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Abstract.  Non-stationary random vibration of linear structures with uncertain parameters is investigated in 
this paper. A time-domain explicit formulation method is first presented for dynamic response analysis of 
deterministic structures subjected to non-stationary random excitations. The method is then employed to 
predict the random responses of a structure with given values of structural parameters, which are used to fit 
the conditional expectations of responses with relation to the structural random parameters by the response 
surface technique. Based on the total expectation theorem, the known conditional expectations are averaged 
to yield the random responses of stochastic structures as the total expectations. A numerical example 
involving a frame structure is investigated to illustrate the effectiveness of the present approach by 
comparison with the power spectrum method and the Monte Carlo simulation method. The proposed 
method is also applied to non-stationary random seismic analysis of a practical arch bridge with structural 
uncertainties, indicating the feasibility of the present approach for analysis of complex structures. 
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1. Introduction 

 

Uncertainties in structures such as physical and/or geometric parameters as well as 

uncertainties in external excitations are inevitably encountered in practical engineering. The 

propagation of such uncertainties to the response of interest provides the basis for a realistic 

prediction. Therefore it is more reasonable to consider the variability of both structural parameters 

and external excitations in dynamic response analysis of structures. After several decades of 

extensive analytical and numerical investigations, some approaches, including the sampling and 

non-sampling approaches, have been proposed to attain the statistics of dynamic responses of 

stochastic structures. 

The well-known Monte Carlo simulation (MCS) (Astill et al. 1972, Shinozuka 1972) can be 

categorized as the sampling methodology, which is robust and provides a universal means of 
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solving various stochastic problems. To enhance the efficiency, two basic strategies can be 

followed. One strategy aims at reducing computational time of single sample analysis by 

exploiting the fact that the same structure with similar properties has to be analyzed many times. 

The Neumann expansion MCS (Chakraborty and Dey 1998, Zhao and Chen 2000) is atypical 

example for such consideration. Along with the development of computer techniques, the other 

option is to apply parallel processing (Papadrakakis and Kotsopulos 1999, Szèkely and Schuëller 

2001, Kanapady and Tamma 2003, Shioya and Yagawa 2003) for different sample analyses. 

However, it should be noted that the structure of interest for engineering practice is generally of 

large-scale, usually including tens of thousands of degrees of freedom (DOFs). In this sense, one 

still has to face the challenge of computational effort if MCS is to be used. 

Meanwhile, to meet the practical engineering requirements, the alternative non-sampling 

approaches such as the random perturbation method (RPM) and the orthogonal polynomial 

expansion method (OPEM) are also investigated. RPM has been developed based on the early 

stochastic finite element method (SFEM) (Contreras 1980). This method was initially applied to 

random eigenvalue problems, random static problems and random buckling problems (Zhu and 

Wu 1991, Kleiber and Hien 1992). Afterwards, the method was extended for solving dynamic 

problems of stochastic structures with or without random excitations (Liu et al. 1986, Wall and 

Bucher 1987, Benaroya and Rehak 1988, Ghanem and Spanos 1991, Benfratello and Muscolino 

1998, Zhao and Chen 1998, Nieuwenhof and Coyette 2003, Barbato and Conte 2007, Śniady et al. 

2008, Wang et al. 2010). RPM follows all the steps of a deterministic analysis and is therefore 

applicable for arbitrarily large structures. It seems to be the most computationally efficient and 

feasible when used in industry. However, the method sometimes yields inaccurate results in the 

case of large variation of structural parameters. To compensate for this defect, a second- or higher-

order perturbation expansion is employed (Choi and Noh 2000), but accordingly, the 

computational burden is exponentially increased. In addition, RPM encounters great difficulty in 

dynamic response analysis due to the so-called secular term problem (Liu et al. 1988). The random 

dynamic response has also been studied for special types of linear structures, mostly truss 

structures, by the random factor method (RFM) (Gao et al. 2003, 2004, 2005, 2009) closely related 

to RPM. Since this method is tailored for truss structures and hence is not applicable for general 

structures. The idea of orthogonal polynomial expansion was first used to study a particular class 

of random differential equations with random coefficients, and the structural response was 

expanded as a set of orthogonal series and the corresponding numerical characteristics were given 

as analytical solutions (Sun 1979). The approach was termed as OPEM and was further extended 

for the response analysis of structures with uncertain parameters under deterministic or random 

dynamic excitations (Jensen and Iwan 1991, 1992, Iwan and Jensen 1993). An expanded order 

system method (EOSM) for the same problem has also been developed based on the idea of 

subspace orthogonal decomposition of the response of structures (Li and Liao 2001). Unlike RPM, 

EOSM does not require the assumption that the variation of structural parameters is small. 

However, the size of the extended system derived in this method is much larger than the 

counterpart of the original system, which means an exponential growth of computational efforts 

with the extended order will occur. 

The aforementioned methods are available to obtain the statistical characteristics of structural 

responses, i.e., mean values and variances, but are powerless for obtaining accurate probabilistic 

information on structural performance. The probability density evolution method (PDEM) 

provides feasible ways for capturing the instantaneous probability density function and its 

evolution of the response of structures. However, in this method, it is required to solve the 
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Dostupov-Pugachev probability density evolution equation (Dostupov and Pugachev 1957), a 

multi-dimensional partial differential equation, which is difficult to solve for multi-DOF systems. 

Recently, a generalized PDEM has been proposed and verified to be applicable to linear and 

nonlinear dynamical systems (Li and Chen 2005, 2009, Chen and Li 2005, 2009), in which the 

multi-dimensional probability density evolution equation is reduced to a series of one-dimensional 

probability density evolution equations and could be solved more efficiently. Even so, the 

application of this approach to practical engineering is still heavily restrained by the number of 

random variables involved in the description of structural properties and external excitations. In 

other words, it suffers from the so-called “curse of dimensionality”, i.e. an exponential growth of 

efforts with the increase of the number of random variables involved. 

