192 195 461% 081 343  1.09 To = P,
PB1I 222 192 116 1319 170 11.6® 190 1159 192
PB2 275 282 098 165 167 221® 125 2200 125
PB3 326 324 101 169 193 2799 117 2779 118 MC 90 (1990),
PB4 376 372 1.01 173 217 3949 096 3930 0.6 tq 0. AuifaaZils - g
PC1 197 168 118 11.3® 174 101% 196 9.8% 201 9% = A f
PC2 286 252 114 139 205 187® 153 1830 156 T T _oF /2
PC3 328 285 115 141 232 2320 141 2269 145 0 = Trr = 2P 12
PC4 385 321 120 143 270 329% 117 3230 119 Frs = Asui 0 COIG 6, Z
H3AR 335 333 1.01 156 214 2409 139 2399 140 ) ) s
H2A 358 382 094 185 194 298% 120 307% 117 Brittle failure:
HIAR 384 381 101 213 180 3709 104 386 099 Trowi = 2Fau SINO A 1 Z;
H3B 264 237 112 163 163 1520 174 1509 176 Fro = TogaliZ; COSO,
H2B 295 258 114 2149 179 2389 124 2279 130
H1B 313 274 114 214 146 2029 155 2020 156
M3A 300 298 101 136 220 2649 113 263% 114 EC2 (2010)
M2A 319 321 100 162 198 305® 105 331W 0097 ; ’
MIA 354 356 1.00 187 190 370" 096 386" 092 tg 0= /M - 0
M3B 245 219 1.12 14.2 173 1629 151 1619 153 sY A fy,
M2B 262 234 112 167 157 17.9Y 146 1919 137 T -7, = 2Ak(fywd A, /s)cotg 6
M1B 289 253 114 192 151 2139 136 2210 131 Brittle failure:
P2 871 782 112 5929 147 5020 174 5100 171 T 9uf A sin 0cosO
DI 3960 4191 095 4048 098 371.6%9 107 43809 0.90 ra1 = 2ViytA, sin Bcos
D2 4477 4015 112 3701 121 36069 124 42179 106
DDuctile ¥= 1056 x= 1782 x= 1340 x= 1330
failure s= 0.085 s= 0.352 s= 0.302 s= 0.081
cv= 8.03% cv = 19.75% cv= 2250% cv= 23.63%

that, according to Bernardo and Lopes (2009, 2013), the
range of torsional reinforcement ratio compatible with some
torsional ductility is very narrow. This shows that brittle
failure is a common situation in the current cases of beams
under high torsional moments. For such beams, ACI 318R-
05 (2005) seems to be very conservative. Except for Beams
D1 and D2 (large hollow beams), ACI 318R-05 (2005)
generally provides safe values for the torsional strength
(x=1.78 for Tpexp /Thcaic ratio) and with high deviations
(cv=19.8%).

Table 9 shows that MC 90 (1990) and EC 2 (2010)
generally also underestimate the torsional strength of PC
beams (x=1.33 to 1.34), although not as much as ACI code.
However, all the test beams would lead to a ductile failure
according to MC 90 (1990) and EC 2 (2010) (failure due to
the yielding of the reinforcement). The experimental results
of the test beams show that the majority of them had a
brittle failure. Table 9 also shows that the deviation of Ty e
Thcarc Fatio is large (cv=23 to 24%).

Table 9 also shows that model c13+or3+pr3 provides
much more accurate values for the torsional strength and
with a coefficient of variation lesser than 10%.

Fig. 6 presents graphs of the ratios Tpexp/Tncaic aNd T exp

[Tom (Thw computed with model c13+or3+pr3) as a
function of the compressive strength of concrete () for
each code. Generally, Fig. 6 confirms graphically the same
conclusions previously stated based on the analysis of Table
9. All the codes are conservative for the majority of the test
beams, especially for beams with high torsional
reinforcement ratio. However, ACI 318R-05 (2005) is more
conservative than MC 90 (1990) and EC 2 (2010).

Fig. 6 shows that the deviations of the results are high
between the test beams studied. Fig. 6 also confirms that
VATM with model c¢13+or3+pr3 provides closer
predictions for torsional design when compared to those of
the studied codes.

8. Conclusions

In the first part of this article, a general computing
procedure based on the VATM to compute the ultimate
behavior of PC beams under torsion is presented. In order to
extend the application of the VATM, the original equations
were rewritten to cover both longitudinal and/or transversal
PC beams under torsion. Despite no experimental data for
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transversally PC beams were found for this study, such
extension of the VATM can be useful for future researches
involving RC beams under torsion with transversal
prestress.

In the second part of this article, several o-¢
relationships for the materials (concrete and reinforcements)
were checked with the help of numerical simulations in
order to compute the ultimate behavior of tested PC beams
(with longitudinal prestress) under torsion. The theoretical
procedure was based on the VATM formulation. Based on
the obtained results and from comparative analysis, the
authors found that some theoretical models lead to good
predictions for the torsional strength of PC beams under
torsion. In particular, model c¢13+or3+pr3 provides
simultaneously acceptable predictions for the twist
corresponding to the torsional strength.

