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Abstract.  Compared with the identification of linear structures, it is more challenging to conduct 

identification of nonlinear structure systems, especially when the locations of structural nonlinearities are not 

clear in structural systems. Moreover, it is highly desirable to develop methods of parametric identification 

using partial measurements of structural responses for practical application. To cope with these issues, an 

identification method is proposed in this paper for the detection and parametric identification of structural 

nonlinear restoring forces using only partial measurements of structural responses. First, an equivalent linear 

structural system is proposed for a nonlinear structure and the locations of structural nonlinearities are 

detected. Then, the parameters of structural nonlinear restoring forces at the locations of identified structural 

nonlinearities together with the linear part structural parameters are identified by the extended Kalman filter. 

The proposed method simplifies the identification of nonlinear structures. Numerical examples of the 

identification of two nonlinear multi-story shear frames and a planar nonlinear truss with different nonlinear 

models and locations are used to validate the proposed method. 
 

Keywords:  nonlinear structural systems; parametric identification; nonlinear restoring force; extended 

Kalman filter; partial measurements 

 
 
1. Introduction 
 

Parametric identification of structures is one of the important aspects of structural health monitoring. 

Structural nonlinearity occurs under strong dynamic loading. Also, structural nonlinearity is a 

useful indicator of the evolutions of structural damage under dynamic excitation (Yun and 

Shinozuka 1980, Jia et al. 2012, Zhu et al. 2012, Qarib and Adeli 2014) Therefore, it is necessary 

to detect, localize and identify structural nonlinearities using structural dynamic measurements for 

damage detection, performance evaluation and remaining service life forecasting of engineering 

structures (Li and Chen 2013, Yi et al. 2013, Lin et al. 2013, Kaloop et al. 2014, Wang et al. 

2015). However, identification of nonlinear structural systems is far less established than that of 

linear systems due to the complexities of structural nonlinearities and the identification of many 

unknown structural parameters. 
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The common identification methods and research needed of nonlinear structural dynamic 

systems were summarized by Kerschena et al. (2006), Lee et al. (2010), Qarib and Adeli (2014), 

etc. Previous identification methodologies can be mainly categorized into time domain or 

frequency domain approaches. Peng et al. (2008) investigated nonlinear parameter estimation for 

multi-degree-of-freedom nonlinear systems using nonlinear output frequency-response function; 

Carrella and Ewins (2011) proposed identifying and quantifying structural nonlinearities from 

measured frequency response functions. Aykan and Ö zgüven (2013) improved parametric 

identification of nonlinear elements by using incomplete frequency response function data. In the 

time domain identification studies, Yun and Shinozuka (1980) and Masri with his colleagues 

(Masri et al. 1987a, Masri et al. 1987b, Smyth et al. 1999, Masri et al. 2005) were the main 

pioneers for the identification approaches of nonlinear structural dynamic systems. Then, many 

researchers presented improved methodologies, e.g., Kumar et al. (2007) presented parametric 

identification of nonlinear dynamic systems using combined Levenberg-Marquardt and genetic 

algorithm; Kishore and Shankar (2009) proposed parametric identification of structures with 

nonlinearities using global and substructure approaches in the time domain; Zhang et al.
 
(2008) 

developed a pattern recognition technique based on support vector for nonlinear system 

identification; Rochdi et al. (2009) studied parametric identification of nonlinear hysteretic 

systems; Jia et al. (2012) investigated restoring force identification for a nonlinear chain-like 

structure; Pai et al. (2013) presented nonlinearity identification by time-domain-only signal 

processing. Yang et al.
 
(2005, 2006, 2009) proposed several approaches based on least squares 

estimation, sequential non-linear least-square estimation, extended Kalman filter, and adaptive 

quadratic sum-squares error, respectively for parametric identification of nonlinear structural 

systems. The authors (Lei et al. 2012a, Lei et al. 2013) have also developed algorithms for the 

identification of nonlinear structural parameters and nonlinear properties of rubber-bearings in 

base-isolated buildings under limited input and output measurements. However, in many prior 

studies, it is prerequisite that either the locations of structural nonlinearities are known or full 

measurements of structural responses are available. If the locations of structural nonlinearities are 

not clear and only partial measurements of structural responses are available, it is still difficult to 

detect and identify nonlinear structural systems due to the complexity of structural nonlinearity 

and the identification of many unknown structural parameters with incomplete measurement 

information. 