The purpose of the current study is to present an efficient approach to analyze the non-

stationary random vibration of linear structures with random parameters. In recent years, a time-

domain explicit formulation method (TDEFM) (Su and Xu 2010, Su et al. 2011) has been 

developed for random vibration analysis and dynamic reliability analysis of deterministic 

structures subjected to non-stationary random excitations. The method has been shown to be more 

efficient than the traditional power spectrum method (PSM) which requires a large amount of 

numerical integrals in both time domain and frequency domain when non-stationary random 

excitations are involved. Combined with the total expectation theorem in probability theory and 

the response surface techniques as well, the TDEFM originally developed for deterministic 

structures is extended to random response analysis of stochastic structures in this paper. Two 

examples, including a frame structure and a practical arch bridge, are investigated to illustrate the 

accuracy and efficiency of the proposed method and its feasibility for analysis of complex 

structures. 
 
 

2. Non-stationary random vibration analysis of deterministic structures 
 

In this section, random response analysis of deterministic structures, rather than stochastic 

structures, will be first investigated. It is well-known that PSM is a major approach to solve the 

problem of structural random vibration, in which the power spectra of structural responses are 

obtained in the frequency domain by using the given power spectra of excitations. In what follows, 

an outline of PSM will be first given so as to better present TDEFM for non-stationary random 

vibration analysis. 
 
2.1 The PSM 
 

A structural dynamic finite element problem can be expressed by the following general form of 

the equation of motion as 

        ( )t  MY CY KY ΨF  
(1) 

where M, C and K are respectively the global mass, damping and stiffness matrixes of the 

discretized structure; Y, Ẏ and Ÿ denote the nodal displacement, velocity and acceleration vectors 

of the structure, respectively; Ψ is the position matrix of the random excitation vector F(t)=[F1(t) 

F2(t) … Fm(t)]
T
, where Fi(t) 

is the ith excitation among the m  excitations and the superscript T 

denotes matrix transposition. 

When F(t)
 
is a stationary random process vector, the power spectrum density function matrix 
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SYY(ω)
 
of displacement vector Y(t) can be expressed as (Li and Chen 2009) 

       
*T( ) ( ) ( ) ( )   

YY FF
S H S H  

(2) 

where SFF(ω) is the power spectrum density function matrix of F(t); H(ω) is the frequency 
response function matrix of the structure, and the superscript * denotes complex conjugation. 

It can be seen from Eq. (2) that, for the stationary solution of a structure, simple algebraic 

relations exist between the power spectra of the responses and those of the random excitations, and 

therefore PSM is of high efficiency in this sense. But for the non-stationary case, PSM is no longer 

as efficient as in the case of stationary problems. 

Assume that F(t)
 
consists of non-stationary excitations taken to be the widely-used uniformly 

modulated form as 

        F(t)=G(t)f(t) (3) 

where G(t)=diag[g1(t) g2(t) … gm(t)] and f(t)= [f1(t) f2(t) … fm(t)]
T
, in which gi(t) and fi(t) 

(i=1,2,…,m) are respectively the modulation function and the corresponding stationary random 
process for the ith excitation. The time-variant power spectrum density function matrix of 
displacement vector Y(t) can be derived as (Lin et al. 1997, 2001) 

          
*T( , ) ( , ) ( ) ( , )t t t   

YY ff
S I S I

 
(4) 

where Sff(ω) is the power spectrum density function matrix of f(t). Let Ii(ω,t) and Gi(t) 
(i=1,2,…,m) be the i th column vector of I(ω,t) and G(t), respectively. Then Ii(ω,t) represents the 
time-domain solution of the following equation of motion 

            
i( , ) ( , ) ( , ) ( )e t

i i i it t t t     MI CI KI ΨG  ( 1,2, , )i m  
(5) 

The covariance function matrix of the response vector Y(t)
 
can be obtained by integrating the 

power spectrum density function matrix SYY(ω,t)
 
in the frequency domain, that is 

    

T T T T

1

cov[ ( ), ( )] E[ ( ) ( ) ] ( , )d ( , )
p

j j

j

t t t t t t   





      Y Y YY Y Y YY Y Y
Y Y Y Y μ μ S μ μ S μ μ

 

(6) 

where the symbols cov and E denote the covariance and the mathematical expectation, 
respectively; μY=μY(t)

 
is the mean function vector of Y(t); p

 
is the number of the frequency 

intervals; ωj
 
and Δωj are respectively the frequency and the frequency step corresponding to the jth 

frequency interval. 
It can be seen from Eq. (6) that, in order to obtain the covariance of the response, a process of 

numerical integration in the frequency domain must be operated on the power spectrum of the 

response, and hence a large number of spectral values must be computed at regular intervals within 

the range of frequency concerned, usually up to dozens to hundreds of intervals. Further more, to 

obtain the time-variant spectral values of the response at each frequency interval, time-history 

integrals must also be conducted according to Eqs. (4) and (5). Apparently, numerical integrals in 

both time and frequency domains are required in PSM when non-stationary random excitations are 

involved. In particular, for m excitations and p
 
frequency intervals, a total of 2mp times of time-

history integrals are required for non-stationary random vibration analysis. Such computational 

cost is huge for a structure with a large number of DOFs. Actually, for non-stationary analysis, the 

PSM is now a mixed approach in both time domain and frequency domain rather than a pure 

frequency-domain method, which is the major reason for the huge computational cost involved. 
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2.2 The TDEFM 

 

As an alternative to the spectral approach, the problem of non-stationary random vibration 

could be solved only in the time domain without any mixed-domain integrals. 