Model c13 for concrete struts incorporates the softened
o-¢ relationship proposed by Belarbi and Hsu (1991) and
the reduction factors proposed by Hsu (1993) (see Tables 1

and 2). Model or3+pr3 incorporates the stiffened o-¢
relationships from Belarbi and Hsu (1994) for the ordinary
reinforcement and from Ramberg-Osgood, proposed by Hsu
and Mo (1985), for the prestress reinforcement (see Table
4).

As referred in Section 2, in a previous study Bernardo et
al. (2012) tested several o-¢ relationships for concrete in
compression and ordinary reinforcement in tension to study
the behaviour of RC beams under torsion. Their analysis
was performed with a much great number of test beams
than the one used in the present study with PC beams. In the
referred study, the authors found that the model which
provides the best predictions for the maximum torque and
corresponding twist is the one that incorporates the o-¢
relationships for compressed concrete in struts proposed by
Belarbi and Hsu (1991) with softening coefficients
proposed by Zang and Hsu (1998) and the o-¢ relationship
for ordinary reinforcement in tension proposed by Belarbi
and Hsu (1994). In the present study, the previous model
corresponds to model cl4+or3 (see Table 3, without
prestress reinforcement). When compared with model ¢13+
or3+pr3, found in the present study to be the best model,
the unique difference is related with the softening
coefficient. However, in the present study, model cl4+or3
+pr3 is not one of the best models for PC beams (Section
6). Despite the limited number of PC test beams used in this
study, the combined results from this study and from the
previously referred study for RC beams seems to show that
the expected differences between RC and PC beams under
torsion, as referred in Section 2, exist and are reflected in
the o-¢ relationships of the materials incorporated in the
VATM.

In the last part of this article, the predictions for the
torsional strength of the test beams, computed with model
cl3+or3+pr3, were compared with those computed from
some codes of practice (ACI 318R-05 2005, MC 90 1990,d
EC 2 2010).

The results show that ACI 318R-05 (2005) generally
underestimates the torsional resistance of PC beams, mainly
for beams with high reinforcement ratio. For such beams,
ACI 318R-05 (2005) provides values highly below the
experimental strengths and with large deviations. Both MC
90 (1990) and EC 2 (2010) generally also underestimate the
torsional strength of PC beams, although not as much as
ACI 318R-05 (2005). Nevertheless, the dispersion of the
results is also high.

When compared with the predictions from codes, the
theoretical model c13+or3+pr3 provides good values for
the torsional strength, which would lead to better optimized
designs.

In this study it was not possible to compare the
predictions from the computing procedure for transversally
PC beams since no experimental results were found in the
literature. Therefore, experimental tests of this type of
beams are need.
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¢ section
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cv  coefficient of variation

E. Young’s modulus of concrete

E, Young’s modulus of prestress reinforcement

E Young’s modulus of longitudinal  prestress
P reinforcement
E Young’s modulus of  transversal  prestress
Pt reinforcement

E; Young’s modulus of ordinary reinforcement
initial transversal prestress force
f.  cylinder compressive strength of concrete
f., fo principal compression stress of concrete
fon  average concrete compressive strength
fop  average stress in the concrete due to prestress
fi  tensile stress of longitudinal ordinary reinforcement
average Yyielding stress of longitudinal reinforcement
f,  tensile stress of prestress reinforcement
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initial stress in the prestress reinforcement
initial  stress in  the longitudinal
reinforcement

initial stress in the transversal prestress reinforcement
stress of prestress reinforcement corresponding to

€p0.1%

prestress

conventional  stress of longitudinal prestress
reinforcement
conventional  stress of  transversal  prestress

reinforcement
tensile strength of prestress reinforcement
tensile stress of ordinary reinforcement
yielding stress of longitudinal ordinary reinforcement
yielding stress of transversal ordinary reinforcement
tensile strength of ordinary reinforcement
yielding stress of ordinary reinforcement
tensile stress of transversal ordinary reinforcement
average yielding stress of transversal reinforcement
ratio between the medium stress and the maximum
stress in the concrete strut
o-¢ relationship j for ordinary reinforcement
o-¢ relationship j for prestress reinforcement
perimeter of area A,
standard deviation
spacing of the transversal prestress reinforcement
spacing of the transversal ordinary reinforcement
torque; torsional moment
normative value for the torsional strength
experimental value for the torsional strength
theoretical value for the torsional strength
thickness of the walls of the cross hollow section
effective thickness of the walls (struts)
perimeter of the transversal prestress reinforcement
perimeter of the transversal ordinary reinforcement
width of the cross section
average value
distance between centerlines of vertical legs of the
closed stirrup
distance between centerlines of horizontal legs of the
closed stirrup
height of the cross section
angle of the concrete struts
reduction factor
reduction factor for stress
reduction factor for strain
strain
principal tension strain of concrete
principal compression strain of concrete
ultimate compression strain of concrete
strain at the center line of the flow of shear stresses
strain in the longitudinal prestress reinforcement at
decompression
strain in the transversal prestress reinforcement at
decompression
strain at the surface of the diagonal concrete strut
strain of the longitudinal ordinary reinforcement
initial strain in the longitudinal ordinary
reinforcement due to prestress
strain corresponding to the peak stress  f/
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