In practice, it is impossible to deploy so many sensors to measure all response outputs of a 

structural system. Therefore, it is highly desirable to develop methods of parametric identification 

using partial measurements of structural responses for practical application. The extended Kalman 

filter (EKF)
 
(Hoshiya and Saito 1984, Yang et al. 2006, Yuen et al. 2013) has been proved to be 

very useful for structural identification when only partial structural responses are measured. Also, 

EKF can be extended for the identification of nonlinear structures (Yang et al. 2006, Lei et al. 

2012b, Lei et al. 2013). The EKF is based upon the principle of linearizing the nonlinear state 

transition function and observation function with Taylor series expansions. The derivation of the 

Jacobian matrices and the linearization approximations to the nonlinear functions can be nontrivial 

and lead to implementation difficulties if the EKF is directly used for the identification of a 

nonlinear structure in which the locations of structural nonlinearities are not prerequisite (Wu and 

Smyth 2007).  

In this paper, an identification method is proposed for detection and parametric identification of 

structural nonlinear restoring forces using only partial measurements of structural responses. First, 

an equivalent linear structural system is proposed for a nonlinear structure and the locations of 
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structural nonlinearities are detected based on the identification results of the equivalent linear 

system and those of the original nonlinear structure under weak excitation. Then, the parameters of 

structural nonlinear restoring forces at the locations of identified structural nonlinearities together 

with the rest linear part structural parameters are identified by the extended Kalman filter. 

Numerical simulation examples of the identification of a nonlinear multi-story shear frame and a 

truss with different nonlinear models and locations are used to validate the proposed method.  

 
 

2. Detection for the locations of structural nonlinearities in structural systems 
 

The equation of motion for a nonlinear structural system can be written as 

)(]),(),([)( tttt BfθxxFxM                            (1) 

where M is the mass matrix of the structure, ẍ(t), ẋ(t) and x(t) are the vectors of the structural 

acceleration, velocity and displacement responses, respectively; θis the unknown structural 

parameters vector; F[ẋ(t), x(t), θ] is the vector of nonlinear restoring forces; B and f(t) are the 

external force influence matrix and external force vector, respectively. Usually, M can be assumed 

known as the mass of a structure can be estimated quite accurately.  

 
2.1 Identification of the nonlinear structure under weak external excitation 

 

Under weak external excitation, the nonlinear restoring forces in the structural system become 

linear ones. Thus, the equation of motion of the structural system reduces to 

 )()()()( tttt lll BfKxxCxM                            (2) 

where ẍl(t), ẋl(t)and xl(t) are the vectors of the acceleration, velocity and displacement responses of 

the linear structure, respectively. M, C and K are the mass, damping and stiffness matrices of the 

linear structure, respectively. 

The extended state vector of the above linear structure is defined as  , 
T

T T T

l l l l= ,X x  x   with θl 

being a vector of linear stiffness and damping parameters. Then, the equation for the extended 

state vector of the linear structure can be derived as 
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The availability of acceleration data is usually ensured since this is what is commonly 

measured. Therefore, the discrete form of equation for measured acceleration vector can be 

expressed as 

111,111,1,
1

1, ),()( 


  kkkllkkklklkl vfXhvBfKxxCDMy            (4) 

where yl,k+1 is the measured linear acceleration response vector at time t=(k+1)×Δt (Δt is the 

sampling time step), D denotes the location of accelerometers, vk+1 is the measurement noise 

assumed as Gaussian white noise. 

Based on the extended Kalman filter (EKF), the extended state vector can be identified as 
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,
ˆ

l k+1 k+1X  is the estimated state vector Xl at time t=(k+1)×Δt and Kk+1 is the Kalman Gain matrix 

at the time instant (Hoshiya and Saito 1984, Lei et al. 2012b). 

Therefore, the linear structural parameters can be identified by using the EKF and the partial 

measurements of structural responses under weak excitation.   

  
2.2 Identification of an equivalent linear structure under strong external excitation 
 

Under strong external excitation, structural nonlinear effect becomes significant. An equivalent 

linear system for the nonlinear structural system is introduced with the following equation of 

motion (Jia et al. 2012). 

)()()()( tttt eeeeee BfxKxCxM                         (7) 

in which ẍe(t), ẋe(t) and xe(t) are the vectors of the acceleration, velocity and displacement 

responses of the equivalent linear system, respectively; Me , Ce and Ke are the equivalent linear 

mass, damping and stiffness matrices, respectively; Usually, the mass matrix is hardly changed 

when nonlinear behavior appears, so Me=M. 