By defining the following state vector as 

      

 
  
 

Y
V

Y
 

(7) 

Eq. (1) can be recast into the form of state equation as 

       ( )t V HV P  (8) 

where 

       
-1 -1 -1

  ( ) ( ),   t t
   
   
    

H = , P = WF W =
M K M C M Ψ

0 I 0

 

(9) 

in which 0 and I are the zero matrix and the unit matrix, respectively. 
The general solution of Eq. (8) is 

       

( )

0
( ) e (0) e ( )d

t
t tt     

H H
V V P

 
(10) 

From the above equation, the response Vi at instant ti can be expressed by the response Vi-1 at the 
preceding instant ti-1 as 

            1 1

( ) ( )

1 1e ( )d e ( )d
i i

i i

i i

t t
t t

i i i
t t

    
 

 

     
H H

V TV P TV WF
 

( 1,2, , )i l  (11) 

where T=e
HΔt

 with Δt being the time step, and ti=iΔt (i=1,2,…,l)
 
with l being the number of time 

steps for the time-history analysis. The precise algorithm for computation of the exponential 
matrix T can be found in references (Moler and Loan 2003, Zhong 2004). 

In the following formulation, the random excitation vector F(t) is discretized and characterized 

by a series of random vectors F0, 
F1, …, Fl, where Fi=F(ti) (i=0,1,…,l). With the assumption that 

F(t)
 
changes linearly with time within each time step Δt, Eq. (11) can be converted into the 

following form as 

1 1 1 1

1 1 1 1[ ( ) / ] [ ( ) / ]i i i i i i i it t   

           V TV H H W F F WF TH H W F F WF  

( 1,2, , )i l  

(12) 

where the calculation of H
-1

 can be transformed into the calculation of K
-1

  as shown below 

       

1 1

1

 


  

  
 

K C K M
H

I 0
 

(13) 

Let 
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2 1

1

2 1

2

( ) /

( ) /

t

t

 

 

    


    

Q T H W TH W

Q T H W H W

I

I
 

(14) 

where H
-2

=H
-1

H
-1

. Then Eq. (12) can be written as 

       1 1 1 2i i i i   V TV Q F Q F ( 1,2, , )i l  (15) 

When V0=0, the expression of the response Vi can be deduced by the above recurrence relation as 

       

1 1 0 2 1

1 2 0

1 0 3 1 3 1 2  (2 )i i

i i i i l 



  


       

V Q F Q F

V T Q F T Q F T Q F Q F
 

(16) 

where 

       3 2 1 Q TQ Q
 (17) 

If we use Ai,0, Ai,1,…, Ai,i to denote the coefficient matrixes of F0, F1,…, Fi, Eq. (16) can be 
expressed in an explicit form as 

                                       ,0 0 ,1 1 ,i i i i i i   V A F A F A F
 

( 1,2, , )i l  (18) 

where Ai,0, Ai,1,…, Ai,i are only associated with structural parameters and reflect the influence of 
structural parameters on random responses. They can be expressed as 

1,0 1 ,0 1,0

1,1 2 2,1 3 ,1 1,1

, 1, 1

,         (2 )

,  ,     (3 )

  (2 )

i i

i i

i j i j

i l

i l

j i l





 

   


     
    

A Q A TA

A Q A Q A TA

A A
 

(19) 

According to the above recurrence formula, the coefficient matrixes for structural responses at 
each instant can be arranged in the form shown in Table 1. 

As can be seen from Eq. (19) or from Table 1, only the coefficient matrixes Ai,0 
and Ai,1 

(i=1,2,…,l), which are the matrixes in the first two columns in Table 1, need to be calculated and 

stored. They represent the influence of F0 and F1 on the structural responses at each instant, and 

the computational cost for such coefficient matrixes is only equivalent to that required by a 

 

 
Table 1 Coefficient matrixes for structural responses at each instant 

Instant of 

response 

Coefficient matrix 

F0 F1 F2 F3  Fl-2 Fl-1 Fl 

t1 A1,0 A1,1       

t2 A2,0 A2,1 A1,1      

t3 A3,0 A3,1 A2,1 A1,1     

         

tl-2 Al-2,0 Al-2,1 Al-3,1 Al-4,1  A1,1   

tl-1 Al-1,0 Al-1,1 Al-2,1 Al-3,1  A2,1 A1,1  

tl Al,0 Al,1 Al-1,1 Al-2,1  A3,1 A2,1 A1,1 
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particular deterministic time-history analysis of the structure subjected to only F0 and F1 without 

any excitations at the other instants. Therefore, the calculation and storage of the coefficient 

matrixes in the explicit expression can be easily accomplished without any extra effort. 

Let 

                                 

,0 ,1 ,

T T T T

0 1

[     ]

[   ]

i i i i i

i i

 


 

B A A A

R F F F
 

( 1,2, , )i l  (20) 

Then Eq. (18) can be further expressed in a compact form as 

               i i iV B R ( 1,2, , )i l  (21) 

Evidently, any individual displacement response or velocity response at instant ti, say vi, can now 
be expressed as 

              i i iv  b R ( 1,2, , )i l  (22) 

where bi is a row extracted from Bi. Similarly, the other response of the structure, such as the 
stress, strain or internal force, etc., can also be deduced in a closed-form manner like Eq. (22) 
based on the displacement and velocity responses. Therefore, in what follows, the symbol vi 

is 
used to denote any individual response of the structure at instant ti. 