Analogously, the equivalent linear stiffness and damping parameters can be identified using the 

extended Kalman filter (EKF) with the partial measurements of the nonlinear structural responses.  
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  kklklkkle BfKxxCDMfXh                 (10b) 

ˆ
e, k+1 k+1X is the estimated state vector Xe at time t=(k+1)×Δt and  , 

T
T T T

e e e e= ,X x  x   and θe is the 

parametric vector of the equivalent linear structural system.                                                                   

Then, the locations of structural nonlinearity can be identified by comparing the differences 

between the identified structural parameters of equivalent linear system and those of the linear 

structure as illustrated in the following numerical examples.  

 
2.3 Parametric Identification of the structural nonlinear restoring forces 

    
After the identification of the locations of structural nonlinearities, parametric identification of 

294



 

 

 

 

 

 

Detection and parametric identification of structural nonlinear restoring forces... 

the nonlinear structural system can be conducted by the EKF using the partial measurements of the 

nonlinear structural responses under strong external excitations. 

In this case, the extended state vector is defined as X={x
T
, ẋT, θ

T
}

T where θis the parametric 

vector containing the parameters of nonlinear restoring forces in the identified locations of 

structural nonlinearities and the rest linear part structural parameters. 

The equation for the extended state vector is expressed as 
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The discrete form of equation for measured acceleration vector is written as 

11111111
1

1 ),(),,[( 


  kkknkkkkkk vfXhvθxxFBfDMy           (12) 

Analogously, the extended state vector of the nonlinear structure can be recursively estimated 

by EKF as 
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~

([
~ˆ

1111111 
 kkknkkkkkk

fXhyKXX                   (13) 







1

),ˆ(ˆ~
1

k

k

t

t
nkkkk

dtfXgXX                         (14) 

Usually, structural nonlinear restoring forces only exist in the locations of structural 

nonlinearities while the other structural restoring forces are linear ones. Since structural 

nonlinearities only exist in the limited components in local part of a whole structure, the numbers 

of unknown parameters in the nonlinear restoring forces are greatly reduced due to the detection of 

structural nonlinearities. The computational burden of the derivation of the Jacobian matrices is 

also reduced. Therefore, proposed method not only simplifies the identification of nonlinear 

structures but also ensures identification convergence in an inverse problem. 

 
 
3. Numerical validations 

 

To validate the proposed method for the detection and parametric identification of structural 

nonlinear restoring forces using only partial measurements of structural responses, numerical 

simulation examples of the identification of two nonlinear multi-story shear frames and a truss 

with different nonlinear models and locations are used. 

 
3.1 Detection and parametric identification of nonlinear multi-story shear frames 
 

The numerical examples of the identification of two nonlinear multi-story shear frames with 

different nonlinear models and locations are used to validate the proposed method. The frames are 

subjected to the El Centro earthquake ground excitation with different levels of peak ground 

acceleration (PGA), respectively. The numerical calculation responses are treated as “measured 

responses” for the identification problem. Also, the influence of measurement noise is considered 

by superimposition of noise process with the computed response quantities. In the examples, the 

acceleration responses are added by white noises with 5% noise-to-signal ratio in root mean square 

(rms).  
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Table 1 Comparisons of the equivalent linear and linear parameters of the six-story shear frame 

Story No. kei (kN/m) kli (kN/m) cei (kN·s/m) cli (kN·s/m) 

1st 182.96 237.77 0.58 0.19 

2nd 240.18 240.01 0.16 0.19 

3rd 245.06 240.71 0.18 0.19 

4th 236.82 239.98 0.18 0.19 

5th 237.61 240.18 0.20 0.20 

6th 240.52 240.03 0.18 0.20 

 
 
3.1.1 Identification of a six-story shear frame with nonlinear force in Bouc-Wen model 
The linear structural parametric values of the six-story shear frame are selected as: mass of 

each floor mi=600 kg, each story stiffness ki=240kN/m, each story damping coefficients ci=0.20 

kN·s/m (i=1,2,…,6). Only the acceleration responses 1st, 3rd, 4th and 6th floors are measured and 

used for structural identification. The extended state vector of the linear structure is defined as 

   1 2 6 1 2 6, ; , ,..., ,c , ,...,  
T

T T T T

l l l l l l l l l l l= , k k k c cX x  x                    (15) 

in which, kli and cli (i=1,2,…,6) are the i-th linear stiffness and damping parameters, respectively. 
The linear structural parameters of the six-story shear frame can be identified by the EKF with 

the partial measurements of acceleration responses of the frame under weak earthquake ground 

excitation. The identification results are shown in Table 1. 

When the above six-story shear frame is subjected to strong earthquake excitation, structural 

nonlinearities occur in the frame. In this example, Bouc-Wen model (Wen 1987), which has been 

widely used for the description of nonlinear hysteretic forces, is adopted. It is assumed that story 

nonlinear hysteretic restoring force in Bouc-Wen model exists in the 1st story. In the Bouc-Wen 

hysteretic model, the vector of inter-story hysteretic drift z1 can be described by 

11

10111

1

10111011 )()(){1(
nn

zxxzzxxxxz  


               (16) 

in which, β1, γ1 and n1 are the Bouc-Wen hysteretic parameters, α1 is the ratio of post-yielding 

stiffness to pre-yielding stiffness. In the example, these parameters are selected as: α1=0.5, β1=500 

s
2
/m

2
, γ1=5000 s

2
/m

2
, n1=2.  

First, an equivalent linear frame is established and identified by the extended Kalman filter 

using the measured partial nonlinear structural responses. The identification results of equivalent 

linear parameters are shown and compared with those of the linear farme in Table 1. 

In Table 1, it is noted that large differences exist between the values of ke1, ce1 and kl1, cl1 as 

marked by values in bolds. Based on these differences, the location of structural nonlinearity is 

identified.  

Then, the parameters of the Bouc-Wen model for the 1st story hysteretic nonlinear restoring 

force can be identified by using the EKF with the extended state vector defined as 

T

6 6 1 6 6 1 1[ ]1 1 1 1x ,...,x ,x ,...,x ,z ,k ,...,k ,c ,...,c , , X                
  (17) 

The identification results of the nonlinear structural parameters are shown in Table 2. 

Compared with their actual values, it is shown that the identification results are accurate. 
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Table 2 Parametric identification results of the nonlinear six-story shear frame 

Story No. ki (kN/m) ci (kN·s/m) i (s
2
/m

2
) i (kN·s/m) 

1st 239.50 0.18 515.68 4929.19 

2nd 239.91 0.20   

3rd 239.37 0.20   

4th 239.91 0.19   

5th 239.27 0.20   

6th 239.87 0.21   
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Fig. 1(a) Displacement of the 1st story Fig. 1(b) Velocity of the 1st story 
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Fig. 2(a) Hysteretic force in the 1st story Fig. 2(b) Hysteretic parameter z1 

 

 

Figs. 1(a)-(b) show the comparisons of the identified structural displacement and velocity 

responses with the real responses, respectively. In Fig. 2(a)-(b), the identified hysteretic restoring 

force (hysteretic loop) together with inter-story hysteretic drift z1 of the 1st story of the frame are 

compared with the real ones, respectively. It is demonstrated that the identification results are in 

good agreement with the real ones. 

 
3.1.2 Identification of a ten-story shear frame with nonlinear forces in Dahl models 
The linear structural parametric values of the ten-story shear frame are selected as: mi=600 kg, 

ki=240 kN/m, and ci=0.20 kN s/m (i=1,2,…,10). Partial measurements of the acceleration 

responses 1st, 2nd, 4th, 6th, 8th and 10th floors are used for structural identification. The linear  
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Table 3 Comparisons of the equivalent linear and linear parameters of the ten-story shear frame 

Story No. kei (kN/m) kli (kN/m) cei (kN·s/m) cli (kN·s/m) 

1st 246.40 239.59 0.88 0.21 

2nd 235.25 241.09 0.21 0.18 

3rd 237.45 240.11 0.18 0.22 

4th 239.84 238.29 0.19 0.18 

5th 237.89 239.12 0.21 0.20 

6th 241.25 241.44 0.22 0.20 

7th 237.28 240.25 0.24 0.21 

8th 244.21 238.63 0.89 0.20 

9th 238.98 240.63 0.24 0.20 

10th 240.18 238.98 0.20 0.22 

 

 

structural parameters of the frame can be identified by the EKF with the partial measurements of 

acceleration responses of the frame under weak earthquake excitation. The identification results 

are shown in Table 3 with kli and cli being the i-th identified stiffness and damping parameters, 

respectively. 

Under strong earthquake excitation, structural nonlinearities occur in the frame. In this 

example, identification of story nonlinear restoring forces in Dahl models (Dahl 1976) is studied. 