The mean and variance of vi 
can be obtained directly from Eq. (22) according to the operation 

rules of the first and second moments of a random variable. They are respectively 

                             
E( ) E( )

iv i i iv   b R
 

( 1,2, , )i l  (23) 

and 

                           
2 Tcov( , ) cov( , )
iv i i i i i iv v   b R R b

 
( 1,2, , )i l  (24) 

where E(Ri) and cov(Ri, Ri) are respectively 

            
T T T T

0 1E( ) [ ( )  ( )    ( )]i it t t
F F F

R μ μ μ  (25) 

and 

T T T

0 0 0 0 0 1 0 1 0 0

T T T

1 0 1 0 1 1 1 1 1 1

T

0 0 1

( , ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )
cov( , )

( , ) ( ) ( ) ( , ) (

i i

i i

i i

i i i

t t t t t t t t t t t t

t t t t t t t t t t t t

t t t t t t t

  

  


 

FF F F FF F F FF F F

FF F F FF F F FF F F

FF F F FF F

R μ μ R μ μ R μ μ

R μ μ R μ μ R μ μ
R R

R μ μ R μ
T T

1) ( ) ( , ) ( ) ( )i i i i it t t t t

 
 
 
 
 

  F FF F F
μ R μ μ

 

 (26) 

In the above equations, μF(t)
 
and RFF(t,τ) are the mean function vector and the cross-correlation 

function matrix of the non-stationary random excitation vector F(t), respectively. 
Thus far, the structural random responses have been obtained based on the closed-form 

solutions of dynamic responses. By comparison with the traditional PSM based on the time-variant 

power spectra of responses as shown in Eq. (6), the present approach, termed as TDEFM, is of 

high efficiency since the time-variant mean and variance responses are obtained directly from the 

explicit expression of dynamic responses using Eqs. (23) and (24). Several advantages of the 

present method are worth noting. The first one is that once the closed-form representation is 
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obtained, one can only focus on any particular random responses of interest. In fact, for random 

vibration analysis of a structure, usually more attention is paid to the random responses at certain 

critical locations. Therefore, it is unnecessary to solve for the statistic characteristics of all the 

responses according to Eq. (21). The second advantage lies in the fact that when the variances of 

random responses are slowly time-variant functions, it is unnecessary to acquire their values at 

each instant ti(i=1,2,…,l). In other words, one can calculate random responses at a larger time 

interval, for example, several times of Δt, by using Eq. (24), which can further improve the 

computational efficiency. The third advantage of the present approach is that it does not rely on 

any power spectrum models, e.g., the evolutionary power spectrum model (Priestley 1965, 1967) 

commonly used in the traditional PSM. In this sense, the method can be applicable to any kind of 

non-stationary random excitations provided that the cross-correlation functions of the excitations 

are given. 

 
2.3 Closed-form representation of dynamic responses based on mode decomposition 

 
As can be seen from Eqs. (23) and (24), the most important step in TDEFM is to obtain the 

closed-form representation of dynamic responses as shown in Eqs. (18) and (19). These equations 

are derived in the preceding section using the precise time-integral approach in consideration of 

the high accuracy of the algorithm as compared with the other numerical time-integral approaches. 

However, this incorporates the calculation of the exponential matrix T=e
HΔt

 as shown in Eq. (11). 

The size of the exponential matrix T is 2N×2N, where N  is the number of DOFs of the structure. 

When N is large, say N>10
4
, the solution of exponential matrix T=e

HΔt

 is much more time-

consuming. In this case, the mode decomposition technique can be applied to derive the explicit 

expression of dynamic responses in conjunction with the precise time-integral approach. 

For decoupling of the equation of motion as shown Eq. (1), the mode decomposition can be 

performed as follows 

           1

( ) ( )
q

k k

k

t u t


Y φ

 
(27) 

where φk and uk(t) (k=1,2,…,q)
 
are the kth mode shape of the structure and the corresponding 

generalized coordinate, respectively; q denotes the truncation number of the mode shapes and is 
usually much smaller than N. With the assumption that C is the orthogonal damping matrix, 
substituting Eq. (27) into Eq. (1) yields the following decoupled single-DOF equation of motion as 

                  
2 T( ) 2 ( ) ( ) ( )k k k k k k ku t u t u t t    φ ΨF ( 1,2, , )k q  (28) 

where ωk 
and ςk 

are the angular frequency and the damping ratio of the kth mode, respectively. 
Following exactly the same process as adopted in solving the multi-DOF equation of motion as 

shown in Eq. (1), we can obtain the closed-form solution of Eq. (28), just like Eq. (18), as 

                           

,

,0 0 ,1 1 ,

,

k i k k k

i i i i i

k i

u

u

 
    

 
α F α F α F

 

( 1,2, , ;  1,2, , )i l k q   (29) 

where uk,i 
and ,k iu  are respectively displacement and velocity response of Eq. (28) at instant ti; 

,0 ,1 ,, , ,k k k

i i i iα α α  are the corresponding coefficient matrixes, which can be determined using Eq. (19). 
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Note that the exponential matrix T=e
HΔt

 in Eq. (19) is now a matrix with a size of 2×2, in which 

          
2

0 1
   ( 1,2, , )

2k k k

k q
  

 
  

  
H

 

(30) 

Apparently, the exponential matrix T can now be calculated without any difficulties. 
The coefficient matrixes in Eq. (29) can be expanded in the form as 

            

,

,

,

    ( 1,2, , ;  0,1, , ;  1,2, ,  )

k

i jk

i j k

i j

i l j i k q
 

    
  

c
α

d
 

(31) 

where ,

k

i jc  and ,

k

i jd
 
represent the first row and second row of ,

k

i jα , respectively. Then 
,k iu  and 

,k iu
 

in Eq. (29) can be expressed as 

                  

, ,0 0 ,1 1 ,

, ,0 0 ,1 1 ,

k k k

k i i i i i i

k k k

k i i i i i i

u

u

    


    

c F c F c F

d F d F d F
 

( 1,2, , ;   1,2, , )i l k q   (32) 