In the Dahl hysteretic model, the nonlinear restoring force is expressed as 

iidiiiiiiii fzfxxcxxkF 01010 )()(  
                     (18) 

in which k0i, c0i, fdi, f0i are model parameters, and zi is the Coulomb dry friction described by 

)sgn(1)(( 11   iiiiiii xxzxxz                          (19) 

In the numerical example, It is assumed that story nonlinear restoring forces in Dahl models 

exist in both the 1st and the 8th stories with the parameters set as: k01=k08=0.02 kN/m, c01=c08=0.01 

kNs/m, fd1=0.06 kN, fd8=0.05 kN, f01= f08=0 kN, and 1=1000 s/m, 8=800 s/m. 

An equivalent linear frame is established and identified by the extended Kalman filter using the 

measured partial nonlinear structural responses. The identification results of equivalent linear 

parameters are shown and compared with those of the linear frame in Table 3. 

From the comparisons in Table 3, it is noted that there are large differences between the 

identified equivalent damping and linear damping parameters in the 1st and 8th stories, as marked 

by values in bolds. Therefore, the locations of the two structural nonlinearities are identified.  

Then, parametric identification of the ten-story shear frame can be conducted by using the EKF 

with the extended state vector defined as 

     
T

10 10 10 10 01 01 1 1 08 08 8 8[ , , , , ]  1 1 1 1 d dx ,...,x ,x ,...,x ,k ,...,k ,c ,...,c ,k ,c f ,k ,c fX  (20)
 

The identification results of the nonlinear structural parameters are shown in Table 4. 

Compared with their actual values, it is shown that the identification results are accurate. 

In Figs. 3(a)-(d), the identified two nonlinear restoring forces and the two parameters z1 and z8 

of the 1st and 8th stories of the frame are compared with the real results, respectively. It is shown 

that the identification results are in good agreement with the real ones. 
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Table 4 Parametric identification results of the nonlinear ten-story shear frame 

Story No ki (kN/m) ci (kN·s/m) k0i (kN/m) c0i (kN·s/m) fdi (kN) i (s/m)

1st 239.91 0.20 0.018 0.19 0.061 984.29 

2nd 239.97 0.21     

3rd 239.98 0.19     

4th 239.04 0.20     

5th 240.58 0.20     

6th 240.72 0.20     

7th 239.67 0.19     

8th 240.25 0.20 0.018 0.19 0.048 817.63 

9th 239.61 0.20     

10th 240.46 0.20     
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Fig. 3(a) Nonlinear force in the 1st story Fig. 3(b) Nonlinear force parameter z1 
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Fig. 3(c) Nonlinear force in the 8th story Fig. 3(d) Nonlinear force parameter z8 

 

  

3.2 Detection and parametric identification of a nonlinear truss 
 

To further validate the proposed method for the parametric identification of other types of 

nonlinear structures, the identification of a nonlinear truss shown in Fig. 4 is used. It is assumed 

that all bars in the truss have uniform cross sections and the length of each horizontal bar is 2m 

while the length of each inclined bar is 2 m. The finite element model of the truss has 11 bar  
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Fig. 4 A plan nonlinear truss 

 

 

members and 10 degrees-of-freedom (DOFs). The structural parameters are: cross section area 

A=7.854×10
-5

 m
2
, Young’s module E=2×10

8
 Pa and mass density of the truss member ρ=7850 

kg/m
3
. The truss is subjected to an external white noise excitation in the vertical direction at node 4. 

Let iK  be the local linear stiffness matrix of the i-th element in the local coordinate system 

i=1, 2,…,11). Then, the linear element matrices can be transformed into the corresponding element 

matrices in the global coordinate system as 

  T

i iK T K T                                 (21) 

where T is the transformation matrix. The global linear stiffness matrix K can be obtained based 

on assembling all the elements, i.e. 

11 11

1 1

 k
 

 

  
i i

i i i

i i

K K S                             (22) 

where ki=EA/liis defined as the stiffness of i-th truss element and Si is a matrix of the i-th element. 

In this example, mass is concentrated on each node. The linear viscous damping is adopted. It is 

assumed that linear viscous damping for each horizontal bar is ci=0.028 kN·s/m (i=3,4,6,7,10) and 

for each inclined bar ci=0.020 kN·s/m (i=1,2,5,8,9).  

To consider partial measurements of structural responses, it is assumed that only acceleration 

responses in the horizontal directions at node 1, 2, 4, 5 and in the vertical directions of node 1 and 

3 are measured. All the measured acceleration responses are simulated by superimposing the 

theoretically computed responses with the stationary white noises with 5% noise in rms. 