Substitution of Eq. (32) into Eq. (27) yields the displacement and velocity responses as follows 
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Let 
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Then Eq. (33) can be further expressed in the closed-form as Eq. (18), that is 
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By comparison between Eq. (18) and Eq. (35), it can be seen that the coefficient matrixes Ai,j
 
in 

Eq. (18) are now redefined as 
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(36) 

Since the mode decomposition technique is incorporated in the above derivation, the coefficient 
matrixes in the closed-form representation of dynamic responses can be calculated more efficiently 
using Eq. (36) than using Eq. (19). 
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3. Non-stationary random vibration analysis of stochastic structures 
 

In this section, not only random excitations but also structural uncertainties are taken into 

consideration. In general stochastic dynamic systems, due to the influence of different physical 

mechanism, structural random parameters and random excitations are usually regarded as mutually 

independent. Therefore, the strategy of first considering the effects of the random excitations and 

then those of the structural random parameters is applied to random response analysis of stochastic 

structures. The total expectation theorem provides a mathematical tool to solve the problem based 

on the above two-step strategy. According to the probability theory, the total expectation theorem 

can be expressed as (Nowak and Collins 2000) 

           
E( ) E( | ) ( )dx f x x  




   

(37) 

where η is a random variable dependent on another random variable ξ; E(η) is the total expectation 
of η; E(η|ξ=x) denotes the conditional expectation of η when ξ=x; fξ(x)

 
is the probability density 

function of ξ. 
For a stochastic structure subjected to random excitations, suppose that the structural random 

parameters are denoted as a n-dimensional random vector Θ=[Θ1 Θ2 … Θn]
T
. Then the structural 

mass matrix M, damping matrix C and stiffness matrix K are stochastic matrixes containing the 

structural random parameters in Θ. In this case, the structural responses are related to the random 

vector Θ. Assume that v(t; Θ)
 
is one of the responses of the structure. On the basis of Eq. (37), the 

mean of v(t; Θ)
 
and v

2
(t; Θ)

 
 at instant ti are respectively written as 
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   θ Θ

Θ θ θ
 

( 1,2, , )i l  (38) 

and 
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( 1,2, , )i l  (39) 

where | E( ( ; ) | )
iv iv t  
θ

Θ Θ θ
 
and 2

2

|
E( ( ; ) | )

i
iv

v t  
θ

Θ Θ θ  are the conditional expectation of 
v(t;Θ)

 
and v

2
(t; Θ)

  
when Θ=θ, respectively, and fΘ(θ)

 
is the joint probability density function of 

the random vector Θ. 

It can be seen from Eqs. (38) and (39) that, in order to obtain 
iv  and 2

iv
 , one should 

determine |iv θ  and 2 |iv


θ
 first. Evidently, the solutions to |iv θ  and 2 |iv


θ

 belong to the random  

vibration problem of a deterministic structure with the structural parameter vector given as θ=[θ1 

θ2 … θn]
T
, and thus they can be directly obtained by the approach presented in Section 2.2. In  

general, it is difficult to get a closed-form solutions to |iv θ  and 2 |iv


θ
 with respect to θ , and certain 

numerical methods are usually employed. In the present study, the idea of response surface method 

(Bucher and Bourgund 1990) is applied to obtaining the approximate expressions of |iv θ  and 2 |iv


θ
.  

They can be expressed in quadratic polynomial forms with respect to the structural parameters as 

                            

2
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v i ij j ij j
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( 1,2, , )i l  (40) 

and 
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d e f  
 

   θ

 

( 1,2, , )i l  (41) 

where ai, bij, cij
 
and di, eij, fij

 
(j=1,2,…,n; i=1,2,…,l)

 
are unknown coefficients. As can be seen from  

Eqs. (40) and (41), for |iv θ  
or 2 |iv


θ

, there are a total of 2n+1 undetermined coefficients.  
Therefore, 2n+1 experimental points are needed for fitting Eqs. (40) and (41), which means that 
2n+1 times of random response analyses are required corresponding to different deterministic 
structural parameters given. The specific steps of fitting Eqs. (40) and (41) are as follows: 

(1) Select 2n+1 numerical experimental points according to the experimental design method 

suggested by Bucher and Bourgund (1990). Normally, they can be taken to be the mean point (μ1, 

μ2,…, μn) and the 2n axial points (μ1,…, μj±fσj,…,
 
μn) (j=1,2,…,n), where μj and σj are the mean 

and standard deviation of the structural random parameter Θj, respectively. The factor f is generally 

taken to be 0.5~2, which means that the probability of the event μj−fσj≤Θj≤μj+fσj
 
ranges from 

38.30% to 95.44% when Θj is a normal variable. For convenience, the above 2 1n   numerical 

experimental points are denoted as θk (k=1,2,…,2n+1). 

(2) Calculate the mass matrix M(θk), damping matrix C(θk) and stiffness matrix K(θk) 
corresponding to each numerical experimental point θk (k=1,2,…,2n+1). Then the conditional  

expectations |i kv θ  and 2 |i kv


θ
(i=1,2,…,l; k=1,2,…,2n+1) can be obtained by Eqs. (23) and (24) in  

Section 2.2. 

(3) Solve for the unknown coefficients in Eqs. (40) and (41) by the known conditional 

expectations |i kv θ  and 2 |i kv


θ
(i=1,2,…,l; k=1,2,…,2n+1), and acquire the general expressions of 

|iv θ  and 2 |iv


θ
. 

Once the general expressions of |iv θ  and 2 |iv


θ
 as shown in Eqs. (40) and (41) are obtained,  

they are substituted into Eqs. (38) and (39), and the mean and mean square value of the response at 

instant ti 
are derived as 
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and 
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( 1,2, , )i l  (43) 

respectively. According to the operation rules of moments, the variance of vi can be obtained by 
using the 

iv and 2
iv

  as follows 

                                           
2

2 2( )
i ii

v vv
   

 
( 1,2, , )i l  (44) 

As can be seen from the above formulation, the random response analysis of deterministic 

structures is the basis for the random response analysis of stochastic structures. The total 

computation effort for analysis of a stochastic structure is approximately equivalent to that 

required by 2n+1 times of response analyses of a deterministic structure. 
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4. Numerical examples 
 

In this section, two examples are investigated. For the first example, random response analysis 

of a stochastic frame subjected to non-stationary ground motion is given to demonstrate the 

accuracy and efficiency of the present method. The influence of parameter f on the results is 

discussed in terms of different coefficients of variation (COVs) of the random parameters. In the 

second example, non-stationary random seismic analysis of a practical arch bridge with random 

parameters is presented to verify the feasibility of the present approach for analysis of complex 

structures. 
 
4.1 Example 1: a frame structure 

 

A frame structure subjected to non-stationary ground motion is shown in Fig. 1. The member 

numbering is also shown in the figure. All the members have the same Young’s modulus E and the 

mass density ρ. The cross-section areas of members 1-3 are denoted as Ai(i=1,2,3), respectively. 

The structure is assumed to have the same damping ratio ξ for all mode shapes. E, ρ, Ai(i=1,2,3) 

and ξ
 
are considered as basic random variables, and their means, COVs and distribution types are 

listed in Table 2. The relationship between the cross-section area and the moment of inertia is 

defined as 2

i i iI A , where ( 1,2,3)i i   are 0.08333, 0.08333 and 0.2, respectively. Clearly, the 

moment of inertia Ii, bending stiffness EIi, tensile stiffness EAi, and the mass of each member are 

also random variables, but are dependent on the basic random variables Ai(i=1,2,3), E and ρ. The 

mass of the frame is lumped at the beam-column nodes, and each member of the structure is taken 

as a beam element, yielding 144 DOFs in total. To increase the DOFs of the structure, each 

member of the frame is also discretized into 10 beam elements, leading to a total of 2412 DOFs. 

Since lumped mass at beam-column nodes has been adopted in the calculation, the results are 

identical for the two finite element models with different DOFs. 

 

 

 

Fig. 1 A frame structure subjected to ground motion 
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Table 2 Statistical characteristics of structural random parameters for the frame 

Random parameter Mean COV Distribution type 

E 2.0 GPa 0.1~0.2 normal 

ρ 2500 kg.m
-3

 0.1~0.2 normal 

A1 0.36 m
2
 0.1~0.2 lognormal 

A2 0.49 m
2
 0.1~0.2 lognormal 

A3 0.15 m
2
 0.1~0.2 lognormal 

ξ 0.05 0.15~0.3 lognormal 

 

 

The ground acceleration X(t) is assumed to be a uniformly modulated non-stationary random 

process expressed as X(t)=g(t)x(t), in which g(t)
 
is the modulation function and x(t) is a stationary 

random process with zero mean. The modulation function is set to be 

       
2

2

1 1

1 2

( )

2

( / )   0

( )     1       
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   

(45) 

where t1=8s, t2=20s
 
and a=0.3. The power spectrum of x(t) is taken to be the Kanai-Tajimi 

spectrum (Kanai 1957) as follows 
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(46) 

where ωg=14 rad/s, ςg=0.6 and S0=6×10
-4

 m
2
s

-3
. The correlation function of x(t) is 

      

g g | |0

1 d 2 d( ) e ( cos sin | |)
2

xx

S
R

  
      


 

 
(47) 

where 
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Accordingly, the correlation function of X(t) can be expressed as 

       
( , ) ( ) ( ) ( )XX xxR t t g t g t R    

 (49) 

In this example, the PSM and the TDEFM for analysis of deterministic structures, the latter 

being denoted as TDEFM_DS, are first adopted for obtaining the standard deviations of horizontal 

displacements of the frame without considering structural uncertainties. The duration of ground 

motion is set to be T=30s with the time step being ∆t=0.02s and the number of integral steps being 

l=T/∆t=1500. The range of the frequency domain considered in PSM is taken to be [0, 60] rad/s, 

and the frequency interval is set to be ∆ω=0.2 rad/s. Thus, a total of k=60/0.2+1=301 times of 

time-history integrals are required in PSM. 

The standard deviations of the horizontal displacements of the frame are shown in Fig. 2. It can 

be seen from the figures that the results of the two methods are in good agreement, showing that  
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Fig. 2 Standard deviations of horizontal displacements of the frame without consideration of 

structural uncertainties 

 
Table 3 CPU time elapsed by different methods for analysis of the frame (s) 

Method 
Deterministic structure Stochastic structure 

DOF=144 DOF=2412 DOF=144 DOF=2412 

TDEFM_DS 3 35 — — 

PSM 112 1037 — — 

TDEFM_SS — — 13 484 

MCS — — 2279 376961 

 

 

these two methods have the same accuracy. As for the computational effort, the time elapsed by 

TDEFM_DS and PSM are shown in Table 3. The computational cost of TDEFM_DS is only 2.7% 

and 3.4% as much as that of PSM when DOF=144 and 2412, respectively, indicating that the 

present method is far more efficient than the traditional PSM when non-stationary random 

vibration analysis is involved. 