When the plane truss is subjected to strong external excitation, structural nonlinearity occurs. It 

is assumed that the restoring force in bar element 1 become nonlinear one described by the Bouc-

Wen model with the parameters as:1=0.5, 1=200000 s
2
/m

2
, 1=400000 s

2
/m

2
, n1=2. 

The linear structural parameters of the truss can be identified by the EKF with the partial 

measurements of acceleration responses of the truss subject to weak external excitation, as shown 

in Table 5 with kli and cli being the i-th identified stiffness and damping parameters, respectively. 

Then, an equivalent linear truss is established and identified by the extended Kalman filter 

using the measured partial nonlinear structural responses. The identification results of equivalent 

linear parameters are shown and compared with those of the linear truss in Table 5. From the 

comparisons in Table 5, it is noted that there are large differences between the identified equivalent 

stiffness and damping and linear ones in the 1st bar element, as marked by values in bolds. 

Therefore, the locations of the two structural nonlinearities are identified. 
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Table 5 Comparisons of the equivalent linear and linear parameters of the truss 

Bar No. kei (kN/m) kli (kN/m) cei (kN·s/m) cli (kN·s/m) 

1st 7.62 11.09 0.062 0.028 

2nd 11.04 11.38 0.028 0.030 

3rd 6.92 7.78 0.020 0.021 

4th 8.45 7.86 0.018 0.022 

5th 11.17 11.43 0.028 0.030 

6th 7.64 7.67 0.019 0.021 

7th 7.84 8.00 0.021 0.021 

8th 11.19 10.91 0.027 0.028 

9th 11.10 10.77 0.027 0.029 

10th 8.62 7.93 0.020 0.020 

11th 11.65 10.71 0.026 0.025 

 
Table 6 Parametric identification results of the nonlinear truss 

Bar No. ki (kN/m) ci (kN·s/m) i (s
2
/m

2
) i (kN·s/m) 

1st 11.11 0.031 210102.56 408573.38 

2nd 11.39 0.030   

3rd 7.79 0.021   

4th 7.91 0.021   

5th 11.42 0.030   

6th 7.71 0.019   

7th 7.86 0.020   

8th 11.06 0.027   

9th 11.05 0.027   

10th 7.90 0.020   

11th 11.12 0.026   
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Fig. 5(a) Hysteretic force in the 1st bar Fig. 5(b) Hysteretic parameter z1 

 

 

Finally, parametric identification of the truss can be conducted by using the EKF and the 

measured partial nonlinear structural responses. The identification results of the nonlinear 

structural parameters are shown in Table 6. Compared with their actual values, it is shown that the 

identification results are accurate.  
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Figs. 5(a)-(b) compare the identified nonlinear hysteretic restoring force (hysteretic loop) and 

the hysteretic parameters z1 of the 1st bar element in the truss are compared with the real results, 

respectively. It is shown that the identification results are in good agreement with the real ones. 

 
 
4. Conclusions 

 

In this paper, an identification method is proposed for detection and parametric identification of 

structural nonlinear restoring forces using only partial measurements of structural responses. First, 

an equivalent linear structural system is proposed for a nonlinear structure and the locations of 

structural nonlinearities are detected based on the identification results of the equivalent linear 

system and those of the original nonlinear structure under weak excitation. Then, the parameters of 

structural nonlinear restoring forces at the locations of identified structural nonlinearities together 

with the linear part structural parameters are identified by the extended Kalman filter. As structural 

nonlinearities only exist in local areas of a whole structure, the numbers of unknown parameters in 

the nonlinear restoring forces are greatly reduced due to the detection of structural nonlinearities. 

Several numerical simulation examples of the identification of nonlinear multi-story shear frames 

and a truss with different nonlinear models and locations have demonstrated the effectiveness of 

the proposed method.  

In this paper, measurement noises are assumed as Gaussian white noises. For non-Gussian 

noises, other complex methodologies such as the Particular Filter (PF) can be utilized. The 

accuracy of identification results by the proposed algorithm dependents on the numbers and 

optimal points of measurements. The numbers and optimal locations of measured partial structural 

responses, which are not investigated in this manuscript, can be a future study. Also, the 

identification of nonlinear restoring forces without mathematical models and the effect of miss 

matches of the models need further studies. Moreover, it is important to investigate the 

identification of other complex nonlinear structural systems and the experimental validation of the 

proposed algorithm. The relevant work is being undertaken by the authors.   
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