Now consider the random vibration of the frame with structural uncertainties. The COVs of the 

random variables E, ρ and Ai(i=1,2,3) are first taken as 0.1, and the COV of the damping ratio ξ is 

assumed to be 0.15. The MCS with 10
4
 samples and the proposed TDEFM for stochastic 

structures, denoted as TDEFM_SS, are employed for obtaining the standard deviations of 

horizontal displacements of the structure. The Newmark-β scheme is applied to solve the equations 

of motion in MCS. To verify the robustness of the present method, the influence of the parameter f 

on the results is discussed by taking f=0.5, 1.0, 1.5 and 2.0, respectively. The standard deviations 

of horizontal displacements of the 9th and 12th floor are shown in Fig. 3. For the purpose of 

comparison, the results corresponding to the deterministic structural parameters are also presented 

in Fig. 3. In order to more fully study the feasibility of the proposed method, another two cases 

with the COVs of the random parameters being respectively 1.5 and 2 times of the COVs in the 

first case are also considered in this example. Figs. 4 and 5 show the corresponding results of 

random responses. The maximum standard deviations of the horizontal displacements for different 

cases are summarized in Tables 4 and 5. 
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(a) The 9th floor (b) The 12th floor 

Fig. 3 Standard deviations of horizontal displacements of the 9th and 12th floor of the frame (COV=0.1 

for E, ρ, Ai(i=1,2,3), and COV=0.15 for ξ) 

 

  
(a) The 9th floor (b) The 12th floor 

Fig. 4 Standard deviations of horizontal displacements of the 9th and 12th floor of the frame (COV=0.15 

for E, ρ, Ai(i=1,2,3), and COV=0.225 for ξ) 

 

 
 

(a) The 9th floor (b) The 12th floor 

Fig. 5 Standard deviations of horizontal displacements of the 9th and 12th floor of the frame (COV=0.2 

for E, ρ, Ai(i=1,2,3), and COV=0.3 for ξ) 
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Table 4 Maximum standard deviations of horizontal displacements of the 9th floor of the frame (cm) 

COV 

MCS 
TDEFM_

SS (f=0.5) 

Relative 

error 

(%) 

TDEFM_

SS (f=1.0) 

Relative 

error (%) 

TDEFM

_SS 

(f=1.5) 

Relative 

error (%) 

TDEFM_ 

SS (f=20.) 

Relative 

error (%) E, ρ, 

Ai(i=1,2,3) 
ξ 

0.1 0.15 1.730 1.733 0.15 1.733 0.18 1.735 0.24 1.736 0.34 

0.15 0.225 1.831 1.800 1.70 1.803 1.53 1.809 1.22 1.817 0.75 

0.2 0.3 2.244 2.190 2.43 2.201 1.91 2.223 0.94 2.259 0.65 

 
Table 5 Maximum standard deviations of horizontal displacements of the 12th floor of the frame (cm) 

COV 

MCS 
TDEFM_

SS (f=0.5) 

Relative 

error 

(%) 

TDEFM_

SS (f=1.0) 

Relative 

error (%) 

TDEFM

_SS 

(f=1.5) 

Relative 

error (%) 

TDEFM_ 

SS (f=20.) 

Relative 

error (%) E, ρ, 

Ai(i=1,2,3) 
ξ 

0.1 0.15 2.002 2.006 0.18 2.006 0.21 2.008 0.28 2.010 0.37 

0.15 0.225 2.120 2.084 1.72 2.088 1.54 2.094 1.23 2.105 0.74 

0.2 0.3 2.244 2.190 2.43 2.201 1.91 2.223 0.94 2.259 0.65 

 

 

As can be seen from Figs. 3-5, the standard deviations of the horizontal displacements of the 

frame become larger when structural uncertainties are also taken into consideration, and increase 

as the COVs of the structural parameters increase. It can be found from the above figures that the 

value of f has little effect on the results when f lies in the range of 0.5 to 2.0, and the results of 

TDEFM_SS are in good agreement with those obtained with MCS, indicating that the proposed 

method has a good computational stability and accuracy. However, from Tables 4 and 5, it can be 

seen that the discrepancies of the results with different values of f may become somewhat larger 

with the increase of the COVs of the random variables, and it seems that, when f=2.0, the results of 

TDEFM_SS agree the best with those of MCS for different cases. 

As far as the computational efficiency is concerned, the computational effort of TDEFM_SS 

and MCS is also shown in the preceding Table 3. It can be found from Table 3 that the CPU time 

elapsed by TDEFM for analysis of the stochastic frame is even much less than that elapsed by 

PSM for analysis of the deterministic frame, showing the high efficiency of the proposed method. 
 

4.2 Example 2: a practical arch bridge 

 

The elevation and finite element model of the Xinguang Bridge, a steel arch bridge across the 

Pearl River in Guangzhou, China, are shown in Figs. 6 and 7, respectively. The bridge span 

combination is 177 m+428 m+177 m. The finite element model consists of 2705 beam and bar 

elements and 608 shell elements, resulting in approximately 9200 DOFs. A total of 500 mode 

shapes of the bridge have been adopted in the following dynamic analysis using the mode 

decomposition technique. The selected structural random parameters and their COVs and 

distribution types are listed in Table 6. The means of these random variables are taken from the 

design documents, and the mean of the damping ratio of the bridge is assumed to be 0.03 for all 

modes. The COVs of the Young’s modulus and the mass of the steel arch ribs are taken to be 0.08 

in this study, while for the triangular concrete piers, the COVs of the corresponding random 

parameters are assumed to be 0.12, considering the fact that the uncertainties of the concrete 

material are in general more noticeable than those of the steel material. The COV for the mass of  
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Fig. 6 Elevation of the Xinguang Bridge 

 

 

Fig. 7 Finite element model of the Xinguang Bridge 

 
Table 6 Statistical characteristic of structural random parameters for the Xinguang Bridge 

Random parameter COV Distribution type 

Young’s modulus of the steel arch ribs 0.08 Normal 

Mass of  the steel arch ribs 0.08 Lognormal 

Young’s modulus of the triangular concrete piers 0.12 Normal 

Mass of the triangular concrete piers 0.12 Lognormal 

Mass of  the bridge deck 0.15 Lognormal 

Rigidity of the steel-concrete connections 0.20 Normal 

Damping ratio 0.25 Lognormal 

 

 

the bridge deck is taken as 0.15 due to the somewhat larger variation of the mass of the pavement 

and the auxiliary devices attached to the bridge deck. The steel arch ribs are supported at the top of 

the triangular concrete piers, as shown in Fig. 6, and the rigidity of the supports exhibits 

considerably large variation due to the inherent uncertainties of the steel-concrete connections. 

Therefore, the COV for the rigidity of such connections is assumed to be 0.2 in the current study. 

In addition, it has been found that the role played by damping is important to the structural 

responses, and the COV of the damping ratio might vary up to 0.4 (Davenport and Larose 1989). 

Thus, in this investigation, the COV of the damping ratio is assumed to take the value of 0.25. 

The structure is excited longitudinally by seismic excitation X(t)=g(t)x(t), in which g(t) has the 

same form as that in Example 1. The parameters t1=4.55s, t2=12.37s
 
 and a=0.14 have been used. 

The power spectrum of x(t) is taken to be the Clough-Penzien spectrum (Clough and Penzien 

1993) as follows 
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(50) 

where ωg=18.21 rad/s, ςf= ςg=0.72, ωf=|0.1−0.2ωg|=3.64 rad/s, and S0=1.4×10
-3

 m
2
s

-3
. 

The proposed method, TDEFM_SS, is used to analyze the random seismic responses of the 

bridge. In the analysis, the time step is set to be ∆t=0.02s with a duration of T=40s, and the 

parameter f is taken within the range of 0.5 to 2.0. The standard deviations of the longitudinal 

displacements of the main-and side-arch crown are shown in Fig. 8, and the standard deviations of 

the in-plane shear forces, the axial forces, and the in-plane bending moments of cross-sections 1 

and 2, as shown in Fig. 6, are presented in Figs. 9, 10 and 11, respectively. For comparison, the 

random seismic response analysis of the bridge without considering structural uncertainties is also 

conducted using both TDEFM_DS and PSM, and the results are also shown in Figs. 8-11. Note 

that, in PSM, the range of the frequency domain considered is taken to be [0,100] rad/s, and the 

frequency interval is assumed to be ∆ω=0.25 rad/srad/s. 

 

 

  
(a) Main-arch crown (b) Side-arch crown 

Fig. 8 Standard deviations of longitudinal displacements of the main- and side-arch crown of the bridge 

 

 
 

(a) Cross-section 1 (b) Cross-section 2 

Fig. 9 Standard deviations of in-plane shear forces of cross-sections 1 and 2 of the bridge 
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(a) Cross-section 1 (b) Cross-section 2 

Fig. 10 Standard deviations of axial forces of cross-sections 1 and 2 of the bridge 

 

  
(a) Cross-section 1 (b) Cross-section 2 

Fig. 11 Standard deviations of in-plane bending moments of cross-sections 1 and 2 of the bridge 

 

 

Similar conclusions as those found in the preceding example can be drawn from the above 

figures. It can be seen that the results obtained by TDEFM_DS and PSM are in good agreement, 

and few discrepancies can be observed from the results obtained by TDEFM_SS with different 

values of f. Again, one can see that the standard deviations of the responses are larger when 

structural uncertainties are also considered. However, for this engineering example, it can be seen 

that the variation of the structural responses is mainly due to the random seismic excitation, and 

the structural uncertainties only contribute not more than 5% to the standard deviation responses of 

the bridge. This might be true for most engineering structures subjected to random excitations. But 

if nonlinear analysis is required, the uncertainties due to the nonlinear behavior of the material, e.g. 

the nonlinear restoring force of the structure, may be much more noticeable, and may contribute 

more to the variation of the structural responses. This will be investigated in the subsequent papers 

of the authors. Note that, for the above example, even though the changes of the standard deviation 

responses are not as large as expected when considering structural uncertainties, such changes will 

lead to considerably large changes to the reliability results of the bridge if reliability analysis is 

further conducted. For example, for cross-sections 1 and 2 in Fig. 6, if the limit state is defined as 

that the cross-section is not allowed to enter the elastic-plastic state, the reliability indexes for 

these two cross-sections will decrease respectively from 3.89 to 3.48 and from 3.11 to 2.71 when  
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Table 7 CPU time elapsed by different methods for analysis of the Xinguang Bridge (s) 

Method Deterministic structure Stochastic structure 

TDEFM_DS 173 — 

PSM 8958 — 

TDEFM_SS — 2046 

 

 

structural uncertainties are considered, indicating an evident increase of the failure probability of 

the structure. 

As for the computational effort, the CPU time elapsed by different methods for this engineering 

example is given in Table 7, It can be seen that, even for this large-scale structure modeled with a 

large number of beam and shell elements, the non-stationary random seismic response analysis can 

be carried out efficiently using the proposed method. 
 

 
5. Conclusions 

 

Due to the computational inefficiency of the existing methods, an explicit formulation approach 

is developed to analyze the non-stationary random vibration of stochastic structures. Based on the 

explicit expressions of structural dynamic responses, the mean and standard deviation responses of 

deterministic structures are easily obtained through the operation rules of moments. Combined 

with the total expectation theorem and the response surface techniques, the method for 

deterministic structures is extended to solve random responses of stochastic structures. Closed-

form solutions to the mean and mean square responses considering both uncertain effects resulting 

from random excitations and structural uncertainties are obtained in the present study. Two 

numerical examples are given to demonstrate the performance of the proposed method. The results 

show that the predicted random responses obtained by the present approach are in good agreement 

with those obtained by MCS, and the proposed method is applicable to large-scale structures with 

high efficiency. Finally, it should be noted that the present approach is applicable to linear 

structures, and the authors are now extending the method for analysis of nonlinear systems based 

on an efficient time-domain explicit iteration scheme (Su et al. 2014). 
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